1
|
Zheng J, Liu G, Wu C, Jia G, Zhao H, Chen X, Wang J. Effect of calcium-sensing receptor on the migration and proliferation of porcine intestinal epithelial cells. Anim Biotechnol 2021; 34:365-374. [PMID: 34459707 DOI: 10.1080/10495398.2021.1968885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The rapid healing of impaired intestinal surface plays a role in maintaining intestinal homeostasis. This study investigated the effect of calcium-sensing receptor (CaSR) on the migration and proliferation of intestinal porcine epithelial cells (IPEC-J2). Results showed that cell migration area and width were increased by R568 (CaSR activator) and decreased by NPS2143 (CaSR inhibitor). The protein level of GTP-rac1 and the phosphorylation of phospholipase C gamma 1 (PLCγ1) were increased by 2 µM R568. Furthermore, R568 + 120 µM NSC23766 (Rac1 inhibitor) and R568 + 1 µM U73122 (PLCγ1 inhibitor) decreased the protein level of GTP-rac1 and the phosphorylated PLCγ1, respectively, and both inhibited cell migration compared with R568. In addition, spermine increased the protein expression levels of CaSR and the levels of GTP-rac1 and the phosphorylated PLCγ1 and thereby promoted the migration of IPEC-J2 cells. Moreover, R568 improved the proliferation of the IPEC-J2 cells. Spermine increased cell proliferation, but NPS2143 incubated with spermine decreased cell proliferation compared with the spermine group. This study suggests that CaSR activation increased cell migration by activating Rac1 and PLCγ1 signaling and improved cell proliferation, and both effects were regulated by spermine by activating CaSR.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, Sichuan, China.,Key laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Cai H, Qu N, Chen X, Zhou Y, Zheng X, Zhang B, Xia C. The inhibition of PLCγ1 protects chondrocytes against osteoarthritis, implicating its binding to Akt. Oncotarget 2017; 9:4461-4474. [PMID: 29435116 PMCID: PMC5796987 DOI: 10.18632/oncotarget.23286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022] Open
Abstract
Previous studies have addressed the involvement of phosphoinositide-specifc phospholipase γ1 (PLCγ1) and protein kinase B (PKB/Akt) in osteoarthritis (OA) pathogenesis, but it is not ascertained the possibility of them to be potential targets for OA therapy. Here, through local intra-articular injection of PLCγ or Akt inhibitor in a rat OA model induced by anterior cruciate ligament transaction plus medial meniscus resection, the architecture of chondrocyte and matrix organization of articular cartilage were observed using histopathological assays and Aggrecan, Col2, PLCγ1, and Akt levels were detected using immunohistochemistry assays. By treatment of Akt or PLCγ inhibitor and transfection of different PLCγ1- or Akt-expressing vectors in rat OA model chondrocytes, Aggrecan, Col2, PLCγ1, p-PLCγ1, Akt, and p-Akt levels were detected using western blotting analysis. The binding between PLCγ1 and Akt was assessed with co-immunoprecipitation assays in human OA chondrocytes. These results showed that PLCγ inhibition protected chondrocytes against OA, but Akt inhibition did not dramatically aggravate OA progression. There were mutual antagonism and binding between PLCγ1 and Akt that could be regulated by their phosphorylation levels. Consequently, the data reveal that the inhibition of PLCγ1 may provide an attractive therapeutic target for OA therapy, implicating its binding to Akt.
