1
|
Terpis KX, Salomaki ED, Barcytė D, Pánek T, Verbruggen H, Kolisko M, Bailey JC, Eliáš M, Lane CE. Multiple plastid losses within photosynthetic stramenopiles revealed by comprehensive phylogenomics. Curr Biol 2025; 35:483-499.e8. [PMID: 39793566 DOI: 10.1016/j.cub.2024.11.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025]
Abstract
Ochrophyta is a vast and morphologically diverse group of algae with complex plastids, including familiar taxa with fundamental ecological importance (diatoms or kelp) and a wealth of lesser-known and obscure organisms. The sheer diversity of ochrophytes poses a challenge for reconstructing their phylogeny, with major gaps in sampling and an unsettled placement of particular taxa yet to be tackled. We sequenced transcriptomes from 25 strategically selected representatives and used these data to build the most taxonomically comprehensive ochrophyte-centered phylogenomic supermatrix to date. We employed a combination of approaches to reconstruct and critically evaluate the relationships among ochrophytes. While generally congruent with previous analyses, the updated ochrophyte phylogenomic tree resolved the position of several taxa with previously uncertain placement and supported a redefinition of the classes Picophagea and Synchromophyceae. Our results indicated that the heterotrophic, plastid-lacking heliozoan Actinophrys sol is not a sister lineage of ochrophytes, as proposed recently, but rather phylogenetically nested among them, implying that it lacks a plastid due to loss. In addition, we found the heterotrophic ochrophyte Picophagus flagellatus to lack all hallmark plastid genes yet to exhibit mitochondrial proteins that seem to be genetic footprints of a lost plastid organelle. We thus document, for the first time, plastid loss in two separate ochrophyte lineages. Furthermore, by exploring eDNA data, we enrich the ochrophyte phylogenetic tree by identifying five novel uncultured class-level lineages. Altogether, our study provides a new framework for reconstructing trait evolution in ochrophytes and demonstrates that plastid loss is more common than previously thought.
Collapse
Affiliation(s)
- Kristina X Terpis
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Eric D Salomaki
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, RI 02912, USA
| | - Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; Department of Zoology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Martin Kolisko
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - J Craig Bailey
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| | - Christopher E Lane
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
2
|
Barcytė D, Jaške K, Pánek T, Yurchenko T, Ševčíková T, Eliášová A, Eliáš M. A cryptic plastid and a novel mitochondrial plasmid in Leucomyxa plasmidifera gen. and sp. nov. (Ochrophyta) push the frontiers of organellar biology. Open Biol 2024; 14:240022. [PMID: 39474867 PMCID: PMC11528492 DOI: 10.1098/rsob.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/22/2024] [Accepted: 09/02/2024] [Indexed: 11/03/2024] Open
Abstract
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Karin Jaške
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tomáš Pánek
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, Prague 2,128 43, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Anežka Eliášová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava710 00, Czech Republic
| |
Collapse
|
3
|
A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta. Proc Natl Acad Sci U S A 2022; 119:e2208277119. [PMID: 35969755 PMCID: PMC9407449 DOI: 10.1073/pnas.2208277119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chloroplast protein import is mediated by translocons named TOC and TIC on the outer and inner envelope membranes, respectively. Translocon constituents are conserved among green lineages, including plants and green algae. However, it remains unclear whether Rhodophyta (red algae) share common chloroplast protein import mechanisms with the green lineages. We show that in the rhodophyte Cyanidioschyzon merolae, plastome-encoded Tic20pt localized to the chloroplast envelope and was transiently associated with preproteins during import, suggesting its conserved function as a TIC constituent. Besides plastome-encoded FtsHpt and several chaperones, a class of GTP (guanosine 5′-triphosphate)-binding proteins distinct from the Toc34/159 GTPase family associated transiently with preproteins. This class of proteins resides mainly in the cytosol and shows sequence similarities with Sey1/RHD3, required for endoplasmic reticulum membrane fusion, and with the periplastid-localized import factor PPP1, previously identified in the Apicomplexa and diatoms. These GTP-binding proteins, named plastid targeting factor for protein import 1 (PTF1) to PTF3, may act as plastid targeting factors in Rhodophyta.
