1
|
Lian X, Cheng Y, Kang H. New insights of acylation stimulating protein in modulating the pathological progression of metabolic syndromes. Int Immunopharmacol 2024; 132:112018. [PMID: 38588630 DOI: 10.1016/j.intimp.2024.112018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Obesity is associated with insulin resistance, hypertension, and coronary artery diseases which are grouped as metabolic syndrome. Rather than being a storage for energy, the adipocytes could synthesis and secret diverse hormones and molecules, named as adipokines. Under obese status, the adipocytes are dysfunctional with excessively producing the inflammatory related cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor α (TNF-α). Concerning on the vital role of adipokines, it is proposed that one of the critical pathological factors of obesity is the dysfunctional adipocytic pathways. Among these adipokines, acylation stimulating protein, as an adipokine synthesized by adipocytes during the process of cell differentiation, is shown to activate the metabolism of triglyceride (TG) by regulating the catabolism of glucose and free fatty acid (FFA). Recent attention has paid to explore the underlying mechanism whereby acylation stimulating protein influences the biological function of adipocyte and the pathological development of obesity. In the present review, we summarized the progression of acylation stimulating protein in modulating the physiological and hormonal catabolism which affects fat distribution. Furthermore, the potential mechanisms which acylation stimulating protein regulates the metabolism of adipose tissue and the process of metabolic syndrome were also summarized.
Collapse
Affiliation(s)
- Xi Lian
- Department of Anesthesia Surgery, the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huiyuan Kang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
2
|
Engin AB. Message Transmission Between Adipocyte and Macrophage in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:273-295. [PMID: 39287855 DOI: 10.1007/978-3-031-63657-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction have primary importance in obesity. Large quantity of macrophages is accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway promotes more macrophage accumulation into the obese adipose tissue. However, obesity-induced changes in adipose tissue macrophage density are mainly dependent on increases in the triple-positive cluster of differentiation (CD)11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. As epigenetic regulators, microRNAs (miRNAs) are one of the most important mediators of obesity. miRNAs are expressed by adipocytes as well as macrophages and regulate inflammation with the expression of target genes. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-α) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1β) by macrophages; both adipocyte and macrophage induction by toll-like receptor-4 (TLR4) through nuclear factor-kappaB (NF-κB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in mutual message transmission between adipocyte and macrophage and in the development of adipose tissue inflammation. Thus, the metabolic status of adipocytes and their released exosomes are important determinants of macrophage inflammatory output. However, old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. As a single miRNA can be able to regulate a variety of target genes and signaling pathways, reciprocal transfer of miRNAs between adipocytes and macrophages via miRNA-loaded exosomes reorganizes the different stages of obesity. Changes in the expression of circulating miRNAs because of obesity progression or anti-obesity treatment indicate that miRNAs could be used as potential biomarkers. Therefore, it is believed that targeting macrophage-associated miRNAs with anti-obesity miRNA-loaded nano-carriers may be successful in the attenuation of both obesity and adipose tissue inflammation in clinical practice. Moreover, miRNA-containing exosomes and transferable mitochondria between the adipocyte and macrophage are investigated as new therapeutic targets for obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| |
Collapse
|
3
|
Differential expression profile of microRNA in yak skeletal muscle and adipose tissue during development. Genes Genomics 2020; 42:1347-1359. [PMID: 32996042 DOI: 10.1007/s13258-020-00988-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND miRNAs play an important role in regulating normal animal development. Muscle tissue and fat metabolism are important for maintaining energy balance in animals. Yak has important agricultural and economic importance as it provides milk, meat, and hair. It is used for transportation as well. However, the miRNA expression profiles of their muscle and adipose tissue are currently unknown. OBJECTIVE To explore the regulatory roles of miRNAs in the skeletal muscle and adipose tissues of yak. METHODS A total of 12 small RNA libraries were constructed from the skeletal muscle and adipose samples from yak aged 0.5, 2.5, 4.5, and 7.5 years. High-throughput sequencing and bioinformatics analysis were used to determine the dynamic expression profile of miRNA, and a miRNA regulatory network related to muscle and adipose tissue development was established. RESULTS miR-1-3p and miR-143-3p showed the highest expression during yak skeletal muscle and fat development, respectively. The MAPK and Ras signaling pathways were the pivotal pathways. miR-181-5p, miR-542-3p, and miR-424-5p may have key roles in skeletal muscle development, and CREBRF, GRB10, CDK1, RFX3, and EPC2 were the core target genes. While miR-127-5p, miR-379-3p, and miR-494-3p may play important regulatory roles in adipose deposition, and ETV1, XPO7, and C5AR2 were the core target genes. CONCLUSION This study provides valuable resources for further study of the molecular mechanisms underlying yak skeletal muscle and adipose tissue development, and also a basis for studying the interactions between genes and miRNAs.
