1
|
Chen BD, Zhao Y, Wu JL, Zhu ZG, Yang XD, Fang RP, Wu CS, Zheng W, Xu CA, Xu K, Ji X. Exosomes in Skin Flap Survival: Unlocking Their Role in Angiogenesis and Tissue Regeneration. Biomedicines 2025; 13:353. [PMID: 40002766 PMCID: PMC11853446 DOI: 10.3390/biomedicines13020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/27/2025] Open
Abstract
This review explores the critical role of exosomes in promoting angiogenesis, a key factor in skin flap survival. Skin flaps are widely used in reconstructive surgery, and their survival depends heavily on the formation of new blood vessels. Exosomes, small extracellular vesicles secreted by various cells, have emerged as important mediators of intercellular communication and play a crucial role in biological processes such as angiogenesis. Compared to traditional methods of promoting angiogenesis, exosomes show more selective and targeted therapeutic potential as they naturally carry angiogenic factors and can precisely regulate the angiogenesis process. The review will delve into the molecular mechanisms by which exosomes facilitate angiogenesis, discuss their potential therapeutic applications in enhancing skin flap survival, and explore future research directions, particularly the challenges and prospects of exosomes in clinical translation. By highlighting the unique advantages of exosomes in skin flap survival, this review provides a new perspective in this field and opens up new research directions for future therapeutic strategies.
Collapse
Affiliation(s)
- Bo-da Chen
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Yue Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou 310053, China;
| | - Jian-long Wu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Zi-guan Zhu
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Xiao-dong Yang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Ren-peng Fang
- Center for Plastic & Reconstructive Surgery, Department of Hand & Reconstructive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (B.-d.C.); (J.-l.W.); (Z.-g.Z.); (X.-d.Y.); (R.-p.F.)
| | - Chen-si Wu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Wei Zheng
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Cheng-an Xu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| | - Keyang Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China;
| | - Xin Ji
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou 310014, China; (C.-s.W.); (W.Z.); (C.-a.X.)
| |
Collapse
|
2
|
Zhang Q, Yao Y, Yu Z, Zhou T, Zhang Q, Li H, Zhang J, Wei S, Zhang T, Wang H. Bioinformatics Analysis and Experimental Verification Define Different Angiogenesis Subtypes in Endometrial Carcinoma and Identify a Prognostic Signature. ACS OMEGA 2024; 9:26519-26539. [PMID: 38911819 PMCID: PMC11190931 DOI: 10.1021/acsomega.4c03034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
Increasing evidence indicates that peripheral blood vessels play a pivotal role in regulating tumor growth with the presence of new blood vessels facilitating tumor growth and metastasis. Nevertheless, the impact of specific molecule-mediated angiogenesis on the tumor immune microenvironment (TIME) and individual prognosis of uterine corpus endometrial carcinoma (UCEC) remains uncertain. The transcriptome information on 217 prognostic angiogenesis-related genes was integrated, and the angiogenesis patterns of 506 UCEC patients in The Cancer Genome Atlas (TCGA) cohort were comprehensively evaluated. We identified five angiogenic subtypes, namely, EC1, EC2, EC3, EC4, and EC5, which differed significantly in terms of prognosis, clinicopathological features, cancer hallmarks, genomic mutations, TIME patterns, and immunotherapy responses. Additionally, an angiogenesis-related prognostic risk score (APRS) was constructed to enable an individualized comprehensive evaluation. In multiple cohorts, APRS demonstrated a powerful predictive ability for the prognosis of UCEC patients. Likewise, APRS was confirmed to be associated with clinicopathological features, genomic mutations, cancer hallmarks, and TIME patterns in UCEC patients. The predictability of APRS for immune checkpoint inhibitor (ICI) therapy was also salient. Subsequently, the expression levels of four angiogenesis-related hub genes were verified by qRT-PCR, immunohistochemistry, and single-cell sequencing data analysis. The effects of four representative genes on angiogenesis were validated by Wound-Healing and Transwell assays, tube formation assay in vitro, and tumor xenograft model in vivo. This study proffered a new classification of UCEC patients based on angiogenesis. The established APRS may contribute to individualized prognosis prediction and immunotherapy selections that are better suited for UCEC patients.