Collapse
|
4
|
Azuma T, Pánek T, Tice AK, Kayama M, Kobayashi M, Miyashita H, Suzaki T, Yabuki A, Brown MW, Kamikawa R. An enigmatic stramenopile sheds light on early evolution in Ochrophyta plastid organellogenesis. Mol Biol Evol 2022; 39:6555011. [PMID: 35348760 PMCID: PMC9004409 DOI: 10.1093/molbev/msac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ochrophyta is an algal group belonging to the Stramenopiles and comprises diverse lineages of algae which contribute significantly to the oceanic ecosystems as primary producers. However, early evolution of the plastid organelle in Ochrophyta is not fully understood. In this study, we provide a well-supported tree of the Stramenopiles inferred by the large-scale phylogenomic analysis that unveils the eukaryvorous (nonphotosynthetic) protist Actinophrys sol (Actinophryidae) is closely related to Ochrophyta. We used genomic and transcriptomic data generated from A. sol to detect molecular traits of its plastid and we found no evidence of plastid genome and plastid-mediated biosynthesis, consistent with previous ultrastructural studies that did not identify any plastids in Actinophryidae. Moreover, our phylogenetic analyses of particular biosynthetic pathways provide no evidence of a current and past plastid in A. sol. However, we found more than a dozen organellar aminoacyl-tRNA synthases (aaRSs) that are of algal origin. Close relationships between aaRS from A. sol and their ochrophyte homologs document gene transfer of algal genes that happened before the divergence of Actinophryidae and Ochrophyta lineages. We further showed experimentally that organellar aaRSs of A. sol are targeted exclusively to mitochondria, although organellar aaRSs in Ochrophyta are dually targeted to mitochondria and plastids. Together, our findings suggested that the last common ancestor of Actinophryidae and Ochrophyta had not yet completed the establishment of host–plastid partnership as seen in the current Ochrophyta species, but acquired at least certain nuclear-encoded genes for the plastid functions.
Collapse
Affiliation(s)
- Tomonori Azuma
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Alexander K Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Motoki Kayama
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Hideaki Miyashita
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida nihonmatsu cho, Sakyo ku, Kyoto, Kyoto, Japan
| | | | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Japan
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa oiwake cho, Sakyo ku, Kyoto, Kyoto, Japan
| |
Collapse
|
5
|
Using Diatom and Apicomplexan Models to Study the Heme Pathway of Chromera velia. Int J Mol Sci 2021; 22:ijms22126495. [PMID: 34204357 PMCID: PMC8233740 DOI: 10.3390/ijms22126495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/20/2022] Open
Abstract
Heme biosynthesis is essential for almost all living organisms. Despite its conserved function, the pathway’s enzymes can be located in a remarkable diversity of cellular compartments in different organisms. This location does not always reflect their evolutionary origins, as might be expected from the history of their acquisition through endosymbiosis. Instead, the final subcellular localization of the enzyme reflects multiple factors, including evolutionary origin, demand for the product, availability of the substrate, and mechanism of pathway regulation. The biosynthesis of heme in the apicomonad Chromera velia follows a chimeric pathway combining heme elements from the ancient algal symbiont and the host. Computational analyses using different algorithms predict complex targeting patterns, placing enzymes in the mitochondrion, plastid, endoplasmic reticulum, or the cytoplasm. We employed heterologous reporter gene expression in the apicomplexan parasite Toxoplasma gondii and the diatom Phaeodactylum tricornutum to experimentally test these predictions. 5-aminolevulinate synthase was located in the mitochondria in both transfection systems. In T. gondii, the two 5-aminolevulinate dehydratases were located in the cytosol, uroporphyrinogen synthase in the mitochondrion, and the two ferrochelatases in the plastid. In P. tricornutum, all remaining enzymes, from ALA-dehydratase to ferrochelatase, were placed either in the endoplasmic reticulum or in the periplastidial space.
Collapse
|
6
|
Zhang Y, Wang C, Jia H. Biogenesis and maintenance of the apicoplast in model apicomplexan parasites. Parasitol Int 2020; 81:102270. [PMID: 33321224 DOI: 10.1016/j.parint.2020.102270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
The apicoplast is a non-photosynthetic relict plastid of Apicomplexa that evolved from a secondary symbiotic system. During its evolution, most of the genes derived from its alga ancestor were lost. Only genes involved in several valuable metabolic pathways, such as the synthesis of isoprenoid precursors, heme, and fatty acids, have been transferred to the host genome and retained to help these parasites adapt to a complex life cycle and various living environments. The biological function of an apicoplast is essential for most apicomplexan parasites. Considering their potential as drug targets, the metabolic functions of this symbiotic organelle have been intensively investigated through computational and biological means. Moreover, we know that not only organellar metabolic functions are linked with other organelles, but also their biogenesis processes have developed and evolved to tailor their biological functions and proper inheritance. Several distinct features have been found in the biogenesis process of apicoplasts. For example, the apicoplast borrows a dynamin-related protein (DrpA) from its host to implement organelle division. The autophagy system has also been repurposed for linking the apicoplast and centrosome during replication and the division process. However, many vital questions remain to be answered about how these parasites maintain and properly inherit this symbiotic organelle. Here we review our current knowledge about its biogenesis process and discuss several critical questions remaining to be answered in this field.