Collapse
Affiliation(s)
- Heguo Cai
- Zhongshan Hospital, Xiamen University, Fujian 361004, China.,The Third Hospital of Xiamen, Fujian, China, Fujian 361000, China
| | - Ning Qu
- School of Medicine, Xiamen University, Fujian 361102, China
| | - Xiaolei Chen
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Yang Zhou
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Xinpeng Zheng
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| | - Bing Zhang
- School of Medicine, Xiamen University, Fujian 361102, China
| | - Chun Xia
- Zhongshan Hospital, Xiamen University, Fujian 361004, China
| |
Collapse
|
3
|
Gong L, Zhou X, Yang J, Jiang Y, Yang H. Effects of the regulation of polysialyltransferase ST8SiaII on the invasiveness and metastasis of small cell lung cancer cells. Oncol Rep 2016; 37:131-138. [PMID: 28004110 DOI: 10.3892/or.2016.5279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 06/30/2016] [Indexed: 11/05/2022] Open
Abstract
Invasiveness and metastasis may seriously affect the prognosis of small cell lung cancer (SCLC). In the present study, we analyzed the effects and inherent mechanisms of action of polysialic acid-modified neural cell adhesion molecule (NCAM) on the invasive and metastatic potential of SCLC. Gene transfection and short hairpin RNA (shRNA) interference were used to enhance or inhibit, respectively, the expression of polysialyltransferase ST8SiaII in the SCLC cell line H446. We studied in vitro positive or negative changes in the invasive and metastatic potential of the SCLC cells as well as the changes in expression of genes related to signaling molecules and metastasis. When ST8SiaII expression was enhanced, the in vitro transmembrane invasion (P<0.01) and migration (P<0.01) abilities of the SCLC cells markedly increased. Phosphorylation levels of fibroblast growth factor receptor 1 (FGFR1), extracellular signal-related kinase 1/2 (ERK1/2), and matrix metalloproteinase-9 (MMP-9) in the SCLC cells were also significantly increased. In contrast, when ST8SiaII expression was inhibited, the transmembrane invasion (P<0.01) and migration (P<0.01) of the SCLC cells as well as expression of the above signaling molecules were suppressed. Polysialic acid-modified NCAM on the surface of SCLC cells is closely related to the metastatic potential of these cells; regulation of ST8SiaII may thus affect the invasiveness and metastasis of SCLC, and these processes may be associated with phosphorylation of FGFR1, ERK1/2 or MMP-9.
Collapse
Affiliation(s)
- Liang Gong
- Department of Respiratory Diseases, Southwest Hospital of the Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Xiangdong Zhou
- Department of Respiratory Diseases, Southwest Hospital of the Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Jingxiang Yang
- Department of Respiratory Diseases, Southwest Hospital of the Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Yongyuan Jiang
- Department of Respiratory Diseases, Southwest Hospital of the Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| | - Heping Yang
- Department of Respiratory Diseases, Southwest Hospital of the Third Military Medical University, Shapingba, Chongqing 400038, P.R. China
| |
Collapse
|
4
|
Gao G, He J, Nong L, Xie H, Huang Y, Xu N, Zhou D. Periodic mechanical stress induces the extracellular matrix expression and migration of rat nucleus pulposus cells by upregulating the expression of intergrin α1 and phosphorylation of downstream phospholipase Cγ1. Mol Med Rep 2016; 14:2457-64. [PMID: 27484337 PMCID: PMC4991676 DOI: 10.3892/mmr.2016.5549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 07/08/2016] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disk degeneration (IDD) is a major cause of low back pain and an important socioeconomic burden. Degradation of the extracellular matrix (ECM) of nucleus pulposus (NP) cells in the interverterbal disk is important for IDD. Stress of a suitable frequency and amplitude promotes the synthesis of the ECM of NP cells, however, the associated mechanisms remain to be fully elucidated The present study aimed to investigate the effect of integrin α1 on the migration and ECM synthesis of NP cells under soft periodic mechanical stress. Rat NP cells were isolated and plated onto slides, and were then treated with or without the use of a periodic mechanical stress system. The expression levels of integrin α1, α5 and αv, ECM collagen 2A1 (Col2A1) and aggrecan, and the phosphorylation of phospholipase C-γ1 (PLCγ1) were measured using reverse transcription-quantitative polymerase chain reaction and western blot analyses. Cell migration was assayed using a scratch experiment. The results showed that exposure to periodic mechanical stress significantly induced the mRNA expression levels of Col2A1 and aggrecan, cell migration, mRNA expression of integrin α1 and phosphorylation of PLC-γ1 of the NP, compared with the control (P<0.05). Inhibition of the PLCγ1 protein by U73122 significantly decreased the ECM expression under periodic mechanical stress (P<0.05). Small interfering RNA-mediated integrin α1 gene knockdown suppressed the mRNA expression levels of Col2A1 and aggrecan, and suppressed the migration and phosphorylation of PLCγ1 of the NP cells under periodic mechanical stress, compared with the control (P<0.05). In conclusion, periodic mechanical stress induced ECM expression and the migration of NP cells via upregulating the expression of integrin α1 and the phosphorylation of downstream PLCγ1. These findings provide novel information to aid the understanding of the pathogenesis and development of IDD.
