1
|
Ríos-Medina Y, Rico-Chávez P, Martínez-Vieyra I, Durán-Álvarez JC, Rodriguez-Varela M, Rincón-Heredia R, Reyes-López C, Cerecedo D. Altered Plasma Membrane Lipid Composition in Hypertensive Neutrophils Impacts Epithelial Sodium Channel (ENaC) Endocytosis. Int J Mol Sci 2024; 25:4939. [PMID: 38732158 PMCID: PMC11084340 DOI: 10.3390/ijms25094939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Biological membranes are composed of a lipid bilayer with embedded proteins, including ion channels like the epithelial sodium channel (ENaC), which are critical for sodium homeostasis and implicated in arterial hypertension (HTN). Changes in the lipid composition of the plasma membrane can significantly impact cellular processes related to physiological functions. We hypothesized that the observed overexpression of ENaC in neutrophils from HTN patients might result from alterations in the structuring domains within the plasma membrane, disrupting the endocytic processes responsible for ENaC retrieval. This study assessed the structural lipid composition of neutrophil plasma membranes from HTN patients along with the expression patterns of key elements regulating ENaC at the plasma membrane. Our findings suggest alterations in microdomain structure and SGK1 kinase activity, which could prolong ENaC presence on the plasma membrane. Additionally, we propose that the proteasomal and lysosomal degradation pathways are insufficient to diminish ENaC presence at the plasma membrane in HTN. These results highlight the importance of understanding ENaC retrieval mechanisms and suggest that targeting these mechanisms could provide insights for developing drugs to prevent and treat HTN.
Collapse
Affiliation(s)
- Yolanda Ríos-Medina
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Pedro Rico-Chávez
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| | - Juan C. Durán-Álvarez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.D.-Á.); (M.R.-V.)
| | - Mario Rodriguez-Varela
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (J.C.D.-Á.); (M.R.-V.)
| | - Ruth Rincón-Heredia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - César Reyes-López
- Laboratorio de Bioquímica Estructural, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico;
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07230, Mexico; (Y.R.-M.); (P.R.-C.); (I.M.-V.)
| |
Collapse
|
2
|
Cerecedo D, Martínez-Vieyra I, Hernández-Rojo I, Hernández-Cruz A, Rincón-Heredia R, Millán-Aldaco D, Mendoza-Garrido ME. Reactive oxygen species downregulate dystroglycans in the megakaryocytes of rats with arterial hypertension. Exp Cell Res 2023; 433:113847. [PMID: 37931771 DOI: 10.1016/j.yexcr.2023.113847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Hypertension is a multifactorial disease characterized by vascular and renal dysfunction, cardiovascular remodeling, inflammation, and fibrosis, all of which are associated with oxidative stress. We previously demonstrated cellular reactive oxygen species (ROS) imbalances may impact the structural and biochemical functions of blood cells and reported downregulation of β-dystroglycan (β-Dg) and overexpression of the epithelial sodium channel (ENaC) contribute to the pathophysiology of hypertension. In this study, we aimed to determine the expression of dystroglycans (Dg) and ENaC in platelet progenitors (megakaryocytes) and their surrounding niches. Thin sections of bone marrow from 5- and 28-week-old spontaneous hypertensive rats (SHR) were compared to age-matched normotensive rats (WKY). Cytometry and immunohistochemical assays demonstrated an oxidative environment in SHR bone marrow, characterized by high levels of myeloperoxidase and 3-nitrotyrosine and downregulation of peroxiredoxin II. In addition, transmission electron micrography and confocal microscopy revealed morphological changes in platelets and Mgks from SHR rats, including swollen mitochondria. Quantitative qRT-PCR assays confirmed downregulation of Dg mRNA and immunohistochemistry and western-blotting validated low expression of β-Dg, mainly in the phosphorylated form, in Mgks from 28-week-old SHR rats. Moreover, we observed a progressive increase in β-1 integrin expression in Mgks and extracellular matrix proteins in Mgk niches in SHR rats compared to WKY controls. These results indicate accumulation of ROS promotes oxidative stress within the bone marrow environment and detrimentally affects cellular homeostasis in hypertensive individuals.
