1
|
Haneen DSA, Hekal MH, Abou-Elmagd WSI, El-Sayed WM. Novel pyrano[2,3-c]pyrazolopyrimidines as promising anticancer agents: Design, synthesis, and cell cycle arrest of HepG2 cells at S phase. SYNTHETIC COMMUN 2024; 54:655-671. [DOI: 10.1080/00397911.2024.2327047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 10/06/2024]
Affiliation(s)
- David S. A. Haneen
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Mohamed H. Hekal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Wael S. I. Abou-Elmagd
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Wael M. El-Sayed
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
3
|
Bouchet BP, Gough RE, Ammon YC, van de Willige D, Post H, Jacquemet G, Altelaar AM, Heck AJ, Goult BT, Akhmanova A. Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions. eLife 2016; 5. [PMID: 27410476 PMCID: PMC4995097 DOI: 10.7554/elife.18124] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 12/23/2022] Open
Abstract
The cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix plays a crucial role in cell polarity and migration. Microtubules regulate the turnover of adhesion sites, and, in turn, focal adhesions promote the cortical microtubule capture and stabilization in their vicinity, but the underlying mechanism is unknown. Here, we show that cortical microtubule stabilization sites containing CLASPs, KIF21A, LL5β and liprins are recruited to focal adhesions by the adaptor protein KANK1, which directly interacts with the major adhesion component, talin. Structural studies showed that the conserved KN domain in KANK1 binds to the talin rod domain R7. Perturbation of this interaction, including a single point mutation in talin, which disrupts KANK1 binding but not the talin function in adhesion, abrogates the association of microtubule-stabilizing complexes with focal adhesions. We propose that the talin-KANK1 interaction links the two macromolecular assemblies that control cortical attachment of actin fibers and microtubules. DOI:http://dx.doi.org/10.7554/eLife.18124.001 Animal cells are organized into tissues and organs. A scaffold-like framework outside of the cells called the extracellular matrix provides support to the cells and helps to hold them in place. Cells attach to the extracellular matrix via structures called focal adhesions on the cell surface; these structures contain a protein called talin. For a cell to be able to move, the existing focal adhesions must be broken down and new adhesions allowed to form. This process is regulated by the delivery and removal of different materials along fibers called microtubules. Microtubules can usually grow and shrink rapidly, but near focal adhesions they are captured at the surface of the cell and become more stable. However, it is not clear how focal adhesions promote microtubule capture and stability. Bouchet et al. found that a protein called KANK1 binds to the focal adhesion protein talin in human cells grown in a culture dish. This allows KANK1 to recruit microtubules to the cell surface around the focal adhesions by binding to particular proteins that are associated with microtubules. Disrupting the interaction between KANK1 and talin by making small alterations in these two proteins blocked the ability of focal adhesions to capture surrounding microtubules. The next step following on from this work will be to find out whether this process also takes place in the cells within an animal’s body, such as a fly or a mouse. DOI:http://dx.doi.org/10.7554/eLife.18124.002
Collapse
Affiliation(s)
- Benjamin P Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Rosemarie E Gough
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - York-Christoph Ammon
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Dieudonnée van de Willige
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | | | - Af Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | - Albert Jr Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands.,Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.,Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,The Netherlands Proteomics Centre, Utrecht University, Utrecht, The Netherlands
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Bouchet BP, Puisieux A, Galmarini CM. βIII-Tubulin is required for interphase microtubule dynamics in untransformed human mammary epithelial cells. Eur J Cell Biol 2011; 90:872-8. [PMID: 21820201 DOI: 10.1016/j.ejcb.2011.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/28/2011] [Accepted: 05/03/2011] [Indexed: 12/22/2022] Open
Abstract
Numerous works have questioned the pertinence of using βII- and/or βIII-tubulin expression as markers of prognosis and/or prediction of breast cancer response to chemotherapy containing microtubule-targeting agents. The rationale of such studies was essentially based on microtubule dynamics analysis using purified tubulin in vitro and cancer cell lines. Nonetheless, the significance of βII- and βIII-tubulin expression in the control of microtubule dynamics in normal mammary epithelium has never been addressed. Here we investigate the expression and the consequences of βII- and/or βIII-tubulin depletion in interphase microtubule dynamics in non-tumor human mammary epithelial cells. We find that both isoforms contribute to the tubulin isotype composition in primary and immortalized human mammary epithelial cells. Moreover, while βII-tubulin depletion has limited effects on interphase microtubule behavior, βIII-tubulin depletion causes a strong exclusion of microtubules from lamella and a severe suppression of dynamic instability. These results demonstrate that, while βII-tubulin is dispensable, βIII-tubulin is required for interphase microtubule dynamics in untransformed mammary epithelial cells. This strongly suggests that βIII-tubulin is an essential regulator of interphase microtubule functions in normal breast epithelium cells.
Collapse
|