Collapse
Affiliation(s)
- Gongming Gao
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Jin He
- Department of Orthopedics, Jintan People's Hospital Affiliated to Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Luming Nong
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hua Xie
- Department of Orthopedics, Jintan People's Hospital Affiliated to Jiangsu University, Jintan, Jiangsu 213200, P.R. China
| | - Yongjing Huang
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Nanwei Xu
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Dong Zhou
- Department of Orthopedics, Changzhou Second Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
5
|
Song H, Liang W, Xu S, Li Z, Chen Z, Cui W, Zhou J, Wang Q, Liu F, Fan W. A novel role for integrin-linked kinase in periodic mechanical stress-mediated ERK1/2 mitogenic signaling in rat chondrocytes. Cell Biol Int 2016; 40:832-9. [PMID: 27154044 DOI: 10.1002/cbin.10622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022]
Abstract
In recent years, a variety of studies have been performed to investigate the cellular responses of periodic mechanical stress on chondrocytes. Integrin β1-mediated ERK1/2 activation was proven to be indispensable in periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. However, other signal proteins responsible for the mitogenesis of chondrocytes under periodic mechanical stress remain incompletely understood. In the current investigation, we probed the roles of integrin-linked kinase (ILK) signaling in periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. We found that upon periodic mechanical stress induction, ILK activity increased significantly. Depletion of ILK with targeted shRNA strongly inhibited periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis. In addition, pretreatment with a blocking antibody against integrin β1 resulted in a remarkable decrease in ILK activity in cells exposed to periodic mechanical stress. Furthermore, inhibition of ILK with its target shRNA significantly suppressed ERK1/2 activation in relation to periodic mechanical stress. Based on the above results, we identified ILK as a crucial regulator involved in the integrin β1-ERK1/2 signal cascade responsible for periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis.
Collapse
Affiliation(s)
- Huanghe Song
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Wenwei Liang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Shun Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Zeng Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Zhefeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Weiding Cui
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Jinchun Zhou
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Qing Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Feng Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, China
| |
Collapse
|
6
|
Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2. Biochem Biophys Res Commun 2015; 469:723-30. [PMID: 26707876 DOI: 10.1016/j.bbrc.2015.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/14/2023]
Abstract
The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.