Collapse
Affiliation(s)
- Ying Zhang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Haping Street 678, Nangang District, Harbin 150069, PR China
| | - Chunren Wang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, PR China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Haping Street 678, Nangang District, Harbin 150069, PR China.
| |
Collapse
|
7
|
Novák Vanclová AMG, Zoltner M, Kelly S, Soukal P, Záhonová K, Füssy Z, Ebenezer TE, Lacová Dobáková E, Eliáš M, Lukeš J, Field MC, Hampl V. Metabolic quirks and the colourful history of the Euglena gracilis secondary plastid. THE NEW PHYTOLOGIST 2020; 225:1578-1592. [PMID: 31580486 DOI: 10.1111/nph.16237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/25/2019] [Indexed: 05/20/2023]
Abstract
Euglena spp. are phototrophic flagellates with considerable ecological presence and impact. Euglena gracilis harbours secondary green plastids, but an incompletely characterised proteome precludes accurate understanding of both plastid function and evolutionary history. Using subcellular fractionation, an improved sequence database and MS we determined the composition, evolutionary relationships and hence predicted functions of the E. gracilis plastid proteome. We confidently identified 1345 distinct plastid protein groups and found that at least 100 proteins represent horizontal acquisitions from organisms other than green algae or prokaryotes. Metabolic reconstruction confirmed previously studied/predicted enzymes/pathways and provided evidence for multiple unusual features, including uncoupling of carotenoid and phytol metabolism, a limited role in amino acid metabolism, and dual sets of the SUF pathway for FeS cluster assembly, one of which was acquired by lateral gene transfer from Chlamydiae. Plastid paralogues of trafficking-associated proteins potentially mediating fusion of transport vesicles with the outermost plastid membrane were identified, together with derlin-related proteins, potential translocases across the middle membrane, and an extremely simplified TIC complex. The Euglena plastid, as the product of many genomes, combines novel and conserved features of metabolism and transport.
Collapse
Affiliation(s)
| | - Martin Zoltner
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Petr Soukal
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
| | - Kristína Záhonová
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
- Faculty of Science, University of Ostrava, Ostrava, 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - ThankGod E Ebenezer
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK
| | - Eva Lacová Dobáková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Marek Eliáš
- Faculty of Science, University of Ostrava, Ostrava, 710 00, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice, 370 05, Czechia
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, 370 05, Czechia
| | - Vladimír Hampl
- Faculty of Science, Charles University, BIOCEV, Vestec, 252 50, Czechia
| |
Collapse
|
8
|
Zauner S, Heimerl T, Moog D, Maier UG. The Known, the New, and a Possible Surprise: A Re-Evaluation of the Nucleomorph-Encoded Proteome of Cryptophytes. Genome Biol Evol 2019; 11:1618-1629. [PMID: 31124562 PMCID: PMC6559170 DOI: 10.1093/gbe/evz109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 01/01/2023] Open
Abstract
Nucleomorphs are small nuclei that evolved from the nucleus of former eukaryotic endosymbionts of cryptophytes and chlorarachniophytes. These enigmatic organelles reside in their complex plastids and harbor the smallest and most compacted eukaryotic genomes investigated so far. Although the coding capacity of the nucleomorph genomes is small, a significant percentage of the encoded proteins (predicted nucleomorph-encoded proteins, pNMPs) is still not functionally annotated. We have analyzed pNMPs with unknown functions via Phyre2, a bioinformatic tool for prediction and modeling of protein structure, resulting in a functional annotation of 215 pNMPs out of 826 uncharacterized open reading frames of cryptophytes. The newly annotated proteins are predicted to participate in nucleomorph-specific functions such as chromosome organization and expression, as well as in modification and degradation of nucleomorph-encoded proteins. Additionally, we have functionally assigned nucleomorph-encoded, putatively plastid-targeted proteins among the reinvestigated pNMPs. Hints for a putative function in the periplastid compartment, the cytoplasm surrounding the nucleomorphs, emerge from the identification of pNMPs that might be homologs of endomembrane system-related proteins. These proteins are discussed in respect to their putative functions.