Collapse
Affiliation(s)
- Qi Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuwei Yao
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhicheng Yu
- Department
of Obstetrics and Gynecology, The First
Affiliated Hospital of USTC, Hefei 230001, China
| | - Ting Zhou
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haojia Li
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sitian Wei
- Department
of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Tangansu Zhang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongbo Wang
- Department
of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Dudley AC, Griffioen AW. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023; 26:313-347. [PMID: 37060495 PMCID: PMC10105163 DOI: 10.1007/s10456-023-09876-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/26/2023] [Indexed: 04/16/2023]
Abstract
In multicellular organisms, angiogenesis, the formation of new blood vessels from pre-existing ones, is an essential process for growth and development. Different mechanisms such as vasculogenesis, sprouting, intussusceptive, and coalescent angiogenesis, as well as vessel co-option, vasculogenic mimicry and lymphangiogenesis, underlie the formation of new vasculature. In many pathological conditions, such as cancer, atherosclerosis, arthritis, psoriasis, endometriosis, obesity and SARS-CoV-2(COVID-19), developmental angiogenic processes are recapitulated, but are often done so without the normal feedback mechanisms that regulate the ordinary spatial and temporal patterns of blood vessel formation. Thus, pathological angiogenesis presents new challenges yet new opportunities for the design of vascular-directed therapies. Here, we provide an overview of recent insights into blood vessel development and highlight novel therapeutic strategies that promote or inhibit the process of angiogenesis to stabilize, reverse, or even halt disease progression. In our review, we will also explore several additional aspects (the angiogenic switch, hypoxia, angiocrine signals, endothelial plasticity, vessel normalization, and endothelial cell anergy) that operate in parallel to canonical angiogenesis mechanisms and speculate how these processes may also be targeted with anti-angiogenic or vascular-directed therapies.
Collapse
Affiliation(s)
- Andrew C Dudley
- Department of Microbiology, Immunology and Cancer Biology, The University of Virginia, Charlottesville, VA, 22908, USA.
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Yadunandanan Nair N, Samuel V, Ramesh L, Marib A, David DT, Sundararaman A. Actin cytoskeleton in angiogenesis. Biol Open 2022; 11:bio058899. [PMID: 36444960 PMCID: PMC9729668 DOI: 10.1242/bio.058899] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024] Open
Abstract
Actin, one of the most abundant intracellular proteins in mammalian cells, is a critical regulator of cell shape and polarity, migration, cell division, and transcriptional response. Angiogenesis, or the formation of new blood vessels in the body is a well-coordinated multi-step process. Endothelial cells lining the blood vessels acquire several new properties such as front-rear polarity, invasiveness, rapid proliferation and motility during angiogenesis. This is achieved by changes in the regulation of the actin cytoskeleton. Actin remodelling underlies the switch between the quiescent and angiogenic state of the endothelium. Actin forms endothelium-specific structures that support uniquely endothelial functions. Actin regulators at endothelial cell-cell junctions maintain the integrity of the blood-tissue barrier while permitting trans-endothelial leukocyte migration. This review focuses on endothelial actin structures and less-recognised actin-mediated endothelial functions. Readers are referred to other recent reviews for the well-recognised roles of actin in endothelial motility, barrier functions and leukocyte transmigration. Actin generates forces that are transmitted to the extracellular matrix resulting in vascular matrix remodelling. In this review, we attempt to synthesize our current understanding of the roles of actin in vascular morphogenesis. We speculate on the vascular bed specific differences in endothelial actin regulation and its role in the vast heterogeneity in endothelial morphology and function across the various tissues of our body.
