1
|
Zhou L, Yao M, Tian Z, Song Y, Sun Y, Ye J, Li G, Sng KS, Xu L, Cui X, Wang Y. Echinacoside attenuates inflammatory response in a rat model of cervical spondylotic myelopathy via inhibition of excessive mitochondrial fission. Free Radic Biol Med 2020; 152:697-714. [PMID: 32014501 DOI: 10.1016/j.freeradbiomed.2020.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is a leading cause of spinal cord dysfunction with few treatment options. Although mitochondrial dynamics are linked to a wide range of pathological changes in neurodegenerative diseases, a connection between aberrant mitochondrial dynamics and CSM remains to be illuminated. In addition, mechanisms underlying the emerging anti-inflammatory and neuroprotective effects of echinacoside (ECH), the main active ingredient of Cistanche salsa, are poorly understood. We hypothesized that excessive mitochondrial fission plays a critical role in regulating inflammatory responses in CSM, and ECH might alleviate such responses by regulating mitochondrial dynamics. To this end, we assessed the effects of ECH and Mdivi-1, a selective inhibitor of dynamin-related protein (Drp1), in a rat model of chronic cervical cord compression and activated BV2 cells. Our results showed that rats with Mdivi-1 intervention had improved motor function compared with vehicle-treated rats. Indeed, Mdivi-1 treatment attenuated pro-inflammatory cytokine expression, as well as activation of the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, nuclear transcription factor-κB (NF-κB), and Drp1 in lesions. Compared with vehicle-treated rats, compression sites of Mdivi-1-treated animals exhibited elongated mitochondrial morphologies and reduced reactive oxygen species (ROS). Similarly, ECH-treated rats exhibited neurological recovery and suppression of inflammatory response or related signals in the lesion area after treatment. Interestingly, ECH treatment partly reversed aberrant mitochondrial fragmentation and oxidative stress within the lesion area. In vitro data suggested that ECH suppressed activated microglia by modulating activation of the NLRP3 inflammasome and NF-κB signaling. Furthermore, we observed that ECH markedly inhibited Drp1 translocation onto mitochondria, whereby it regulated mitochondrial dynamics and ROS production, which act as regulators of NLRP3 inflammasome activation and NF-κB signaling. Thus, our findings reveal that mitochondrial dynamics modulate inflammatory responses during CSM. Moreover, ECH may attenuate neuroinflammation in rats subjected to chronic cervical cord compression by regulating Drp1-dependent mitochondrial fission and activation of downstream signaling.
Collapse
Affiliation(s)
- Longyun Zhou
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zirui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yongjia Song
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yueli Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Kim Sia Sng
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Leqin Xu
- Xiamen Hospital of Traditional Chinese Medicine, Fujian, 361009, China
| | - Xuejun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Yongjun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China; Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zhou LY, Yao M, Tian ZR, Liu SF, Song YJ, Ye J, Li G, Sun YL, Cui XJ, Wang YJ. Muscone suppresses inflammatory responses and neuronal damage in a rat model of cervical spondylotic myelopathy by regulating Drp1-dependent mitochondrial fission. J Neurochem 2020; 155:154-176. [PMID: 32215908 DOI: 10.1111/jnc.15011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Cervical spondylotic myelopathy (CSM) is a common cause of disability with few treatments. Aberrant mitochondrial dynamics play a crucial role in the pathogenesis of various neurodegenerative diseases. Thus, regulation of mitochondrial dynamics may offer therapeutic benefit for the treatment of CSM. Muscone, the active ingredient of an odoriferous animal product, exhibits anti-inflammatory and neuroprotective effects for which the underlying mechanisms remain obscure. We hypothesized that muscone might ameliorate inflammatory responses and neuronal damage by regulating mitochondrial dynamics. To this end, the effects of muscone on a rat model of chronic cervical cord compression, as well as activated BV2 cells and injured neurons, were assessed. The results showed that muscone intervention improved motor function compared with vehicle-treated rats. Indeed, muscone attenuated pro-inflammatory cytokine expression, neuronal-apoptosis indicators in the lesion area, and activation of the nod-like receptor family pyrin domain-containing 3 inflammasome, nuclear transcription factor-κB, and dynamin-related protein 1 in Iba1- and βIII-tubulin-labeled cells. Compared with vehicle-treated rats, compression sites of muscone-treated animals exhibited elongated mitochondrial morphologies in individual cell types and reduced reactive oxygen species. In vitro results indicated that muscone suppressed microglial activation and neuronal damage by regulating related-inflammatory or apoptotic molecules. Moreover, muscone inhibited dynamin-related protein 1 activation in activated BV2 cells and injured neurons, whereby it rescued mitochondrial fragmentation and reactive oxygen species production, which regulate a wide range of inflammatory and apoptotic molecules. Our findings reveal that muscone attenuates neuroinflammation and neuronal damage in rats with chronic cervical cord compression by regulating mitochondrial fission events, suggesting its promise for CSM therapy.