Collapse
|
4
|
Martel-Pelletier J, Tardif G, Rousseau Trépanier J, Abram F, Dorais M, Raynauld JP, Pelletier JP. The ratio adipsin/MCP-1 is strongly associated with structural changes and CRP/MCP-1 with symptoms in obese knee osteoarthritis subjects: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2019; 27:1163-1173. [PMID: 31102776 DOI: 10.1016/j.joca.2019.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is a need to identify reliable biomarkers that can predict knee osteoarthritis (OA) progression. We investigated a panel of adipokines and some related inflammatory factors alone and their ratios for their associative value at assessing cartilage volume loss over time and symptoms in obese [High body mass index (BMI)] and non-obese (Low BMI) OA subjects. DESIGN Human OA serum was from the Osteoarthritis Initiative Progression subcohort. Baseline levels of adiponectin (high and low molecular weight forms), adipsin, chemerin, leptin, visfatin, C-reactive protein (CRP), interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) were evaluated with specific assays. Cartilage volume was assessed at baseline and 48 months by quantitative magnetic resonance imaging (MRI), and symptoms using baseline Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores. Data were analysed by linear regression with confounding factors at baseline, followed by multiple comparison adjustment. RESULTS The levels of the nine biomarkers and their ratios (36) were studied. Among High BMI subjects, only the ratio adipsin/MCP-1 was associated with cartilage volume loss over time in the lateral compartment [β, -2.95; 95% confidence interval (CI), -4.42, -1.49; P = 0.010], whereas MCP-1 was associated with WOMAC pain (-1.74; -2.75, -0.73; P = 0.030) and the ratio CRP/MCP-1 with WOMAC pain (0.76; 0.37, 1.14; P = 0.023), function (2.43; 1.20, 3.67; P = 0.020) and total (3.29; 1.58, 5.00; P = 0.027). No associations were found for biomarkers or ratios in Low BMI OA. CONCLUSION In this study, the ratio adipsin/MCP-1 was found to be associated with the knee structural changes and that of CRP/MCP-1 with symptoms in obese OA subjects. Our data further underline the relevance of ratios as biomarkers to a stronger association to OA progression and symptoms.
Collapse
Affiliation(s)
- J Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| | - G Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| | - J Rousseau Trépanier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| | - F Abram
- Medical Imaging Research & Development, ArthroLab Inc., Montreal, Quebec, Canada.
| | - M Dorais
- StatSciences Inc., Notre-Dame-de-l'Île-Perrot, Quebec, Canada.