Collapse
Affiliation(s)
- Stefan Zauner
- Department for Cell Biology, Philipps-Universität Marburg, Germany
| | - Thomas Heimerl
- SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| | - Daniel Moog
- Department for Cell Biology, Philipps-Universität Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| | - Uwe G Maier
- Department for Cell Biology, Philipps-Universität Marburg, Germany.,SYNMIKRO Research Center, Philipps-Universität Marburg, Germany
| |
Collapse
|
9
|
Guo L, Liang S, Zhang Z, Liu H, Wang S, Pan K, Xu J, Ren X, Pei S, Yang G. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun Biol 2019; 2:249. [PMID: 31286066 PMCID: PMC6610115 DOI: 10.1038/s42003-019-0500-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
The species of the genus Nannochloropsis are unique in their maintenance of a nucleus-plastid continuum throughout their cell cycle, non-motility and asexual reproduction. These characteristics should have been endorsed in their gene assemblages (genomes). Here we show that N. oceanica has a genome of 29.3 Mb consisting of 32 pseudochromosomes and containing 7,330 protein-coding genes; and the host nucleus may have been overthrown by an ancient red alga symbiont nucleus during speciation through secondary endosymbiosis. In addition, N. oceanica has lost its flagella and abilities to undergo meiosis and sexual reproduction, and adopted a genome reduction strategy during speciation. We propose that N. oceanica emerged through the active fusion of a host protist and a photosynthesizing ancient red alga and the symbiont nucleus became dominant over the host nucleus while the chloroplast was wrapped by two layers of endoplasmic reticulum. Our findings evidenced an alternative speciation pathway of eukaryotes.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003 P. R. China
| | - Sijie Liang
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003 P. R. China
| | - Zhongyi Zhang
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003 P. R. China
| | - Hang Liu
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003 P. R. China
| | - Songwen Wang
- College of Agriculture and Resources and Environment, Tianjin Agricultural University, Tianjin, 300384 P. R. China
| | - Kehou Pan
- Laboratory of Applied Microalgae, College of Fisheries, OUC, Qingdao, 266003 P. R. China
| | - Jian Xu
- Functional Genomics Group, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 P. R. China
| | - Xue Ren
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176 P. R. China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176 P. R. China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China (OUC), Qingdao, 266003 P. R. China
- Institutes of Evolution and Marine Biodiversity, OUC, Qingdao, 266003 P. R. China
- Key Laboratory of Marine Genetics and Breeding of Ministry of Education, OUC, Qingdao, 266003 P. R. China
| |
Collapse
|
10
|
Inwongwan S, Kruger NJ, Ratcliffe RG, O'Neill EC. Euglena Central Metabolic Pathways and Their Subcellular Locations. Metabolites 2019; 9:E115. [PMID: 31207935 PMCID: PMC6630311 DOI: 10.3390/metabo9060115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023] Open
Abstract
Euglenids are a group of algae of great interest for biotechnology, with a large and complex metabolic capability. To study the metabolic network, it is necessary to know where the component enzymes are in the cell, but despite a long history of research into Euglena, the subcellular locations of many major pathways are only poorly defined. Euglena is phylogenetically distant from other commonly studied algae, they have secondary plastids bounded by three membranes, and they can survive after destruction of their plastids. These unusual features make it difficult to assume that the subcellular organization of the metabolic network will be equivalent to that of other photosynthetic organisms. We analysed bioinformatic, biochemical, and proteomic information from a variety of sources to assess the subcellular location of the enzymes of the central metabolic pathways, and we use these assignments to propose a model of the metabolic network of Euglena. Other than photosynthesis, all major pathways present in the chloroplast are also present elsewhere in the cell. Our model demonstrates how Euglena can synthesise all the metabolites required for growth from simple carbon inputs, and can survive in the absence of chloroplasts.
Collapse
Affiliation(s)
- Sahutchai Inwongwan
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Nicholas J Kruger
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - R George Ratcliffe
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | - Ellis C O'Neill
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| |
Collapse
|
11
|
Wetherbee R, Jackson CJ, Repetti SI, Clementson LA, Costa JF, van de Meene A, Crawford S, Verbruggen H. The golden paradox - a new heterokont lineage with chloroplasts surrounded by two membranes. JOURNAL OF PHYCOLOGY 2019; 55:257-278. [PMID: 30536815 DOI: 10.1111/jpy.12822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/23/2018] [Indexed: 06/09/2023]
Abstract
A marine, sand-dwelling, golden-brown alga is described from clonal cultures established from a high intertidal pool in southeastern Australia. This tiny, unicellular species, which we call the "golden paradox" (Chrysoparadoxa australica gen. et sp. nov.), is benthic, surrounded by a multilayered cell wall and attached to the substratum by a complex adhesive plug. Each vegetative cell gives rise to a single, naked zoospore with heterokont flagella that settles and may become briefly amoeboid prior to dividing. Daughter cells are initially amoeboid, then either permanently attach and return to the benthic stage or become motile again prior to final settlement. Two deeply lobed chloroplasts occupy opposite ends of the cell and are surrounded by only two membranes. The outer chloroplast membrane is continuous between the two chloroplasts via the outer membrane of the nuclear envelope. Only two membranes occupy the chloroplast-nucleus interface, the inner membrane of the nuclear envelope and the inner chloroplast membrane. A small pyrenoid is found in each chloroplast and closely abuts the nucleus or protrudes into it. It contains an unusual, membrane-bound inclusion that stains with SYBR green but is unlikely to be a nucleomorph. Phylogenies inferred from a 10-gene concatenated alignment show an early-branching position within the PX clade. The unusual morphological features and phylogenetic position indicate C. australica should be classified as a new class, Chrysoparadoxophyceae. Despite an atypical plastid, exploration of the C. australica transcriptome revealed typical heterokont protein targeting to the plastid.