Collapse
Affiliation(s)
- Long-Yun Zhou
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Rehabilitation Medicine College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Yao
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zi-Rui Tian
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-Fen Liu
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jia Song
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ye
- Department of Orthopedics and Traumatology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gan Li
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Li Sun
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue-Jun Cui
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yong-Jun Wang
- Spine Disease Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Knorre DA. Intracellular quality control of mitochondrial DNA: evidence and limitations. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190176. [PMID: 31787047 DOI: 10.1098/rstb.2019.0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells can harbour mitochondria with markedly different transmembrane potentials. Intracellular mitochondrial quality-control mechanisms (e.g. mitophagy) rely on this intracellular variation to distinguish functional and damaged (depolarized) mitochondria. Given that intracellular mitochondrial DNA (mtDNA) genetic variation can induce mitochondrial heterogeneity, mitophagy could remove deleterious mtDNA variants in cells. However, the reliance of mitophagy on the mitochondrial transmembrane potential suggests that mtDNAs with deleterious mutations in ATP synthase can evade the control. This evasion is possible because inhibition of ATP synthase can increase the mitochondrial transmembrane potential. Moreover, the linkage of the mtDNA genotype to individual mitochondrial performance is expected to be weak owing to intracellular mitochondrial intercomplementation. Nonetheless, I reason that intracellular mtDNA quality control is possible and crucial at the zygote stage of the life cycle. Indeed, species with biparental mtDNA inheritance or frequent 'leakage' of paternal mtDNA can be vulnerable to invasion of selfish mtDNAs at the stage of gamete fusion. Here, I critically review recent findings on intracellular mtDNA quality control by mitophagy and discuss other mechanisms by which the nuclear genome can affect the competition of mtDNA variants in the cell. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Dmitry A Knorre
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Leninskiye Gory 1-40, Moscow 119991, Russia.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
| |
Collapse
|
4
|
Kariyawasam T, Joo S, Lee J, Toor D, Gao AF, Noh KC, Lee JH. TALE homeobox heterodimer GSM1/GSP1 is a molecular switch that prevents unwarranted genetic recombination in Chlamydomonas. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:938-953. [PMID: 31368133 DOI: 10.1111/tpj.14486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Eukaryotic sexual life cycles alternate between haploid and diploid stages, the transitions between which are delineated by cell fusion and meiotic division. Transcription factors in the TALE-class homeobox family, GSM1 and GSP1, predominantly control gene expression for the haploid-to-diploid transition during sexual reproduction in the unicellular green alga, Chlamydomonas reinhardtii. To understand the roles that GSM1 and GSP1 play in zygote development, we used gsm1 and gsp1 mutants and examined fused gametes that normally undergo the multiple organellar fusions required for the genetic unity of the zygotes. In gsm1 and gsp1 zygotes, no fusion was observed for the nucleus and chloroplast. Surprisingly, mitochondria and endoplasmic reticulum, which undergo dynamic autologous fusion/fission, did not undergo heterologous fusions in gsm1 or gsp1 zygotes. Furthermore, the mutants failed to resorb their flagella, an event that normally renders the zygotes immotile. When gsm1 and gsp1 zygotes resumed the mitotic cycle, their two nuclei fused prior to mitosis, but neither chloroplastic nor mitochondrial fusion took place, suggesting that these fusions are specifically turned on by GSM1/GSP1. Taken together, this study shows that organellar restructuring during zygotic diploidization does not occur by default but is triggered by a combinatorial switch, the GSM1/GSP1 dyad. This switch may represent an ancient mechanism that evolved to restrict genetic recombination during sexual development.
