1
|
Pistofidis A, Ma P, Li Z, Munro K, Houk KN, Schmeing TM. Structures and mechanism of condensation in non-ribosomal peptide synthesis. Nature 2025; 638:270-278. [PMID: 39662504 DOI: 10.1038/s41586-024-08417-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/15/2024] [Indexed: 12/13/2024]
Abstract
Non-ribosomal peptide synthetases (NRPSs) are megaenzymes responsible for the biosynthesis of many clinically important natural products, from early modern medicines (penicillin, bacitracin) to current blockbuster drugs (cubicin, vancomycin) and newly approved therapeutics (rezafungin)1,2. The key chemical step in these biosyntheses is amide bond formation between aminoacyl building blocks, catalysed by the condensation (C) domain3. There has been much debate over the mechanism of this reaction3-12. NRPS condensation has been difficult to fully characterize because it is one of many successive reactions in the NRPS synthetic cycle and because the canonical substrates are each attached transiently as thioesters to mobile carrier domains, which are often both contained in the same very flexible protein as the C domain. Here we have produced a dimodular NRPS protein in two parts, modified each with appropriate non-hydrolysable substrate analogues13,14, assembled the two parts with protein ligation15, and solved the structures of the substrate- and product-bound states. The structures show the precise orientation of the megaenzyme preparing the nucleophilic attack of its key chemical step, and enable biochemical assays and quantum mechanical simulations to precisely interrogate the reaction. These data suggest that NRPS C domains use a concerted reaction mechanism, whereby the active-site histidine likely functions not as a general base, but as a crucial stabilizing hydrogen bond acceptor for the developing ammonium.
Collapse
Affiliation(s)
- Angelos Pistofidis
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Pengchen Ma
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, China
| | - Zihao Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Kim Munro
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - T Martin Schmeing
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
2
|
Smaldone G, Vigorita M, Ruggiero A, Balasco N, Dattelbaum JD, D'Auria S, Del Vecchio P, Graziano G, Vitagliano L. Proline 235 plays a key role in the regulation of the oligomeric states of Thermotoga maritima Arginine Binding Protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:814-24. [PMID: 27087545 DOI: 10.1016/j.bbapap.2016.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 10/22/2022]
Abstract
The Arginine Binding Protein isolated from Thermotoga maritima (TmArgBP) is a protein endowed with several peculiar properties. We have previously shown that TmArgBP dimerization is a consequence of the swapping of the C-terminal helix. Here we explored the structural determinants of TmArgBP domain swapping and oligomerization. In particular, we report a mutational analysis of the residue Pro235, which is located in the hinge region of the swapping dimer. This residue was either replaced with a Gly-Lys dipeptide (TmArgBP(P235GK)) or a Gly residue (TmArgBP(P235G)). Different forms of these mutants were generated and extensively characterized using biophysical techniques. For both TmArgBP(P235GK) and TmArgBP(P235G) mutants, the occurrence of multiple oligomerization states (monomers, dimers and trimers) was detected. The formation of well-folded monomeric forms for these mutants indicates that the dimerization through C-terminal domain swapping observed in wild-type TmArgBP is driven by conformational restraints imposed by the presence of Pro235 in the hinge region. Molecular dynamics studies corroborate this observation by showing that Gly235 assumes conformational states forbidden for Pro residues in the TmArgBP(P235G) monomer. Unexpectedly, the trimeric forms present: (a) peculiar circular dichroism spectra, (b) a great susceptibility to heating, and (c) the ability to bind the Thioflavin T dye. The present findings clearly demonstrate that single-point mutations have an important impact on the TmArgBP oligomerization process. In a wider context, they also indicate that proteins endowed with an intrinsic propensity to swap have an easy access to states with altered structural and, possibly, functional properties.
Collapse
Affiliation(s)
| | - Marilisa Vigorita
- Department of Sciences and Technologies, Università del Sannio, Via Port'arsa 11, Benevento 82100, Italy
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Nicole Balasco
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy; DiSTABiF, Second University of Naples, Caserta 81100, Italy
| | | | - Sabato D'Auria
- Institute of Food Science, CNR, Via Roma, 64, Avellino, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Napoli, Italy
| | - Giuseppe Graziano
- Department of Sciences and Technologies, Università del Sannio, Via Port'arsa 11, Benevento 82100, Italy
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging, CNR, Via Mezzocannone 16, I-80134 Napoli, Italy.