Collapse
Affiliation(s)
- Nidhi Yadunandanan Nair
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Victor Samuel
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Lariza Ramesh
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Areeba Marib
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Deena T. David
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| | - Ananthalakshmy Sundararaman
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India695014
| |
Collapse
|
5
|
Villalobo A, Berchtold MW. The Role of Calmodulin in Tumor Cell Migration, Invasiveness, and Metastasis. Int J Mol Sci 2020; 21:ijms21030765. [PMID: 31991573 PMCID: PMC7037201 DOI: 10.3390/ijms21030765] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Calmodulin (CaM) is the principal Ca2+ sensor protein in all eukaryotic cells, that upon binding to target proteins transduces signals encoded by global or subcellular-specific changes of Ca2+ concentration within the cell. The Ca2+/CaM complex as well as Ca2+-free CaM modulate the activity of a vast number of enzymes, channels, signaling, adaptor and structural proteins, and hence the functionality of implicated signaling pathways, which control multiple cellular functions. A basic and important cellular function controlled by CaM in various ways is cell motility. Here we discuss the role of CaM-dependent systems involved in cell migration, tumor cell invasiveness, and metastasis development. Emphasis is given to phosphorylation/dephosphorylation events catalyzed by myosin light-chain kinase, CaM-dependent kinase-II, as well as other CaM-dependent kinases, and the CaM-dependent phosphatase calcineurin. In addition, the role of the CaM-regulated small GTPases Rac1 and Cdc42 (cell division cycle protein 42) as well as CaM-binding adaptor/scaffold proteins such as Grb7 (growth factor receptor bound protein 7), IQGAP (IQ motif containing GTPase activating protein) and AKAP12 (A kinase anchoring protein 12) will be reviewed. CaM-regulated mechanisms in cancer cells responsible for their greater migratory capacity compared to non-malignant cells, invasion of adjacent normal tissues and their systemic dissemination will be discussed, including closely linked processes such as the epithelial–mesenchymal transition and the activation of metalloproteases. This review covers as well the role of CaM in establishing metastatic foci in distant organs. Finally, the use of CaM antagonists and other blocking techniques to downregulate CaM-dependent systems aimed at preventing cancer cell invasiveness and metastasis development will be outlined.
Collapse
Affiliation(s)
- Antonio Villalobo
- Cancer and Human Molecular Genetics Area—Oto-Neurosurgery Research Group, University Hospital La Paz Research Institute (IdiPAZ), Paseo de la Castellana 261, E-28046 Madrid, Spain
- Correspondence: (A.V.); (M.W.B.)
| | - Martin W. Berchtold
- Department of Biology, University of Copenhagen, 13 Universitetsparken, DK-2100 Copenhagen, Denmark
- Correspondence: (A.V.); (M.W.B.)
| |
Collapse
|
6
|
Rui YN, Chen Y, Guo Y, Bock CE, Hagan JP, Kim DH, Xu Z. Podosome formation impairs endothelial barrier function by sequestering zonula occludens proteins. J Cell Physiol 2019; 235:4655-4666. [PMID: 31637713 DOI: 10.1002/jcp.29343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Abstract
Podosomes and tight junctions (TJs) are subcellular compartments that both exist in endothelial cells and localize at cell surfaces. In contrast to the well-characterized role of TJs in maintaining cerebrovascular integrity, the specific function of endothelial podosomes remains unknown. Intriguingly, we discovered cross-talk between podosomes and TJs in human brain endothelial cells. Tight junction scaffold proteins ZO-1 and ZO-2 localize at podosomes in response to phorbol-12-myristate-13-acetate treatment. We found that both ZO proteins are essential for podosome formation and function. Rather than being derived from new protein synthesis, podosomal ZO-1 and ZO-2 are relocated from a pre-existing pool found at the peripheral plasma membrane with enhanced physical interaction with cortactin, a known protein marker for podosomes. Sequestration of ZO proteins in podosomes weakens tight junction complex formation, leading to increased endothelial cell permeability. This effect can be further attenuated by podosome inhibitor PP2. Altogether, our data revealed a novel cellular function of podosomes, specifically, their ability to negatively regulate tight junction and endothelial barrier integrity, which have been linked to a variety of cerebrovascular diseases.