Collapse
Affiliation(s)
| | - Sunjoo Joo
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Jenny Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ally F Gao
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Kyung-Chul Noh
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
The dynamin-like protein Fzl promotes thylakoid fusion and resistance to light stress in Chlamydomonas reinhardtii. PLoS Genet 2019; 15:e1008047. [PMID: 30875368 PMCID: PMC6436760 DOI: 10.1371/journal.pgen.1008047] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/27/2019] [Accepted: 02/25/2019] [Indexed: 12/22/2022] Open
Abstract
Large GTPases of the Dynamin Related Proteins (DRP) family shape lipid bilayers through membrane fission or fusion processes. Despite the highly organized photosynthetic membranes of thylakoids, a single DRP is known to be targeted inside the chloroplast. Fzl from the land plant Arabidopsis thaliana is inserted in the inner envelope and thylakoid membranes to regulate their morphology. Fzl may promote the fusion of thylakoids but this remains to be proven. Moreover, the physiological requirement for fusing thylakoids is currently unknown. Here, we find that the unicellular microalga Chlamydomonas reinhardtii encodes an Fzl ortholog (CrFzl) that is localized in the chloroplast where it is soluble. To explore its function, the CRISPR/Cas9 technology was employed to generate multiple CrFzl knock out strains. Phenotypic analyzes revealed a specific requirement of CrFzl for survival upon light stress. Consistent with this, strong irradiance lead to increased photoinhibition of photosynthesis in mutant cells. Fluorescence and electron microscopy analysis demonstrated that upon exposure to high light, CrFzl mutants show defects in chloroplast morphology but also large cytosolic vacuoles in close contact with the plastid. We further observe that strong irradiance induces an increased recruitment of the DRP to thylakoid membranes. Most importantly, we show that CrFzl is required for the fusion of thylakoids during mating. Together, our results suggest that thylakoids fusion may be necessary for resistance to light stress. All eukaryotic cells are composed of compartments with defined functions. Among those, mitochondria generate the main source of energy in human and animal cells. Their capacity to generate and diffuse energy in the cell is regulated by fusion and fragmentation processes. Together with mitochondria that produce energy from oxygen, plant cells include an additional compartment called the chloroplast that produces energy from light. The machinery that converts light into energy is more precisely located inside the chloroplast within stacks of membranes called the thylakoids. Here, we elucidate the function of CrFzl, a previously uncharacterized protein encoded by the genome of the unicellular alga Chlamydomonas reinhardtii. Algal cells that do not contain CrFzl are impaired in their capacity to grow when they receive too much light and our results indicate that CrFzl promotes the fusion of thylakoids during mating. These results suggest that membrane fusion is an essential tool for energy production in stress conditions by living organisms.
Collapse
|
6
|
Bauer C, Duwald R, Labrador GM, Pascal S, Moneva Lorente P, Bosson J, Lacour J, Rochaix JD. Specific labeling of mitochondria of Chlamydomonas with cationic helicene fluorophores. Org Biomol Chem 2019; 16:919-923. [PMID: 29334105 DOI: 10.1039/c7ob02906c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Twelve cationic helicenes and one triangulene were tested for the specific labeling of mitochondria from algal cells. Octyl ester derivative 5 readily penetrates algal cells and gives rise to clear fluorescence patterns when it is used at concentrations in the μM range. Under these conditions, cell structures are well preserved and cell survival is not compromised. Cationic helicene compounds such as 5 provide new useful tools for examining the mitochondrial network and its dynamics including fission and fusion events.