| | - J-P Raynauld
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| | - J-P Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Sathyapalan T, Hobkirk JP, Javed Z, Carroll S, Coady AM, Pemberton P, Smith A, Cianflone K, Atkin SL. The Effect of Atorvastatin (and Subsequent Metformin) on Adipose Tissue Acylation-Stimulatory-Protein Concentration and Inflammatory Biomarkers in Overweight/Obese Women With Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2019; 10:394. [PMID: 31293514 PMCID: PMC6604602 DOI: 10.3389/fendo.2019.00394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/03/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Atorvastatin has been shown to improve cardiovascular risk (CVR) indices in women with polycystic ovary syndrome (PCOS). Low-grade chronic inflammation of adipose tissue may link PCOS and adverse CVR. In pro-inflammatory states such as PCOS, spontaneous activation of the alternative pathway of complement results in increased generation of acylation stimulating protein (ASP) from adipocytes irrespective of body mass index. Methods: The objective of this study was to determine the effect of atorvastatin on markers of adipose tissue dysfunction and inflammation; acylation-stimulating-protein (ASP), interleukin-6 (IL-6), and monocyte-chemoattractant-protein-1 (MCP-1) in PCOS. This was a randomized, double-blind, placebo-controlled study where 40 medication-naive women with PCOS and biochemical hyperandrogenaemia were randomized to either atorvastatin 20 mg daily or placebo for 12 weeks. Following the 12 week randomization; both group of women with PCOS were subsequently started on metformin 1,500 mg daily for further 12 weeks to assess whether pre-treatment with atorvastatin potentiates the effects of metformin on markers of adipose tissue function We conducted a post-hoc review to detect plasma ASP and the pro-inflammatory cytokines IL6 and MCP-1 before and after 12 and 24 weeks of treatment. Results: There was significant reduction in ASP (156.7 ± 16.2 vs. 124.4 ± 14.8 ng/ml p <0.01), IL-6 (1.48 ± 0.29 vs.0.73 ± 0.34 pg/ml p = 0.01) and MCP-1 (30.4 ± 4.2 vs. 23.0 ± 4.5 pg/ml p = 0.02) after 12 weeks of atorvastatin that was maintained subsequently with 12 weeks treatment with metformin. There was a significant positive correlation between ASP levels with CRP (p < 0.01), testosterone (p < 0.01) and HOMA-IR (p < 0.01); IL-6 levels with CRP (p <0.01) and testosterone (p < 0.01) and MCP-1 with CRP (p < 0.01); testosterone (p < 0.01) and HOMA-IR (p < 0.02). Conclusions: This post-hoc analysis revealed that 12 weeks of atorvastatin treatment significantly decreased the markers of adipose tissue dysfunction and inflammation, namely ASP, IL-6 and MCP-1 in obese women with PCOS. Changes in adipose tissue markers were significantly associative with substantial improvements in HOMA-IR, testosterone and hs-CRP levels. ISRCTN Number: ISRCTN24474824.
Collapse
Affiliation(s)
- Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Kingston upon Hull, United Kingdom
| | - James P. Hobkirk
- Department of Sport, Health and Exercise Science, University of Hull, Kingston upon Hull, United Kingdom
| | - Zeeshan Javed
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Kingston upon Hull, United Kingdom
| | - Sean Carroll
- Department of Sport, Health and Exercise Science, University of Hull, Kingston upon Hull, United Kingdom
| | - Anne-Marie Coady
- Department of Obstetric Ultrasound, Hull and East Yorkshire Women's and Children's Hospital, Kingston upon Hull, United Kingdom
| | - Philip Pemberton
- Specialist Assay Laboratories, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Alexander Smith
- Specialist Assay Laboratories, Manchester Royal Infirmary, Manchester, United Kingdom
| | - Katherine Cianflone
- Centre de Recherche Institut Universitaire Cardiologie, Laval Université, Quebec City, QC, Canada
| | - Stephen L. Atkin
- Weill Cornell Medical College Qatar, Education City, Doha, Qatar
- *Correspondence: Stephen L. Atkin
| |
Collapse
|
6
|
Valverde-Franco G, Tardif G, Mineau F, Paré F, Lussier B, Fahmi H, Pelletier JP, Martel-Pelletier J. High in vivo levels of adipsin lead to increased knee tissue degradation in osteoarthritis: data from humans and animal models. Rheumatology (Oxford) 2018; 57:1851-1860. [PMID: 29982662 DOI: 10.1093/rheumatology/key181] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 01/02/2023] Open
Abstract