Collapse
Affiliation(s)
- Yan-Ning Rui
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Yawen Chen
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yichen Guo
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.,Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Caroline E Bock
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - John P Hagan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhen Xu
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
7
|
Circulating Exosomes Isolated from Septic Mice Induce Cardiovascular Hyperpermeability Through Promoting Podosome Cluster Formation. Shock 2019. [PMID: 28650928 DOI: 10.1097/shk.0000000000000928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Septic shock increases vascular permeability, leading to multiple organ failure including cardiac dysfunction, a major contributor to septic death. Podosome, an actin-based dynamic membrane structure, plays critical roles in extracellular matrix degradation and angiogenesis. However, whether podosome contributes to endothelial barrier dysfunction during septic shock remains unknown. In this study, we found that the endothelial hyperpermeability, stimulated by phorbol 12-myristate 13-acetate and thrombin, was accompanied by increased formation of podosome clusters at the cell periphery, indicating a positive correlation between podosome clusters and endothelial leakage. Interestingly, we observed that circulating exosomes collected from septic mice were able to stimulate podosome cluster formation in cardiac endothelial cells, together with increased permeability in vitro/in vivo and cardiac dysfunction. Mechanistically, we identified that septic exosomes contained higher levels of reactive oxygen species (ROS) than normal ones, which were effectively transported to endothelial cells (ECs). Depletion of ROS in septic exosomes significantly reduced their capacity for promoting podosome cluster formation and thereby dampened vascular leakage. Finally, we elucidated that podosome cluster-induced endothelial hyperpermeability was associated with fragmentation/depletion of zonula occludens-1 (ZO-1) at the cell periphery. Our results demonstrate that septic exosomes were enriched with high amounts of ROS, which can be transported to ECs, leading to the generation of podosome clusters in target ECs and thereby, causing ZO-1 relocation, vascular leakage, and cardiac dysfunction.
Collapse
|
8
|
Henriet E, Sala M, Abou Hammoud A, Tuariihionoa A, Di Martino J, Ros M, Saltel F. Multitasking discoidin domain receptors are involved in several and specific hallmarks of cancer. Cell Adh Migr 2018; 12:363-377. [PMID: 29701112 PMCID: PMC6411096 DOI: 10.1080/19336918.2018.1465156] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Discoidin domain receptors, DDR1 and DDR2, are two members of collagen receptor family that belong to tyrosine kinase receptor subgroup. Unlike other matrix receptor-like integrins, these collagen receptors have not been extensively studied. However, more and more studies are focusing on their involvement in cancer. These two receptors are present in several subcellular localizations such as intercellular junction or along type I collagen fibers. Consequently, they are involved in multiple cellular functions, for instance, cell cohesion, proliferation, adhesion, migration and invasion. Furthermore, various signaling pathways are associated with these multiple functions. In this review, we highlight and characterize hallmarks of cancer in which DDRs play crucial roles. We discuss recent data from studies that demonstrate the involvement of DDRs in tumor proliferation, cancer mutations, drug resistance, inflammation, neo-angiogenesis and metastasis. DDRs could be potential targets in cancer and we conclude this review by discussing the different ways to inhibits them.