Collapse
|
7
|
Lu Y, Xu Y, Yin Z, Yang X, Jiang Y, Gui J. Chondrocyte migration affects tissue-engineered cartilage integration by activating the signal transduction pathways involving Src, PLCγ1, and ERK1/2. Tissue Eng Part A 2013; 19:2506-16. [PMID: 23799275 DOI: 10.1089/ten.tea.2012.0614] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
To determine the signal transduction pathways involved in chondrocyte migration and their effects on cartilage integration in autologous chondrocyte implantation. Articular chondrocytes were divided into three inhibitor groups pretreated with different inhibitors to Src, phospholipase Cγ1 (PLCγ1), and extracellular signal-regulated kinase (ERK)1/2 signaling pathways and one control group pretreated with vehicle. The effect of these pathways on chondrocyte migration was first explored by Boyden chamber assay, and then by an in vitro cell/ring integration model. Chondrocyte migration was visualized and quantified by cell tracking, and the activity of Src, PLCγ1, and ERK1/2 was determined by Western blotting. The effect of these pathways on cartilage integration was evaluated histologically, biochemically, and biomechanically. Boyden chamber assay revealed that the number of migrated cells was significantly increased in the control group without inhibitors. In an in vitro integration model, the implanted chondrocytes were observed to migrate through the interface and infiltrate into the native cartilage. Additionally, chondrocyte migration could be improved in the absence of inhibitors After 4 weeks of culture, the control group demonstrated a significantly higher cellularity, larger amount of chemical content deposition, stronger extracellular matrix staining in the integration zone, and higher integrative strength as compared to the inhibitor groups. Western blotting demonstrated that the Src-PLCγ1-ERK1/2 signaling pathway was promoted in the integration process. This study is the first to show that the Src-PLCγ1-ERK1/2 signaling transduction pathway is involved in cartilage tissue integration by affecting chondrocyte migration. Our results raise the importance of the chondrocyte migration enhancement therapy or the development of new agents specifically targeting the pathways to ensure long-term functionality of the restored joint surface.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Orthopaedics, Nanjing Medical University Affiliated Nanjing First Hospital , Nanjing, China
| | | | | | | | | | | |
Collapse
|
8
|
Phospholipases of mineralization competent cells and matrix vesicles: roles in physiological and pathological mineralizations. Int J Mol Sci 2013; 14:5036-129. [PMID: 23455471 PMCID: PMC3634480 DOI: 10.3390/ijms14035036] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 02/08/2023] Open
Abstract
The present review aims to systematically and critically analyze the current knowledge on phospholipases and their role in physiological and pathological mineralization undertaken by mineralization competent cells. Cellular lipid metabolism plays an important role in biological mineralization. The physiological mechanisms of mineralization are likely to take place in tissues other than in bones and teeth under specific pathological conditions. For instance, vascular calcification in arteries of patients with renal failure, diabetes mellitus or atherosclerosis recapitulates the mechanisms of bone formation. Osteoporosis—a bone resorbing disease—and rheumatoid arthritis originating from the inflammation in the synovium are also affected by cellular lipid metabolism. The focus is on the lipid metabolism due to the effects of dietary lipids on bone health. These and other phenomena indicate that phospholipases may participate in bone remodelling as evidenced by their expression in smooth muscle cells, in bone forming osteoblasts, chondrocytes and in bone resorbing osteoclasts. Among various enzymes involved, phospholipases A1 or A2, phospholipase C, phospholipase D, autotaxin and sphingomyelinase are engaged in membrane lipid remodelling during early stages of mineralization and cell maturation in mineralization-competent cells. Numerous experimental evidences suggested that phospholipases exert their action at various stages of mineralization by affecting intracellular signaling and cell differentiation. The lipid metabolites—such as arachidonic acid, lysophospholipids, and sphingosine-1-phosphate are involved in cell signaling and inflammation reactions. Phospholipases are also important members of the cellular machinery engaged in matrix vesicle (MV) biogenesis and exocytosis. They may favour mineral formation inside MVs, may catalyse MV membrane breakdown necessary for the release of mineral deposits into extracellular matrix (ECM), or participate in hydrolysis of ECM. The biological functions of phospholipases are discussed from the perspective of animal and cellular knockout models, as well as disease implications, development of potent inhibitors and therapeutic interventions.
Collapse
|
9
|
Ren K, Ma Y, Huang Y, Liang W, Liu F, Wang Q, Cui W, Liu Z, Yin G, Fan W. Periodic mechanical stress activates MEK1/2-ERK1/2 mitogenic signals in rat chondrocytes through Src and PLCγ1. Braz J Med Biol Res 2011; 44:1231-42. [DOI: 10.1590/s0100-879x2011007500150] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 10/25/2011] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Yimin Ma
- Nanjing Medical University, China
| | | | | | - Feng Liu
- Nanjing Medical University, China
| | | | | | | | | | | |
Collapse
|