Collapse
Affiliation(s)
- Richard Wetherbee
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Christopher J Jackson
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Sonja I Repetti
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | - Joana F Costa
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Allison van de Meene
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Simon Crawford
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Melbourne, Victoria, 3010, Australia
| |
Collapse
|
12
|
Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses. Sci Rep 2018; 8:17012. [PMID: 30451959 PMCID: PMC6242988 DOI: 10.1038/s41598-018-35389-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022] Open
Abstract
Euglenophytes are a familiar algal group with green alga-derived secondary plastids, but the knowledge of euglenophyte plastid function and evolution is still highly incomplete. With this in mind we sequenced and analysed the transcriptome of the non-photosynthetic species Euglena longa. The transcriptomic data confirmed the absence of genes for the photosynthetic machinery, but provided candidate plastid-localised proteins bearing N-terminal bipartite topogenic signals (BTSs) of the characteristic euglenophyte type. Further comparative analyses including transcriptome assemblies available for photosynthetic euglenophytes enabled us to unveil salient aspects of the basic euglenophyte plastid infrastructure, such as plastidial targeting of several proteins as C-terminal translational fusions with other BTS-bearing proteins or replacement of the conventional eubacteria-derived plastidial ribosomal protein L24 by homologs of archaeo-eukaryotic origin. Strikingly, no homologs of any key component of the TOC/TIC system and the plastid division apparatus are discernible in euglenophytes, and the machinery for intraplastidial protein targeting has been simplified by the loss of the cpSRP/cpFtsY system and the SEC2 translocon. Lastly, euglenophytes proved to encode a plastid-targeted homolog of the termination factor Rho horizontally acquired from a Lambdaproteobacteria-related donor. Our study thus further documents a substantial remodelling of the euglenophyte plastid compared to its green algal progenitor.
Collapse
|
13
|
Mix AK, Cenci U, Heimerl T, Marter P, Wirkner ML, Moog D. Identification and Localization of Peroxisomal Biogenesis Proteins Indicates the Presence of Peroxisomes in the Cryptophyte Guillardia theta and Other "Chromalveolates". Genome Biol Evol 2018; 10:2834-2852. [PMID: 30247558 PMCID: PMC6203080 DOI: 10.1093/gbe/evy214] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes are single-membrane-bound organelles with a huge metabolic versatility, including the degradation of fatty acids (β-oxidation) and the detoxification of reactive oxygen species as most conserved functions. Although peroxisomes seem to be present in the majority of investigated eukaryotes, where they are responsible for many eclectic and important spatially separated metabolic reactions, knowledge about their existence in the plethora of protists (eukaryotic microorganisms) is scarce. Here, we investigated genomic data of organisms containing complex plastids with red algal ancestry (so-called “chromalveolates”) for the presence of genes encoding peroxins—factors specific for the biogenesis, maintenance, and division of peroxisomes in eukaryotic cells. Our focus was on the cryptophyte Guillardia theta, a marine microalga, which possesses two phylogenetically different nuclei of host and endosymbiont origin, respectively, thus being of enormous evolutionary significance. Besides the identification of a complete set of peroxins in G. theta, we heterologously localized selected factors as GFP fusion proteins via confocal and electron microscopy in the model diatom Phaeodactylum tricornutum. Furthermore, we show that peroxins, and thus most likely peroxisomes, are present in haptophytes as well as eustigmatophytes, brown algae, and alveolates including dinoflagellates, chromerids, and noncoccidian apicomplexans. Our results indicate that diatoms are not the only “chromalveolate” group devoid of the PTS2 receptor Pex7, and thus a PTS2-dependent peroxisomal import pathway, which seems to be absent in haptophytes (Emiliania huxleyi) as well. Moreover, important aspects of peroxisomal biosynthesis and protein import in “chromalveolates”are highlighted.