Objective This study explored the role of the adipokine adipsin in OA. Methods Control and OA articular tissues, cells and serum were obtained from human individuals. Serum adipsin levels of human OA individuals were compared with cartilage volume loss as assessed by MRI at 48 months. Human adipsin expression was determined by PCR, its production in tissues by immunohistochemistry, and in SF and serum by a specific assay. OA was surgically induced in wild-type (Df+/+) and adipsin-deficient (Df-/-) mice, and synovial membrane and cartilage processed for histology and immunohistochemistry. Results Adipsin levels were significantly increased in human OA serum, SF, synovial membrane and cartilage compared with controls, but the expression was similar in chondrocytes, synoviocytes and osteoblasts. Multivariate analysis demonstrated that human serum adipsin levels were significantly associated (P = 0.045) with cartilage volume loss in the lateral compartment of the knee. Destabilization of the medial meniscus-Df-/- mice showed a preservation of the OA synovial membrane and cartilage lesions (P ⩽ 0.026), the latter corroborated by the decreased production of cartilage degradation products and proteases (P ⩽ 0.047). The adipsin effect is likely due to a deficient alternative complement pathway (P ⩽ 0.036). Conclusion In human OA, higher serum adipsin levels were associated with greater cartilage volume loss in the lateral compartment, and adipsin deficiency led to a preservation of knee structure. Importantly, we documented an association between adipsin and OA synovial membrane and cartilage degeneration through the activation of the complement pathway. This study highlights the clinical relevance of adipsin as a valuable biomarker and potential therapeutic target for OA.
Collapse
Affiliation(s)
- Gladys Valverde-Franco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Ginette Tardif
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - François Mineau
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Frédéric Paré
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Bertrand Lussier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.,Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
7
|
Zhang XY, Liu Y, He T, Yang TT, Wu J, Cianflone K, Lu HL. Anaphylatoxin C5a induces inflammation and reduces insulin sensitivity by activating TLR4/NF-kB/PI3K signaling pathway in 3T3-L1 adipocytes. Biomed Pharmacother 2018; 103:955-964. [PMID: 29710512 DOI: 10.1016/j.biopha.2018.04.057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 01/17/2023] Open
Abstract
Obesity closely correlates with metaflammation and characterizes with systemic-chronic-low inflammation. This study aims to evaluate effects of C5a on the inflammatory response and insulin resistance in 3T3-L1 adipocytes. 3T3-L1 pre-adipocytes were induced to the mature 3T3-L1 adipocytes. Then, 3T3-L1 were intervened with anaphylatoxin C5a, lipopolysaccharide (LPS) and C5a + LPS, respectively. Levels of Omentin, Chemerin, Vaspin and Apelin 12 in supernatants of medium were examined using ELISA. C5L2, C5a receptor (C5aR), I kappa B (IkB), IkB kinase (IKK), insulin receptor substrate 1 (IRS-1), IRS-2, PI3 K, p-PI3 K and β-actin were examined using RT-PCR and western blot assay, respectively. C5L2-C5aR colocalization was identified using immunofluorescence double label. NF-kB expression or activity was evaluated using electrophoretic mobility shift assay (EMSA), dual luciferase assay and immunofluorescence assay, respectively. The glucose uptake and insulin sensitivity were also evaluated. Results showed that C5a intervention significantly enhanced inflammatory molecule levels in supernatants of 3T3-L1 adipocytes. IKK inflammatory signaling pathway participated in C5a induced inflammation of 3T3-L1 adipocytes. C5a triggered the colocalization of C5L2 and C5aR and activated the NF-kB inflammatory signaling pathway. C5a intervention in 3T3-L1 adipocytes decreased the glucose uptake and resulted in reduction of insulin sensitivity. Insulin signaling pathway participated in C5a caused insulin sensitivity reduction. C5a intervention triggered the phosphorylation of PI3 K. In conclusion anaphylatoxin C5a induced inflammatory response by activating TLR4/NF-kB signaling pathway and generating C5L2-C5aR dimer, and caused insulin sensitivity reduction by activating PI3 K signaling pathway.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ting-Ting Yang
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Katherine Cianflone
- K. Cianflone. Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, QC, G1V4G5, Canada