Collapse
Affiliation(s)
- Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Isaac Hernández-Rojo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo Hernández-Cruz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ruth Rincón-Heredia
- Microscopy Core Unit, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Millán-Aldaco
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Maria Eugenia Mendoza-Garrido
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
3
|
Veuthey L, Aliotta A, Bertaggia Calderara D, Pereira Portela C, Alberio L. Mechanisms Underlying Dichotomous Procoagulant COAT Platelet Generation-A Conceptual Review Summarizing Current Knowledge. Int J Mol Sci 2022; 23:2536. [PMID: 35269679 PMCID: PMC8910683 DOI: 10.3390/ijms23052536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Procoagulant platelets are a subtype of activated platelets that sustains thrombin generation in order to consolidate the clot and stop bleeding. This aspect of platelet activation is gaining more and more recognition and interest. In fact, next to aggregating platelets, procoagulant platelets are key regulators of thrombus formation. Imbalance of both subpopulations can lead to undesired thrombotic or bleeding events. COAT platelets derive from a common pro-aggregatory phenotype in cells capable of accumulating enough cytosolic calcium to trigger specific pathways that mediate the loss of their aggregating properties and the development of new adhesive and procoagulant characteristics. Complex cascades of signaling events are involved and this may explain why an inter-individual variability exists in procoagulant potential. Nowadays, we know the key agonists and mediators underlying the generation of a procoagulant platelet response. However, we still lack insight into the actual mechanisms controlling this dichotomous pattern (i.e., procoagulant versus aggregating phenotype). In this review, we describe the phenotypic characteristics of procoagulant COAT platelets, we detail the current knowledge on the mechanisms of the procoagulant response, and discuss possible drivers of this dichotomous diversification, in particular addressing the impact of the platelet environment during in vivo thrombus formation.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010 Lausanne, Switzerland; (L.V.); (A.A.); (D.B.C.); (C.P.P.)
| |
Collapse
|
4
|
Szabó GT, Kiss A, Csanádi Z, Czuriga D. Hypothetical dysfunction of the epithelial sodium channel may justify neurohumoral blockade in coronavirus disease 2019. ESC Heart Fail 2020; 8:171-174. [PMID: 33205539 PMCID: PMC7753344 DOI: 10.1002/ehf2.13078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Affiliation(s)
- Gábor Tamás Szabó
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 22 Móricz Zs. krt., Debrecen, H-4032, Hungary
| | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Zoltán Csanádi
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 22 Móricz Zs. krt., Debrecen, H-4032, Hungary
| | - Dániel Czuriga
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 22 Móricz Zs. krt., Debrecen, H-4032, Hungary
| |
Collapse
|
5
|
Kaczara P, Sitek B, Przyborowski K, Kurpinska A, Kus K, Stojak M, Chlopicki S. Antiplatelet Effect of Carbon Monoxide Is Mediated by NAD + and ATP Depletion. Arterioscler Thromb Vasc Biol 2020; 40:2376-2390. [PMID: 32787519 PMCID: PMC7505148 DOI: 10.1161/atvbaha.120.314284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Supplemental Digital Content is available in the text. Objectives: Carbon monoxide (CO) produced by haem oxygenases or released by CO-releasing molecules (CORM) affords antiplatelet effects, but the mechanism involved has not been defined. Here, we tested the hypothesis that CO–induced inhibition of human platelet aggregation is mediated by modulation of platelet bioenergetics. Approach and Results: To analyze the effects of CORM-A1 on human platelet aggregation and bioenergetics, a light transmission aggregometry, Seahorse XFe technique and liquid chromatography tandem-mass spectrometry–based metabolomics were used. CORM-A1–induced inhibition of platelet aggregation was accompanied by the inhibition of mitochondrial respiration and glycolysis. Interestingly, specific inhibitors of these processes applied individually, in contrast to combined treatment, did not inhibit platelet aggregation considerably. A CORM-A1–induced delay of tricarboxylic acid cycle was associated with oxidized nicotinamide adenine dinucleotide (NAD+) depletion, compatible with the inhibition of oxidative phosphorylation. CORM-A1 provoked an increase in concentrations of proximal (before GAPDH [glyceraldehyde 3-phosphate dehydrogenase]), but not distal glycolysis metabolites, suggesting that CO delayed glycolysis at the level of NAD+–dependent GAPDH; however, GAPDH activity was directly not inhibited. In the presence of exogenous pyruvate, CORM-A1–induced inhibition of platelet aggregation and glycolysis were lost, but were restored by the inhibition of lactate dehydrogenase, involved in cytosolic NAD+ regeneration, pointing out to the key role of NAD+ depletion in the inhibition of platelet bioenergetics by CORM-A1. Conclusions: The antiplatelet effect of CO is mediated by inhibition of mitochondrial respiration—attributed to the inhibition of cytochrome c oxidase, and inhibition of glycolysis—ascribed to cytosolic NAD+ depletion.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Barbara Sitek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| |
Collapse
|
6
|
Aliotta A, Bertaggia Calderara D, Alberio L. Flow Cytometric Monitoring of Dynamic Cytosolic Calcium, Sodium, and Potassium Fluxes Following Platelet Activation. Cytometry A 2020; 97:933-944. [DOI: 10.1002/cyto.a.24017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) Lausanne Switzerland
| |
Collapse
|
7
|
Barale C, Russo I. Influence of Cardiometabolic Risk Factors on Platelet Function. Int J Mol Sci 2020; 21:ijms21020623. [PMID: 31963572 PMCID: PMC7014042 DOI: 10.3390/ijms21020623] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are key players in the thrombotic processes. The alterations of platelet function due to the occurrence of metabolic disorders contribute to an increased trend to thrombus formation and arterial occlusion, thus playing a major role in the increased risk of atherothrombotic events in patients with cardiometabolic risk factors. Several lines of evidence strongly correlate metabolic disorders such as obesity, a classical condition of insulin resistance, dyslipidemia, and impaired glucose homeostasis with cardiovascular diseases. The presence of these clinical features together with hypertension and disturbed microhemorrheology are responsible for the prothrombotic tendency due, at least partially, to platelet hyperaggregability and hyperactivation. A number of clinical platelet markers are elevated in obese and type 2 diabetes (T2DM) patients, including the mean platelet volume, circulating levels of platelet microparticles, oxidation products, platelet-derived soluble P-selectin and CD40L, thus contributing to an intersection between obesity, inflammation, and thrombosis. In subjects with insulin resistance and T2DM some defects depend on a reduced sensitivity to mediators—such as nitric oxide and prostacyclin—playing a physiological role in the control of platelet aggregability. Furthermore, other alterations occur only in relation to hyperglycemia. In this review, the main cardiometabolic risk factors, all components of metabolic syndrome involved in the prothrombotic tendency, will be taken into account considering some of the mechanisms involved in the alterations of platelet function resulting in platelet hyperactivation.
Collapse
|
8
|
Abstract
Dysregulation of lymphocyte function, accumulation of autoantibodies and defective clearance of circulating immune complexes and apoptotic cells are hallmarks of systemic lupus erythematosus (SLE). Moreover, it is now evident that an intricate interplay between the adaptive and innate immune systems contributes to the pathogenesis of SLE, ultimately resulting in chronic inflammation and organ damage. Platelets circulate in the blood and are chiefly recognized for their role in the prevention of bleeding and promotion of haemostasis; however, accumulating evidence points to a role for platelets in both adaptive and innate immunity. Through a broad repertoire of receptors, platelets respond promptly to immune complexes, complement and damage-associated molecular patterns, and represent a major reservoir of immunomodulatory molecules in the circulation. Furthermore, evidence suggests that platelets are activated in patients with SLE, and that they could contribute to the circulatory autoantigenic load through the release of microparticles and mitochondrial antigens. Herein, we highlight how platelets contribute to the immune response and review evidence implicating platelets in the pathogenesis of SLE.