Collapse
Affiliation(s)
- Ann-Kathrin Mix
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq Cedex, France
| | - Thomas Heimerl
- LOEWE Center for Synthetic Microbiology (Synmikro), Philipps University Marburg, Germany
| | - Pia Marter
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| | | | - Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Germany
| |
Collapse
|
14
|
Grosche C, Diehl A, Rensing SA, Maier UG. Iron-Sulfur Cluster Biosynthesis in Algae with Complex Plastids. Genome Biol Evol 2018; 10:2061-2071. [PMID: 30085124 PMCID: PMC6105332 DOI: 10.1093/gbe/evy156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
Plastids surrounded by four membranes harbor a special compartment between the outer and inner plastid membrane pair, the so-called periplastidal compartment (PPC). This cellular structure is usually presumed to be the reduced cytoplasm of a eukaryotic phototrophic endosymbiont, which was integrated into a host cell and streamlined into a plastid with a complex membrane structure. Up to date, no mitochondrion or mitochondrion-related organelle has been identified in the PPC of any representative. However, two prominent groups, the cryptophytes and the chlorarachniophytes, still harbor a reduced cell nucleus of symbiont origin, the nucleomorph, in their PPCs. Generally, many cytoplasmic and nucleus-located eukaryotic proteins need an iron–sulfur cofactor for their functionality. Beside some exceptions, their synthesis is depending on a so-called iron–sulfur complex (ISC) assembly machinery located in the mitochondrion. This machinery provides the cytoplasm with a still unknown sulfur component, which is then converted into iron–sulfur clusters via a cytosolic iron–sulfur protein assembly (CIA) machinery. Here, we investigated if a CIA machinery is present in mitochondrion-lacking PPCs. By using bioinformatic screens and in vivo-localizations of candidate proteins, we show that the presence of a PPC-specific CIA machinery correlates with the presence of a nucleomorph. Phylogenetic analyses of PPC- and host specific CIA components additionally indicate a complex evolution of the CIA machineries in organisms having plastids surrounded by four membranes.
Collapse
Affiliation(s)
- Christopher Grosche
- LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany.,Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Angelika Diehl
- LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany.,Laboratory for Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Philipps University Marburg, Marburg, Germany
| | - Uwe G Maier
- LOEWE Center for Synthetic Microbiology (Synmikro), Marburg, Germany.,Laboratory for Cell Biology, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
15
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
16
|
Moog D. In Silico Tools for the Prediction of Protein Import into Secondary Plastids. Methods Mol Biol 2018; 1829:381-394. [PMID: 29987735 DOI: 10.1007/978-1-4939-8654-5_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The in silico identification of proteins targeting to secondary plastids is a difficult task. Such plastids are complex in structure and can be surrounded by up to four membranes, which have to be crossed during import. Nucleus-encoded plastidial preproteins in organisms with secondary plastids contain specific N-terminal targeting signals, the so-called bipartite targeting signal (BTS) sequences consisting of a classical signal peptide followed by a transit peptide-like sequence, mediating this intricate process. As these signal sequences differ significantly from transit peptides of plastid preproteins in plants and other organisms with primary plastids, existing in silico tools for primary plastid targeting prediction are not directly suitable to detect nucleus-encoded proteins destined for the import into secondary plastids. In this chapter I describe the current state-of-the-art methods to reliably predict proteins that might be imported into secondary plastids of red- and green-algal origin using either the "classical" approach, which involves a combination of bits of information produced by existing in silico tools, or, if available, via consulting specifically developed algorithms.
Collapse
Affiliation(s)
- Daniel Moog
- Laboratory for Cell Biology, Philipps University Marburg, Marburg, Germany.
| |
Collapse
|
17
|
Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists. Curr Genet 2017; 64:365-387. [DOI: 10.1007/s00294-017-0761-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/22/2017] [Accepted: 10/04/2017] [Indexed: 11/24/2022]
|
18
|
Gruber A, Kroth PG. Intracellular metabolic pathway distribution in diatoms and tools for genome-enabled experimental diatom research. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160402. [PMID: 28717012 PMCID: PMC5516111 DOI: 10.1098/rstb.2016.0402] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 11/12/2022] Open
Abstract
Diatoms are important primary producers in the oceans and can also dominate other aquatic habitats. One reason for the success of this phylogenetically relatively young group of unicellular organisms could be the impressive redundancy and diversity of metabolic isoenzymes in diatoms. This redundancy is a result of the evolutionary origin of diatom plastids by a eukaryote-eukaryote endosymbiosis, a process that implies temporary redundancy of functionally complete eukaryotic genomes. During the establishment of the plastids, this redundancy was partially reduced via gene losses, and was partially retained via gene transfer to the nucleus of the respective host cell. These gene transfers required re-assignment of intracellular targeting signals, a process that simultaneously altered the intracellular distribution of metabolic enzymes compared with the ancestral cells. Genome annotation, the correct assignment of the gene products and the prediction of putative function, strongly depends on the correct prediction of the intracellular targeting of a gene product. Here again diatoms are very peculiar, because the targeting systems for organelle import are partially different to those in land plants. In this review, we describe methods of predicting intracellular enzyme locations, highlight findings of metabolic peculiarities in diatoms and present genome-enabled approaches to study their metabolism.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