Collapse
Affiliation(s)
- Elodie Henriet
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Margaux Sala
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Aya Abou Hammoud
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Adjanie Tuariihionoa
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Julie Di Martino
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| | - Manon Ros
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | - Frédéric Saltel
- INSERM, UMR1053, BaRITOn Bordeaux Research in Translational Oncology,Bordeaux, France
- Université de Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Functional invadopodia formed in glioblastoma stem cells are important regulators of tumor angiogenesis. Oncotarget 2018; 9:20640-20657. [PMID: 29755678 PMCID: PMC5945526 DOI: 10.18632/oncotarget.25045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/22/2018] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma (GBM) represents the most common and lethal brain tumor. High vascularization, necrosis and invasiveness are hallmarks of GBM aggressiveness with recent data suggesting the important role of glioblastoma stem cells (GSCs) in these processes. It is now well established that cancer cells employ specialized structures termed invadosomes to potentiate invasion. However, the role of these structures in GBM dissemination remains poorly investigated. In this study, we showed that GBM-isolated GSCs form invadopodia-like protrusions endowed with degradative action. Interestingly, their formation depends on extracellular matrix (ECM) sensing via the CD44 receptor. We also found that GSCs invasive migration occurring during tubes assembly is promoted through invadopodia-mediated-ECM remodeling and LIM kinases signaling. Moreover, our study demonstrates that GSCs are highly adaptable cells that are able not only to restore damaged endothelial-derived tubes but also to generate in cooperation with normal endothelial cells (ECs) intact vascular channels. Taken together, our data provide new insights in GBM microvasculature and suggest that GSCs targeting in combination with anti-VEGF therapy may block tumor progression.
Collapse
|
10
|
A cell surface display fluorescent biosensor for measuring MMP14 activity in real-time. Sci Rep 2018; 8:5916. [PMID: 29651043 PMCID: PMC5897415 DOI: 10.1038/s41598-018-24080-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/23/2018] [Indexed: 01/16/2023] Open
Abstract
Despite numerous recent advances in imaging technologies, one continuing challenge for cell biologists and microscopists is the visualization and measurement of endogenous proteins as they function within living cells. Achieving this goal will provide a tool that investigators can use to associate cellular outcomes with the behavior and activity of many well-studied target proteins. Here, we describe the development of a plasmid-based fluorescent biosensor engineered to measure the location and activity of matrix metalloprotease-14 (MMP14). The biosensor design uses fluorogen-activating protein technology coupled with a MMP14-selective protease sequence to generate a binary, “switch-on” fluorescence reporter capable of measuring MMP14 location, activity, and temporal dynamics. The MMP14-fluorogen activating protein biosensor approach is applicable to both short and long-term imaging modalities and contains an adaptable module that can be used to study many membrane-bound proteases. This MMP14 biosensor promises to serve as a tool for the advancement of a broad range of investigations targeting MMP14 activity during cell migration in health and disease.
Collapse
|
11
|
Liao Z, Kasirer-Friede A, Shattil SJ. Optogenetic interrogation of integrin αVβ3 function in endothelial cells. J Cell Sci 2017; 130:3532-3541. [PMID: 28864764 DOI: 10.1242/jcs.205203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/27/2017] [Indexed: 12/21/2022] Open
Abstract
The integrin αVβ3 is reported to promote angiogenesis in some model systems but not in others. Here, we used optogenetics to study the effects of αVβ3 interaction with the intracellular adapter kindlin-2 (Fermt2) on endothelial cell functions potentially relevant to angiogenesis. Because interaction of kindlin-2 with αVβ3 requires the C-terminal three residues of the β3 cytoplasmic tail (Arg-Gly-Thr; RGT), optogenetic probes LOVpep and ePDZ1 were fused to β3ΔRGT-GFP and mCherry-kindlin-2, respectively, and expressed in β3 integrin-null microvascular endothelial cells. Exposure of the cells to 450 nm (blue) light caused rapid and specific interaction of kindlin-2 with αVβ3 as assessed by immunofluorescence and total internal reflection fluorescence (TIRF) microscopy, and it led to increased endothelial cell migration, podosome formation and angiogenic sprouting. Analyses of kindlin-2 mutants indicated that interaction of kindlin-2 with other kindlin-2 binding partners, including c-Src, actin, integrin-linked kinase and phosphoinositides, were also likely necessary for these endothelial cell responses. Thus, kindlin-2 promotes αVβ3-dependent angiogenic functions of endothelial cells through its simultaneous interactions with β3 integrin and several other binding partners. Optogenetic approaches should find further use in clarifying spatiotemporal aspects of vascular cell biology.