| | - Hui-Ling Lu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Adipocyte-Macrophage Cross-Talk in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:327-343. [DOI: 10.1007/978-3-319-48382-5_14] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Wu J, Jiao ZY, Li RZ, Lu HL, Zhang HH, Cianflone K. Cholinergic activation suppresses palmitate-induced macrophage activation and improves acylation stimulating protein resistance in co-cultured adipocytes. Exp Biol Med (Maywood) 2017; 242:961-973. [PMID: 28440734 DOI: 10.1177/1535370217700522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Acylation-stimulating protein (ASP), produced through activation of the alternative complement immune system, modulates lipid metabolism. Using a trans-well co-culture cell model, the mitigating role of α7-nicotinic acetylcholine receptor (α7nAChR)-mediated cholinergic pathway on ASP resistance was evaluated. ASP signaling in adipocytes via its receptor C5L2 and signaling intermediates Gαq, Gβ, phosphorylated protein kinase C-α, and protein kinase C-ζ were markedly suppressed in the presence of TNFα or medium from palmitate-treated RAW264.7 macrophages, indicating ASP resistance. There was no direct effect of α7nAChR activation in 3T3-L1 cell culture. However, α7nAChR activation almost completely reversed the ASP resistance in adipocytes co-cultured with palmitate-treated RAW264.7 macrophages. Further, α7nAChR activation could suppress the production of pro-inflammatory molecules TNFα and interleukin-6 produced from palmitate-treated co-cultured macrophages. These results suggest that macrophages play a significant role in the pathogenesis of ASP resistance and α7nAChR activation secondarily improves adipose ASP resistance through suppression of inflammation in macrophages. Impact statement 1. Adipocyte-macrophage interaction in acylation-stimulating protein (ASP) resistance 2. Lipotoxicity induced inflammatory response in ASP resistance 3. A vicious circle between lipotoxicity and inflammatory response in ASP resistance 4. Cholinergic modulation of inflammatory response in adipocyte and macrophage.
Collapse
Affiliation(s)
- Jing Wu
- 1 Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhou-Yang Jiao
- 2 Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Rui-Zhen Li
- 3 Department of Endocrinology, Wuhan Children's Hospital, Wuhan Medical and Healthcare Center for Women and Children, Wuhan 430016, China
| | - Hui-Ling Lu
- 4 Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao-Hao Zhang
- 5 Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Katherine Cianflone
- 6 Centre de Recherche Institut Universitaire de Cardiologie and Pneumologie de Québec, Université Laval, Ville de Québec, QC G1V 4G5, Canada
| |
Collapse
|
10
|
Jiao ZY, Wu J, Liu C, Wen B, Zhao WZ, Du XL. Nicotinic α7 receptor inhibits the acylation stimulating protein‑induced production of monocyte chemoattractant protein‑1 and keratinocyte‑derived chemokine in adipocytes by modulating the p38 kinase and nuclear factor‑κB signaling pathways. Mol Med Rep 2016; 14:2959-66. [PMID: 27572255 PMCID: PMC5042795 DOI: 10.3892/mmr.2016.5630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 07/12/2016] [Indexed: 01/11/2023] Open
Abstract
Obesity is associated with chronic low-grade inflammation, which is characterized by increased infiltration of macrophages into adipose tissue. Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system, which constitutes a link between adipocytes and macrophages, and is involved in energy homeostasis and inflammation. The purpose of the present study was to preliminarily investigate in vitro, whether functional α7nAChR in adipocytes may suppress ASP-induced inflammation and determine the possible signaling mechanism. Studies have reported associations between the expression of α7 nicotinic acetylcholine receptor (α7nAChR) and obesity, insulin resistance and diabetes. Additionally, α7nAChRs are important peripheral mediators of chronic inflammation, which is a key contributor to health problems in obesity. The primary aim of the present study was to evaluate the impact of exogenous ASP and α7nAChR on macrophage infiltration in adipose tissue and to examine the potential underlying molecular mechanism. Western blot analysis revealed that recombinant ASP increased the expression levels of monocyte chemoattractant protein-1 (MCP-1) and keratinocyte-derived chemokine (KC) by 3T3-L1 adipocytes. However, nicotine significantly inhibited the production of ASP-induced cytokines via the stimulation of α7nAChR. It was also found that α7nAChR inhibited the ASP-induced activation of p38 kinase and nuclear factor-κB (NF-κB), and the production of MCP-1 and KC. These data indicated that α7nAChR caused the inhibition of ASP-induced activation of p38 kinase and NF-κB to inhibit the production of MCP-1 and KC.