19
|
Grosche C, Rensing SA. Three rings for the evolution of plastid shape: a tale of land plant FtsZ. PROTOPLASMA 2017; 254:1879-1885. [PMID: 28258494 DOI: 10.1007/s00709-017-1096-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/22/2017] [Indexed: 05/08/2023]
Abstract
Nuclear-encoded plant FtsZ genes are derived from endosymbiotic gene transfer of cyanobacteria-like genes. The green lineage (Chloroplastida) and red lineage (Rhodophyta) feature FtsZ1 and FtsZ2 or FtsZB and FtsZA, respectively, which are involved in plastid division. These two proteins show slight differences and seem to heteropolymerize to build the essential inner plastid division ring. A third gene, encoding FtsZ3, is present in glaucophyte and charophyte algae, as well as in land plants except ferns and angiosperms. This gene was probably present in the last common ancestor of the organisms united by having a primary plastid (Archaeplastida) and was lost during vascular plant evolution as well as in the red and green algae. The presence/absence pattern of FtsZ3 mirrors that of a full set of Mur genes and the peptidoglycan wall encoded by them. Based on these findings, we discuss a role for FtsZ3 in the establishment or maintenance of plastid peptidoglycan shells.
Collapse
Affiliation(s)
- Christopher Grosche
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany
| | - Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, D-35043, Marburg, Germany.
| |
Collapse
|
20
|
McFadden GI. The cryptomonad nucleomorph. PROTOPLASMA 2017; 254:1903-1907. [PMID: 28828570 DOI: 10.1007/s00709-017-1153-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/12/2017] [Indexed: 06/07/2023]
Abstract
The cryptomonad nucleomorph is a vestigial nucleus of a eukaryotic red alga engulfed by a phagotrophic protist and retained as a photosynthetic endosymbiont. This review recounts the initial discovery and subsequent characterisation of the cryptomonad nucleomorph focusing on the key role of Peter Sitte and his protégés in our understanding of secondary endosymbiosis to create complex plastids, one of the major transition events in the evolution of life on Earth.
Collapse
Affiliation(s)
- Geoffrey I McFadden
- School of BioSciences, University of Melbourne, Parkville, VIC, 3010, Australia.
- Botany School, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
21
|
A Plastid Protein That Evolved from Ubiquitin and Is Required for Apicoplast Protein Import in Toxoplasma gondii. mBio 2017; 8:mBio.00950-17. [PMID: 28655825 PMCID: PMC5487736 DOI: 10.1128/mbio.00950-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Apicomplexan parasites cause a variety of important infectious diseases, including malaria, toxoplasma encephalitis, and severe diarrhea due to Cryptosporidium. Most apicomplexans depend on an organelle called the apicoplast which is derived from a red algal endosymbiont. The apicoplast is essential for the parasite as the compartment of fatty acid, heme, and isoprenoid biosynthesis. The majority of the approximate 500 apicoplast proteins are nucleus encoded and have to be imported across the four membranes that surround the apicoplast. Import across the second outermost membrane of the apicoplast, the periplastid membrane, depends on an apicoplast-specific endoplasmic reticulum-associated protein degradation (ERAD) complex and on enzymes of the associated ubiquitination cascade. However, identification of an apicoplast ubiquitin associated with this machinery has long been elusive. Here we identify a plastid ubiquitin-like protein (PUBL), an apicoplast protein that is derived from a ubiquitin ancestor but that has significantly changed in its primary sequence. PUBL is distinct from known ubiquitin-like proteins, and phylogenomic analyses suggest a clade specific to apicomplexans. We demonstrate that PUBL and the AAA ATPase CDC48AP both act to translocate apicoplast proteins across the periplastid membrane during protein import. Conditional null mutants and genetic complementation show that both proteins are critical for this process and for parasite survival. PUBL residues homologous to those that are required for ubiquitin conjugation onto target proteins are essential for this function, while those required for polyubiquitination and preprotein processing are dispensable. Our experiments provide a mechanistic understanding of the molecular machinery that drives protein import across the membranes of the apicoplast. Apicomplexan parasites are responsible for important human diseases. There are no effective vaccines for use in humans, and drug treatment faces multiple challenges, including emerging resistance, lack of efficacy across the lifecycle, and adverse drug effects. The apicoplast is a promising target for novel treatments: this chloroplast-like organelle is derived from an algal symbiont, is absent from the host, and is essential for parasite growth and pathogenesis. We use Toxoplasma gondii as a model to study the apicoplast due to its strong genetic tools and established functional assays. We identify a plastid ubiquitin-like protein (PUBL) which is a novel ubiquitin-like protein and demonstrate its importance and that of the motor protein CDC48AP for apicoplast protein import. These findings broaden our understanding of the evolution and mechanistic workings of a unique parasite organelle and may lead to new opportunities for treatments against important human pathogens.
