1
|
Ren H, Yin A, Wu P, Zhou H, Zhou J, Yu Y, Lu H. Establishment of a Cre-loxP System Based on a Leaky LAC4 Promoter and an Unstable panARS Element in Kluyveromyces marxianus. Microorganisms 2022; 10:microorganisms10061240. [PMID: 35744758 PMCID: PMC9227491 DOI: 10.3390/microorganisms10061240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
The Cre-loxP system produces structural variations, such as deletion, duplication, inversion and translocation, at specific loci and induces chromosomal rearrangements in the genome. To achieve chromosomal rearrangements in Kluyveromyces marxianus, the positions and sequences of centromeres were identified in this species for the first time. Next, a Cre-loxP system was established in K. marxianus. In this system, the Cre recombinase was expressed from a leaky LAC4 promoter in a plasmid to alleviate the cytotoxicity of Cre, and the unstable plasmid contained a panARS element to facilitate the clearance of the plasmid from the cells. By using LAC4 as a reporter gene, the recombination frequencies between loxP sites or loxPsym sites were 99% and 73%, respectively. A K. marxianus strain containing 16 loxPsym sites in the genome was constructed. The recombination frequency of large-scale chromosomal rearrangements between 16 loxPsym sites was up to 38.9%. Our study provides valuable information and tools for studying chromosomal structures and functions in K. marxianus.
Collapse
Affiliation(s)
- Haiyan Ren
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Anqi Yin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Huanyu Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Correspondence: (Y.Y.); (H.L.)
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China; (H.R.); (A.Y.); (P.W.); (H.Z.); (J.Z.)
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai 200438, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai 200237, China
- Correspondence: (Y.Y.); (H.L.)
| |
Collapse
|
2
|
Vidal RS, Quarti J, Rodrigues MF, Rumjanek FD, Rumjanek VM. Metabolic Reprogramming During Multidrug Resistance in Leukemias. Front Oncol 2018; 8:90. [PMID: 29675398 PMCID: PMC5895924 DOI: 10.3389/fonc.2018.00090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR) phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Raphael Silveira Vidal
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia Quarti
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Franklin D Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian M Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Tosato V, West N, Zrimec J, Nikitin DV, Del Sal G, Marano R, Breitenbach M, Bruschi CV. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia. Front Oncol 2017; 7:231. [PMID: 29034209 PMCID: PMC5626878 DOI: 10.3389/fonc.2017.00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
In mammalian organisms liquid tumors such as acute myeloid leukemia (AML) are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT) that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in spite of its usual and well-documented toxicity to wild-type yeast strains. These results obtained in yeast could provide new grounds for the interpretation of past observations made in leukemic patients indicating a possible involvement of P53 in cell transformation toward AML.
Collapse
Affiliation(s)
- Valentina Tosato
- Ulisse Biomed S.r.l., AREA Science Park, Trieste, Italy.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia.,Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy
| | - Nicole West
- Clinical Pathology, Hospital Maggiore, Trieste, Italy
| | - Jan Zrimec
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Dmitri V Nikitin
- Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Marano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michael Breitenbach
- Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Abstract
AIM The histone kinase PRK1 has been identified as a potential target to combat prostate cancer but selective PRK1 inhibitors are lacking. The US FDA -approved JAK1-3 inhibitor tofacitinib also potently inhibits PRK1 in vitro. RESULTS We show that tofacitinib also inhibits PRK1 in a cellular setting. Using tofacitinib as a starting point for structure-activity relationship studies, we identified a more potent and another more selective PRK1 inhibitor compared with tofacitinib. Furthermore, we found two potential PRK1/JAK3-selectivity hotspots. CONCLUSION The identified inhibitors and the selectivity hotspots lay the basis for the development of selective PRK1 inhibitors. The identification of PRK1, but also of other cellular tofacitinib targets, has implications on its clinical use and on future development of tofacitinib-like JAK inhibitors. [Formula: see text].
Collapse
|
5
|
Tosato V, Sims J, West N, Colombin M, Bruschi CV. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Curr Genet 2016; 63:281-292. [PMID: 27491680 DOI: 10.1007/s00294-016-0635-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.
Collapse
Affiliation(s)
- Valentina Tosato
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia. .,Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Laboratories, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Nicole West
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Clinical Pathology, Maggiore Hospital, Piazza dell' Ospitale 2, 34125, Trieste, Italy
| | - Martina Colombin
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
6
|
Tosato V, Bruschi CV. Per aspera ad astra: When harmful chromosomal translocations become a plus value in genetic evolution. Lessons from Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2015; 2:363-375. [PMID: 28357264 PMCID: PMC5354581 DOI: 10.15698/mic2015.10.230] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this review we will focus on chromosomal translocations (either spontaneous or induced) in budding yeast. Indeed, very few organisms tolerate so well aneuploidy like Saccharomyces, allowing in depth studies on chromosomal numerical aberrations. Many wild type strains naturally develop chromosomal rearrangements while adapting to different environmental conditions. Translocations, in particular, are valuable not only because they naturally drive species evolution, but because they might allow the artificial generation of new strains that can be optimized for industrial purposes. In this area, several methodologies to artificially trigger chromosomal translocations have been conceived in the past years, such as the chromosomal fragmentation vector (CFV) technique, the Cre-loxP procedure, the FLP/FRT recombination method and, recently, the bridge - induced translocation (BIT) system. An overview of the methodologies to generate chromosomal translocations in yeast will be presented and discussed considering advantages and drawbacks of each technology, focusing in particular on the recent BIT system. Translocants are important for clinical studies because translocated yeast cells resemble cancer cells from morphological and physiological points of view and because the translocation event ensues in a transcriptional de-regulation with a subsequent multi-factorial genetic adaptation to new, selective environmental conditions. The phenomenon of post-translocational adaptation (PTA) is discussed, providing some new unpublished data and proposing the hypothesis that translocations may drive evolution through adaptive genetic selection.
Collapse
Affiliation(s)
- Valentina Tosato
- Yeast Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carlo V Bruschi
- Yeast Molecular Genetics Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|