Collapse
Affiliation(s)
- Zhou-Yang Jiao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jing Wu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chao Liu
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bing Wen
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wen-Zeng Zhao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin-Ling Du
- Department of Cardiovascular Surgery, Xiehe Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
11
|
Wu J, Jiao ZY, Zhang Z, Tang ZH, Zhang HH, Lu HL, Cianflone K. Cross-talk between α7 nAChR-mediated cholinergic pathway and acylation stimulating protein signaling in 3T3-L1 adipocytes: role of NFκB and STAT3. Biochem Cell Biol 2015; 93:335-42. [PMID: 25985797 DOI: 10.1139/bcb-2015-0023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Inflammation is a key feature in adipose tissue, especially in association with obesity comorbidies. The novel adipokine acylation stimulating protein (ASP) is one factor implicated in the inflammatory response. The disruption of the α7 nicotine acetylcholine receptor (α7nAChR), an important component of the endogenous non-neural cholinergic defense system, may exacerbate sustained inflammatory phenotype. We examined cholinergic regulation of ASP-initiated inflammatory response in 3T3-L1 adipocytes. Our results show that preincubation of 3T3-L1 cells with α7nAChR agonist GTS-21 significantly reduces ASP-mediated chemokine MCP-1 secretion, which is regulated though nuclear factor κB (NFκB) and signal transducer and activator of transcription 3 (STAT3). Treatment of 3T3-L1 cells with GTS-21 significantly reduced NFκB activation by DNA binding and STAT3 activation by disturbing post-translational modification.
Collapse
Affiliation(s)
- Jing Wu
- a Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhou-yang Jiao
- b Department of Cardiovascular Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhe Zhang
- c Department of Histology & Embryology, College of Basic Medical Science, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhi-hui Tang
- a Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao-hao Zhang
- d Department of Endocrinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hui-ling Lu
- e Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Katherine Cianflone
- f Centre de Recherche Institut Universitaire de Cardiologie & Pneumologie de Québec, Université Laval, QC, G1V 4G5, Canada
| |
Collapse
|
12
|
Barbu A, Hamad OA, Lind L, Ekdahl KN, Nilsson B. The role of complement factor C3 in lipid metabolism. Mol Immunol 2015; 67:101-7. [PMID: 25746915 DOI: 10.1016/j.molimm.2015.02.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/21/2015] [Indexed: 12/25/2022]
Abstract
Abundant reports have shown that there is a strong relationship between C3 and C3a-desArg levels, adipose tissue, and risk factors for cardiovascular disease, metabolic syndrome and diabetes. The data indicate that complement components, particularly C3, are involved in lipid metabolism. The C3 fragment, C3a-desArg, functions as a hormone that has insulin-like effects and facilitates triglyceride metabolism. Adipose tissue produces and regulates the levels of complement components, which promotes generation of inflammatory initiators such as the anaphylatoxins C3a and C5a. The anaphylatoxins trigger a cyto/chemokine response in proportion to the amount of adipose tissue present, and induce inflammation and mediate metabolic effects such as insulin resistance. These observations support the concept that complement is an important participant in lipid metabolism and in obesity, contributing to the metabolic syndrome and to the low-grade inflammation associated with obesity.