Collapse
|
22
|
Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions. Bioessays 2017. [DOI: 10.1002/bies.201700030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Bodył A. Did some red alga-derived plastids evolveviakleptoplastidy? A hypothesis. Biol Rev Camb Philos Soc 2017; 93:201-222. [DOI: 10.1111/brv.12340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Andrzej Bodył
- Laboratory of Evolutionary Protistology, Department of Invertebrate Biology, Evolution and Conservation, Institute of Environmental Biology; University of Wrocław, ul. Przybyszewskiego 65; 51-148 Wrocław Poland
| |
Collapse
|
24
|
Durnford DG, Schwartzbach SD. Protein Targeting to the Plastid of Euglena. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:183-205. [PMID: 28429323 DOI: 10.1007/978-3-319-54910-1_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The lateral transfer of photosynthesis between kingdoms through endosymbiosis is among the most spectacular examples of evolutionary innovation. Euglena, which acquired a chloroplast indirectly through an endosymbiosis with a green alga, represents such an example. As with other endosymbiont-derived plastids from eukaryotes, there are additional membranes that surround the organelle, of which Euglena has three. Thus, photosynthetic genes that were transferred from the endosymbiont to the host nucleus and whose proteins are required in the new plastid, are now faced with targeting and plastid import challenges. Early immunoelectron microscopy data suggested that the light-harvesting complexes, photosynthetic proteins in the thylakoid membrane, are post-translationally targeted to the plastid via the Golgi apparatus, an unexpected discovery at the time. Proteins targeted to the Euglena plastid have complex, bipartite presequences that direct them into the endomembrane system, through the Golgi apparatus and ultimately on to the plastid, presumably via transport vesicles. From transcriptome sequencing, dozens of plastid-targeted proteins were identified, leading to the identification of two different presequence structures. Both have an amino terminal signal peptide followed by a transit peptide for plastid import, but only one of the two classes of presequences has a third domain-the stop transfer sequence. This discovery implied two different transport mechanisms; one where the protein was fully inserted into the lumen of the ER and another where the protein remains attached to, but effectively outside, the endomembrane system. In this review, we will discuss the biochemical and bioinformatic evidence for plastid targeting, discuss the evolution of the targeting system, and ultimately provide a working model for the targeting and import of proteins into the plastid of Euglena.
Collapse
Affiliation(s)
- Dion G Durnford
- Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, Canada, E3B 5A3
| | | |
Collapse
|
25
|
Kienle N, Kloepper TH, Fasshauer D. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell. BMC Evol Biol 2016; 16:215. [PMID: 27756227 PMCID: PMC5070193 DOI: 10.1186/s12862-016-0790-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 10/04/2016] [Indexed: 11/22/2022] Open
Abstract
Background A defining feature of eukaryotic cells is the presence of various distinct membrane-bound compartments with different metabolic roles. Material exchange between most compartments occurs via a sophisticated vesicle trafficking system. This intricate cellular architecture of eukaryotes appears to have emerged suddenly, about 2 billion years ago, from much less complex ancestors. How the eukaryotic cell acquired its internal complexity is poorly understood, partly because no prokaryotic precursors have been found for many key factors involved in compartmentalization. One exception is the Cdc48 protein family, which consists of several distinct classical ATPases associated with various cellular activities (AAA+) proteins with two consecutive AAA domains. Results Here, we have classified the Cdc48 family through iterative use of hidden Markov models and tree building. We found only one type, Cdc48, in prokaryotes, although a set of eight diverged members that function at distinct subcellular compartments were retrieved from eukaryotes and were probably present in the last eukaryotic common ancestor (LECA). Pronounced changes in sequence and domain structure during the radiation into the LECA set are delineated. Moreover, our analysis brings to light lineage-specific losses and duplications that often reflect important biological changes. Remarkably, we also found evidence for internal duplications within the LECA set that probably occurred during the rise of the eukaryotic cell. Conclusions Our analysis corroborates the idea that the diversification of the Cdc48 family is closely intertwined with the development of the compartments of the eukaryotic cell. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0790-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nickias Kienle
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland
| | - Tobias H Kloepper
- Sir William Dunn School of Pathology, Research Group Cell Biology of Intercellular Signaling, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Dirk Fasshauer
- Département des neurosciences fondamentales, Université de Lausanne, Rue du Bugnon 9, CH-1005, Lausanne, Switzerland.
| |
Collapse
|