| |
Collapse
|
3
|
Hung MC, Humbert MV, Laver JR, Phillips R, Heckels JE, Christodoulides M. A putative amino acid ABC transporter substrate-binding protein, NMB1612, from Neisseria meningitidis, induces murine bactericidal antibodies against meningococci expressing heterologous NMB1612 proteins. Vaccine 2015. [PMID: 26207592 DOI: 10.1016/j.vaccine.2015.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nmb1612 (NEIS1533) gene encoding the ~27-kDa putative amino acid ATP-binding cassette (ABC) transporter, periplasmic substrate-binding protein from Neisseria meningitidis serogroup B (MenB) strain MC58 was cloned and expressed in Escherichia coli, and the purified recombinant (r)NMB1612 was used for animal immunization studies. Immunization of mice with rNMB1612 adsorbed to Al(OH)3 and in liposomes with and without MPLA, induced antiserum with bactericidal activity in an assay using baby rabbit complement, against the homologous strain MC58 (encoding protein representative of Allele 62) and killed heterologous strains encoding proteins of three other alleles (representative of Alleles 1, 64 and 68), with similar SBA titres. However, strain MC58 was not killed (titre <4) in a human serum bactericidal assay (hSBA) using anti-rNMB1612 sera, although another strain (MC168) expressing the same protein was killed (median titres of 16-64 in the hSBA). Analysis of the NMB1612 amino acid sequences from 4351 meningococcal strains in the pubmlst.org/Neisseria database and a collection of 13 isolates from colonized individuals and from patients, showed that antibodies raised against rNMB1612 could potentially kill at least 72% of the MenB strains in the complete sequence database. For MenB disease occurring specifically in the UK from 2013 to 2015, >91% of the isolates causing disease in this recent period expressed NMB1612 protein encoded by Allele 1 and could be potentially killed by sera raised to the recombinant antigen in the current study. The NMB1612 protein was surface-accessible and expressed by different meningococcal strains. In summary, the properties of (i) NMB1612 protein conservation and expression, (ii) limited amino acid sequence variation between proteins encoded by different alleles, and (iii) the ability of a recombinant protein to induce cross-strain bactericidal antibodies, would all suggest a promising antigen for consideration for inclusion in new meningococcal vaccines.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - María Victoria Humbert
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - Jay R Laver
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - Renee Phillips
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - John E Heckels
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Division of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Medical School, Southampton SO166YD, United Kingdom.
| |
Collapse
|
4
|
Ruggiero A, Dattelbaum JD, Staiano M, Berisio R, D'Auria S, Vitagliano L. A loose domain swapping organization confers a remarkable stability to the dimeric structure of the arginine binding protein from Thermotoga maritima. PLoS One 2014; 9:e96560. [PMID: 24832102 PMCID: PMC4022495 DOI: 10.1371/journal.pone.0096560] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 01/08/2023] Open
Abstract
The arginine binding protein from Thermatoga maritima (TmArgBP), a substrate binding protein (SBP) involved in the ABC system of solute transport, presents a number of remarkable properties. These include an extraordinary stability to temperature and chemical denaturants and the tendency to form multimeric structures, an uncommon feature among SBPs involved in solute transport. Here we report a biophysical and structural characterization of the TmArgBP dimer. Our data indicate that the dimer of the protein is endowed with a remarkable stability since its full dissociation requires high temperature as well as SDS and urea at high concentrations. In order to elucidate the atomic level structural properties of this intriguing protein, we determined the crystallographic structures of the apo and the arginine-bound forms of TmArgBP using MAD and SAD methods, respectively. The comparison of the liganded and unliganded models demonstrates that TmArgBP tertiary structure undergoes a very large structural re-organization upon arginine binding. This transition follows the Venus Fly-trap mechanism, although the entity of the re-organization observed in TmArgBP is larger than that observed in homologous proteins. Intriguingly, TmArgBP dimerizes through the swapping of the C-terminal helix. This dimer is stabilized exclusively by the interactions established by the swapping helix. Therefore, the TmArgBP dimer combines a high level of stability and conformational freedom. The structure of the TmArgBP dimer represents an uncommon example of large tertiary structure variations amplified at quaternary structure level by domain swapping. Although the biological relevance of the dimer needs further assessments, molecular modelling suggests that the two TmArgBP subunits may simultaneously interact with two distinct ABC transporters. Moreover, the present protein structures provide some clues about the determinants of the extraordinary stability of the biomolecule. The availability of an accurate 3D model represents a powerful tool for the design of new TmArgBP suited for biotechnological applications.
Collapse
Affiliation(s)
| | - Jonathan D Dattelbaum
- Department of Chemistry, University of Richmond, Richmond, Virginia, United States of America
| | - Maria Staiano
- Laboratory for Molecular Sensing, IBP-CNR, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, CNR, Napoli, Italy
| | - Sabato D'Auria
- Laboratory for Molecular Sensing, IBP-CNR, Naples, Italy
| | | |
Collapse
|
5
|
Noinaj N, Buchanan SK. Structural insights into the transport of small molecules across membranes. Curr Opin Struct Biol 2014; 27:8-15. [PMID: 24681594 DOI: 10.1016/j.sbi.2014.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 12/19/2022]
Abstract
While hydrophobic small molecules often can freely permeate a lipid bilayer, ions and other polar molecules cannot and require transporters to mediate their transport. Recently, a number of important structures have been reported which have advanced our understanding of how membrane protein transporters function to transport small molecules. Structures of TbpA/B and HmuUV provided new insight into iron uptake by pathogenic bacteria while the structures of NarK, ASBT, and VcINDY revealed molecular details about the transport of nitrate, bile acids and dicarboxylates, respectively. The structure of the folate ECF transporter indicated that the S component likely undergoes a large conformational shift to mediate folate transport, while the cellulose synthase/transporter contains an elongated translocation pore for passage through the inner membrane.
Collapse
Affiliation(s)
- Nicholas Noinaj
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|