Collapse
Affiliation(s)
- Andreea Barbu
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Osama A Hamad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Poursharifi P, Lapointe M, Fisette A, Lu H, Roy C, Munkonda MN, Fairlie DP, Cianflone K. C5aR and C5L2 act in concert to balance immunometabolism in adipose tissue. Mol Cell Endocrinol 2014; 382:325-333. [PMID: 24397921 DOI: 10.1016/j.mce.2013.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/24/2022]
Abstract
Recent studies suggested that the immunometabolic receptors; C5aR and C5L2, constitutively self-associate into homo-/heterodimers and that acylation stimulating protein (ASP/C3adesArg) or C5a treatment of adipocytes increased their colocalization. The present study evaluates the C5aR contribution in adipocytes to the metabolic and immune responses elicited by ligand stimulation. The effects of C5a, ASP, and insulin on cytokine production, triglyceride synthesis (TGS), and key signaling pathways were evaluated in isolated primary adipocytes and cultured 3T3-L1 differentiated adipocytes. In addition, mRNA expression of IRS1 and PGC1α was compared in adipose tissue samples from WT vs. C5aRKO mice. Both C5a and ASP directly increased MCP-1 (238±4%; P<0.001, and 377±2% vs. basal 100%; P<0.001, respectively) and KC (413±11%; P<0.001, and 529±16%; P<0.001 vs. basal 100%, respectively) secretion, TGS (131±1%; P<0.001, and 152±6%; P<0.001, vs. basal 100% respectively), and Akt/NFκB phosphorylation pathways in adipocytes. However, in C5aRKO adipocytes, C5a effects were disrupted, while stimulatory effects of ASP were mostly maintained. Addition of C5a completely blocked ASP signaling and activity in both C5aRKO and WT adipocytes as well as 3T3-L1 adipocytes. Furthermore, C5aRKO adipocytes revealed impaired insulin stimulation of cytokine production, with partial impairment of signaling and TGS stimulation, consistent with decreased IRS1 and PGC1α mRNA expression in adipose tissue. These observations indicate the importance of C5aR in adipose tissue metabolism and immunity, which may be regulated through heterodimerization with C5L2.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | - Alexandre Fisette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Huiling Lu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada
| | - Christian Roy
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - Mercedes Nancy Munkonda
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada
| | - David P Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC, Canada; Department of Medicine, Laval University, Québec, QC, Canada.
| |
Collapse
|
14
|
Poursharifi P, Rezvani R, Gupta A, Lapointe M, Marceau P, Tchernof A, Cianflone K. Association of immune and metabolic receptors C5aR and C5L2 with adiposity in women. Mediators Inflamm 2014; 2014:413921. [PMID: 24523571 PMCID: PMC3913464 DOI: 10.1155/2014/413921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/07/2013] [Accepted: 12/11/2013] [Indexed: 12/30/2022] Open
Abstract
Adipose tissue receptors C5aR and C5L2 and their heterodimerization/functionality and interaction with ligands C5a and acylation stimulating protein (ASP) have been evaluated in cell and rodent studies. Their contribution to obesity factors in humans remains unclear. We hypothesized that C5a receptors, classically required for host defense, are also associated with adiposity. Anthropometry and fasting blood parameters were measured in 136 women divided by body mass index (BMI): normal/overweight (≤30 kg/m(2); n = 34), obese I (≤45 kg/m(2); n = 33), obese II (≤51 kg/m(2); n = 33), and obese III (≤80 kg/m(2); n = 36). Subcutaneous and omental adipose tissue C5aR and C5L2 expression were analysed. C5L2 expression was comparable between subcutaneous and omental across all BMI groups. Plasma ASP and ASP/omental C5L2 expression increased with BMI (P < 0.001 and P < 0.01, resp.). While plasma C5a was unchanged, C5aR expression decreased with increasing BMI in subcutaneous and omental tissues (P < 0.01 and P < 0.05, resp.), with subcutaneous omental depots. Omental C5L2/C5aR ratio increased with BMI (P < 0.01) with correlations between C5L2/C5aR and waist circumference, HDL-C, and adiponectin. Tissue and BMI differences in receptors and ligands, particularly in omental, suggest relationship to metabolic disturbances and highlight adipose-immune interactions.