Collapse
|
9
|
Reus-Chavarría E, Martínez-Vieyra I, Salinas-Nolasco C, Chávez-Piña AE, Méndez-Méndez JV, López-Villegas EO, Sosa-Peinado A, Cerecedo D. Enhanced expression of the Epithelial Sodium Channel in neutrophils from hypertensive patients. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:387-402. [DOI: 10.1016/j.bbamem.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022]
|
10
|
The Epithelial Sodium Channel and the Processes of Wound Healing. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5675047. [PMID: 27493961 PMCID: PMC4963570 DOI: 10.1155/2016/5675047] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/15/2016] [Indexed: 12/19/2022]
Abstract
The epithelial sodium channel (ENaC) mediates passive sodium transport across the apical membranes of sodium absorbing epithelia, like the distal nephron, the intestine, and the lung airways. Additionally, the channel has been involved in the transduction of mechanical stimuli, such as hydrostatic pressure, membrane stretch, and shear stress from fluid flow. Thus, in vascular endothelium, it participates in the control of the vascular tone via its activity both as a sodium channel and as a shear stress transducer. Rather recently, ENaC has been shown to participate in the processes of wound healing, a role that may also involve its activities as sodium transporter and as mechanotransducer. Its presence as the sole channel mediating sodium transport in many tissues and the diversity of its functions probably underlie the complexity of its regulation. This brief review describes some aspects of ENaC regulation, comments on evidence about ENaC participation in wound healing, and suggests possible regulatory mechanisms involved in this participation.
Collapse
|
11
|
Cerecedo D, Martínez-Vieyra I, Sosa-Peinado A, Cornejo-Garrido J, Ordaz-Pichardo C, Benítez-Cardoza C. Alterations in plasma membrane promote overexpression and increase of sodium influx through epithelial sodium channel in hypertensive platelets. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1891-903. [PMID: 27137675 DOI: 10.1016/j.bbamem.2016.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/30/2022]
Abstract
Platelets are small, anucleated cell fragments that activate in response to a wide variety of stimuli, triggering a complex series of intracellular pathways leading to a hemostatic thrombus formation at vascular injury sites. However, in essential hypertension, platelet activation contributes to causing myocardial infarction and ischemic stroke. Reported abnormalities in platelet functions, such as platelet hyperactivity and hyperaggregability to several agonists, contribute to the pathogenesis and complications of thrombotic events associated with hypertension. Platelet membrane lipid composition and fluidity are determining for protein site accessibility, structural arrangement of platelet surface, and response to appropriate stimuli. The present study aimed to demonstrate whether structural and biochemical abnormalities in lipid membrane composition and fluidity characteristic of platelets from hypertensive patients influence the expression of the Epithelial Sodium Channel (ENaC), fundamental for sodium influx during collagen activation. Wb, cytometry and quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) assays demonstrated ENaC overexpression in platelets from hypertensive subjects and in relation to control subjects. Additionally, our results strongly suggest a key role of β-dystroglycan as a scaffold for the organization of ENaC and associated proteins. Understanding of the mechanisms of platelet alterations in hypertension should provide valuable information for the pathophysiology of hypertension.
Collapse
Affiliation(s)
- D Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), México City, México.
| | - Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía (ENMH), Instituto Politécnico Nacional (IPN), México City, México
| | - Alejandro Sosa-Peinado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), P.O. Box 70-159, 04510, D.F., México City, México
| | - Jorge Cornejo-Garrido
- Laboratorio de Biología Celular y Productos Naturales, ENMH, IPN, México City, México
| | | | | |
Collapse
|
12
|
Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure-function, tissue distribution, and associated inherited diseases. Gene 2016; 579:95-132. [PMID: 26772908 PMCID: PMC4756657 DOI: 10.1016/j.gene.2015.12.061] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/24/2023]
Abstract
The epithelial sodium channel (ENaC) is composed of three homologous subunits and allows the flow of Na(+) ions across high resistance epithelia, maintaining body salt and water homeostasis. ENaC dependent reabsorption of Na(+) in the kidney tubules regulates extracellular fluid (ECF) volume and blood pressure by modulating osmolarity. In multi-ciliated cells, ENaC is located in cilia and plays an essential role in the regulation of epithelial surface liquid volume necessary for cilial transport of mucus and gametes in the respiratory and reproductive tracts respectively. The subunits that form ENaC (named as alpha, beta, gamma and delta, encoded by genes SCNN1A, SCNN1B, SCNN1G, and SCNN1D) are members of the ENaC/Degenerin superfamily. The earliest appearance of ENaC orthologs is in the genomes of the most ancient vertebrate taxon, Cyclostomata (jawless vertebrates) including lampreys, followed by earliest representatives of Gnathostomata (jawed vertebrates) including cartilaginous sharks. Among Euteleostomi (bony vertebrates), Actinopterygii (ray finned-fishes) branch has lost ENaC genes. Yet, most animals in the Sarcopterygii (lobe-finned fish) branch including Tetrapoda, amphibians and amniotes (lizards, crocodiles, birds, and mammals), have four ENaC paralogs. We compared the sequences of ENaC orthologs from 20 species and established criteria for the identification of ENaC orthologs and paralogs, and their distinction from other members of the ENaC/Degenerin superfamily, especially ASIC family. Differences between ENaCs and ASICs are summarized in view of their physiological functions and tissue distributions. Structural motifs that are conserved throughout vertebrate ENaCs are highlighted. We also present a comparative overview of the genotype-phenotype relationships in inherited diseases associated with ENaC mutations, including multisystem pseudohypoaldosteronism (PHA1B), Liddle syndrome, cystic fibrosis-like disease and essential hypertension.
Collapse
Affiliation(s)
- Israel Hanukoglu
- Laboratory of Cell Biology, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| | - Aaron Hanukoglu
- Division of Pediatric Endocrinology, E. Wolfson Medical Center, Holon, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
13
|
Rooj AK, Liu Z, McNicholas CM, Fuller CM. Physical and functional interactions between a glioma cation channel and integrin-β1 require α-actinin. Am J Physiol Cell Physiol 2015; 309:C308-19. [PMID: 26108662 DOI: 10.1152/ajpcell.00036.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/17/2015] [Indexed: 11/22/2022]
Abstract
Major plasma membrane components of the tumor cell, ion channels, and integrins play crucial roles in metastasis. Glioma cells express an amiloride-sensitive nonselective cation channel composed of acid-sensing ion channel (ASIC)-1 and epithelial Na(+) channel (ENaC) α- and γ-subunits. Inhibition of this channel is associated with reduced cell migration and proliferation. Using the ASIC-1 subunit as a reporter for the channel complex, we found a physical and functional interaction between this channel and integrin-β1. Short hairpin RNA knockdown of integrin-β1 attenuated the amiloride-sensitive current, which was due to loss of surface expression of ASIC-1. In contrast, upregulation of membrane expression of integrin-β1 increased the surface expression of ASIC-1. The link between the amiloride-sensitive channel and integrin-β1 was mediated by α-actinin. Downregulation of α-actinin-1 or -4 attenuated the amiloride-sensitive current. Mutation of the putative binding site for α-actinin on the COOH terminus of ASIC-1 reduced the membrane localization of ASIC-1 and also resulted in attenuation of the amiloride-sensitive current. Our data suggest a novel interaction between the amiloride-sensitive glioma cation channel and integrin-β1, mediated by α-actinin. This interaction may form a mechanism by which channel activity can regulate glioma cell proliferation and migration.
Collapse
Affiliation(s)
- Arun K Rooj
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhiyong Liu
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Carmel M McNicholas
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Catherine M Fuller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|