Collapse
Affiliation(s)
- Zhongji Liao
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| | - Ana Kasirer-Friede
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| | - Sanford J Shattil
- Department of Medicine, University of California-San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Tumor Cell Invadopodia: Invasive Protrusions that Orchestrate Metastasis. Trends Cell Biol 2017; 27:595-607. [PMID: 28412099 DOI: 10.1016/j.tcb.2017.03.003] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/26/2022]
Abstract
Invadopodia are a subset of invadosomes that are implicated in the integration of signals from the tumor microenvironment to support tumor cell invasion and dissemination. Recent progress has begun to define how tumor cells regulate the plasticity necessary for invadopodia to assemble and function efficiently in the different microenvironments encountered during dissemination in vivo. Exquisite mapping by many laboratories of the pathways involved in integrating diverse invadopodium initiation signals, from growth factors, to extracellular matrix (ECM) and cell-cell contact in the tumor microenvironment, has led to insight into the molecular basis of this plasticity. Here, we integrate this new information to discuss how the invadopodium is an important conductor that orchestrates tumor cell dissemination during metastasis.
Collapse
|
13
|
Alblazi KMO, Siar CH. Cellular protrusions--lamellipodia, filopodia, invadopodia and podosomes--and their roles in progression of orofacial tumours: current understanding. Asian Pac J Cancer Prev 2016; 16:2187-91. [PMID: 25824735 DOI: 10.7314/apjcp.2015.16.6.2187] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Protrusive structures formed by migrating and invading cells are termed lamellipodia, filopodia, invadopodia and podosomes. Lamellipodia and filopodia appear on the leading edges of migrating cells and function to command the direction of the migrating cells. Invadopodia and podosomes are special F-actin-rich matrix-degrading structures that arise on the ventral surface of the cell membrane. Invadopodia are found in a variety of carcinomatous cells including squamous cell carcinoma of head and neck region whereas podosomes are found in normal highly motile cells of mesenchymal and myelomonocytic lineage. Invadopodia-associated protein markers consisted of 129 proteins belonging to different functional classes including WASP, NWASP, cortactin, Src kinase, Arp 2/3 complex, MT1-MMP and F-actin. To date, our current understanding on the role(s) of these regulators of actin dynamics in tumors of the orofacial region indicates that upregulation of these proteins promotes invasion and metastasis in oral squamous cell carcinoma, is associated with poor/worst prognostic outcome in laryngeal cancers, contributes to the persistent growth and metastasis characteristics of salivary gland adenoid cystic carcinoma, is a significant predictor of increased cancer risk in oral mucosal premalignant lesions and enhances local invasiveness in jawbone ameloblastomas.
Collapse
Affiliation(s)
- Kamila Mohamed Om Alblazi
- Department of Oro-Maxillofacial Surgical and Medical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia E-mail :
| | | |
Collapse
|
14
|
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014; 26:605-22. [PMID: 25517747 PMCID: PMC4269830 DOI: 10.1016/j.ccell.2014.10.006] [Citation(s) in RCA: 1165] [Impact Index Per Article: 105.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/03/2014] [Accepted: 10/09/2014] [Indexed: 12/13/2022]
Abstract
Ten antiangiogenic drugs targeting VEGF or its receptors are approved for cancer treatment. However, these agents, intended to block tumors' blood supply, may cause hypoxia, which may fuel tumor progression and treatment resistance. Emerging clinical data suggest that patients whose tumor perfusion or oxygenation increases in response to these agents may actually survive longer. Hence, strategies aimed at alleviating tumor hypoxia while improving perfusion may enhance the outcome of radiotherapy, chemotherapy, and immunotherapy. Here I summarize lessons learned from preclinical and clinical studies over the past decade and propose strategies for improving antiangiogenic therapy outcomes for malignant and nonmalignant diseases.
Collapse
Affiliation(s)
- Rakesh K Jain
- Edwin L. Steele Laboratory for Tumor Biology, Department of Radiation Oncology, Harvard Medical School and Massachusetts General Hospital, 100 Blossom Street, Cox 7, Boston, MA 02114, USA.
| |
Collapse
|