Collapse
Affiliation(s)
- Pegah Poursharifi
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- Department of Medicine, Laval University, 1050 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| | - Reza Rezvani
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Abhishek Gupta
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Marc Lapointe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Picard Marceau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - André Tchernof
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
| | - Katherine Cianflone
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Laval University, Y4323, 2725 Chemin Ste-Foy, Québec, QC, Canada G1V 4G5
- Department of Medicine, Laval University, 1050 Avenue de la Médecine, Québec, QC, Canada G1V 0A6
| |
Collapse
|
15
|
Farahbakhsh-Farsi P, Djalali M, Koohdani F, Saboor-Yaraghi AA, Eshraghian MR, Javanbakht MH, Chamari M, Djazayery A. Effect of omega-3 supplementation versus placebo on acylation stimulating protein receptor gene expression in type 2 diabetics. J Diabetes Metab Disord 2014; 13:1. [PMID: 24393631 PMCID: PMC3937173 DOI: 10.1186/2251-6581-13-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/27/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND This randomized controlled trial investigated the role of omega-3 supplementation on C5L2 gene expression in type 2 diabetics. METHODS Subjects in the omega-3 group received 4 g omega-3 per day and subjects in the placebo group took four capsules of placebo per day for 10 weeks. Gene expression was measured by RT- PCR at the beginning and end of the study. RESULTS The results of this study show depletion in the omega-3 group, but the mean difference between two groups was not significant. CONCLUSIONS Understanding the effect of the omega-3 pathway could contribute to targeting treatment of diabetes and its comorbidities.
Collapse
Affiliation(s)
| | - Mahmoud Djalali
- Cellular and Molecular Nutrition Department, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
16
|
Obesity-inducing diet promotes acylation stimulating protein resistance. Biochem Biophys Res Commun 2013; 437:403-7. [PMID: 23831465 DOI: 10.1016/j.bbrc.2013.06.090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 06/24/2013] [Indexed: 01/19/2023]
Abstract
Acylation stimulating protein (ASP) is an adipokine derived from the immune complement system that is involved in energy homeostasis and inflammation. ASP acts on and correlates positively with postprandial fat clearance in healthy subjects. However, in obesity, ASP levels are elevated and correlate inversely with fat clearance, indicative of a potential resistance to ASP. Using a mouse model, we hypothesized that, over time, diet-induced obesity (DIO) would result in development of ASP insensitivity, as compared to chow-fed animals as controls. Injection of recombinant ASP in DIO mice failed to accelerate fat clearance to the same extent as in chow-fed mice. DIO mice exhibited higher basal levels of plasma ASP and, after 30weeks of diet, showed lower ASP receptor (C5L2) expression in adipose tissue compared to chow-fed mice. Additionally, ex vivo ASP stimulation failed to induce normal Ser(473)AKT phosphorylation in adipose tissue from DIO mice VS chow-fed controls. These results demonstrate for the first time a state of diet-induced ASP resistance. Changes in the ASP-C5L2 pathway dynamics in obesity could alter the development of obesity and co-morbidities such as atherosclerosis and type 2 diabetes.
Collapse
|