Collapse
Affiliation(s)
- Christoph Bauer
- Bioimaging Center, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Steiner P, Luckner M, Kerschbaum H, Wanner G, Lütz-Meindl U. Ionic stress induces fusion of mitochondria to 3-D networks: An electron tomography study. J Struct Biol 2018; 204:52-63. [PMID: 29981486 DOI: 10.1016/j.jsb.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 01/05/2023]
Abstract
Mitochondria are central organelles for energy supply of cells and play an important role in maintenance of ionic balance. Consequently mitochondria are highly sensitive to any kind of stress to which they mainly response by disturbance of respiration, ROS production and release of cytochrome c into the cytoplasm. Many of the physiological and molecular stress reactions of mitochondria are well known, yet there is a lack of information on corresponding stress induced structural changes. 3-D visualization of high-pressure frozen cells by FIB-SEM tomography and TEM tomography as used for the present investigation provide an excellent tool for studying structure related mitochondrial stress reactions. In the present study it is shown that mitochondria in the unicellular fresh-water algal model system Micrasterias as well as in the closely related aquatic higher plant Lemna fuse to local networks as a consequence of exposure to ionic stress induced by addition of KCl, NaCl and CoCl2. In dependence on concentration and duration of the treatment, fusion of mitochondria occurs either by formation of protuberances arising from the outer mitochondrial membrane, or by direct contact of the surface of elongated mitochondria. As our results show that respiration is maintained in both model systems during ionic stress and mitochondrial fusion, as well as formation of protuberances are reversible, we assume that mitochondrial fusion is a ubiquitous process that may help the cells to cope with stress. This may occur by interconnecting the respiratory chains of the individual mitochondria and by enhancing the buffer capacity against stress induced ionic imbalance.
Collapse
Affiliation(s)
- Philip Steiner
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Manja Luckner
- Ultrastructural Research, Faculty of Biology, Ludwig-Maximilians-University, Munich, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Hubert Kerschbaum
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria
| | - Gerhard Wanner
- Ultrastructural Research, Faculty of Biology, Ludwig-Maximilians-University, Munich, Großhadernerstr. 2-4, D-82152 Planegg-Martinsried, Germany
| | - Ursula Lütz-Meindl
- Department of Biosciences, University of Salzburg, Hellbrunnerstraße 34, A-5020 Salzburg, Austria.
| |
Collapse
|
8
|
Machado MD, Lopes AR, Soares EV. Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:82-92. [PMID: 25913674 DOI: 10.1016/j.jhazmat.2015.04.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/07/2015] [Accepted: 04/08/2015] [Indexed: 06/04/2023]
Abstract
The green alga Pseudokirchneriella subcapitata has been widely used in ecological risk assessment, usually based on the impact of the toxicants in the alga growth. However, the physiological causes that lead algal growth inhibition are not completely understood. This work aimed to evaluate the biochemical and structural modifications in P. subcapitata after exposure, for 72 h, to three nominal concentrations of Cd(II), Cr(VI), Cu(II) and Zn(II), corresponding approximately to 72 h-EC10 and 72 h-EC50 values and a high concentration (above 72 h-EC90 values). The incubation of algal cells with the highest concentration of Cd(II), Cr(VI) or Cu(II) resulted in a loss of membrane integrity of ~16, 38 and 55%, respectively. For all metals tested, an inhibition of esterase activity, in a dose-dependent manner, was observed. Reduction of chlorophyll a content, decrease of maximum quantum yield of photosystem II and modification of mitochondrial membrane potential was also verified. In conclusion, the exposure of P. subcapitata to metals resulted in a perturbation of the cell physiological status. Principal component analysis revealed that the impairment of esterase activity combined with the reduction of chlorophyll a content were related with the inhibition of growth caused by a prolonged exposure to the heavy metals.
Collapse
Affiliation(s)
- Manuela D Machado
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Ana R Lopes
- LEPABE, Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Eduardo V Soares
- Bioengineering Laboratory, Chemical Engineering Department, ISEP-School of Engineering of Polytechnic Institute of Porto, Porto, Portugal; CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal.
| |
Collapse
|