1
|
Chen SY, Kannan M. Neural crest cells and fetal alcohol spectrum disorders: Mechanisms and potential targets for prevention. Pharmacol Res 2023; 194:106855. [PMID: 37460002 PMCID: PMC10528842 DOI: 10.1016/j.phrs.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are a group of preventable and nongenetic birth defects caused by prenatal alcohol exposure that can result in a range of cognitive, behavioral, emotional, and functioning deficits, as well as craniofacial dysmorphology and other congenital defects. During embryonic development, neural crest cells (NCCs) play a critical role in giving rise to many cell types in the developing embryos, including those in the peripheral nervous system and craniofacial structures. Ethanol exposure during this critical period can have detrimental effects on NCC induction, migration, differentiation, and survival, leading to a broad range of structural and functional abnormalities observed in individuals with FASD. This review article provides an overview of the current knowledge on the detrimental effects of ethanol on NCC induction, migration, differentiation, and survival. The article also examines the molecular mechanisms involved in ethanol-induced NCC dysfunction, such as oxidative stress, altered gene expression, apoptosis, epigenetic modifications, and other signaling pathways. Furthermore, the review highlights potential therapeutic strategies for preventing or mitigating the detrimental effects of ethanol on NCCs and reducing the risk of FASD. Overall, this article offers a comprehensive overview of the current understanding of the impact of ethanol on NCCs and its role in FASD, shedding light on potential avenues for future research and intervention.
Collapse
Affiliation(s)
- Shao-Yu Chen
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| | - Maharajan Kannan
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; University of Louisville Alcohol Research Center, Louisville, KY 40292, USA.
| |
Collapse
|
2
|
Cerrizuela S, Vega-Lopez GA, Aybar MJ. The role of teratogens in neural crest development. Birth Defects Res 2020; 112:584-632. [PMID: 31926062 DOI: 10.1002/bdr2.1644] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/11/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
The neural crest (NC), discovered by Wilhelm His 150 years ago, gives rise to a multipotent migratory embryonic cell population that generates a remarkably diverse and important array of cell types during the development of the vertebrate embryo. These cells originate in the neural plate border (NPB), which is the ectoderm between the neural plate and the epidermis. They give rise to the neurons and glia of the peripheral nervous system, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies are a class of congenital diseases resulting from the abnormal induction, specification, migration, differentiation or death of NC cells (NCCs) during embryonic development and have an important medical and societal impact. In general, congenital defects affect an appreciable percentage of newborns worldwide. Some of these defects are caused by teratogens, which are agents that negatively impact the formation of tissues and organs during development. In this review, we will discuss the teratogens linked to the development of many birth defects, with a strong focus on those that specifically affect the development of the NC, thereby producing neurocristopathies. Although increasing attention is being paid to the effect of teratogens on embryonic development in general, there is a strong need to critically evaluate the specific role of these agents in NC development. Therefore, increased understanding of the role of these factors in NC development will contribute to the planning of strategies aimed at the prevention and treatment of human neurocristopathies, whose etiology was previously not considered.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Manuel J Aybar
- Área Biología Experimental, Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
3
|
Cobben JM, Krzyzewska IM, Venema A, Mul AN, Polstra A, Postma AV, Smigiel R, Pesz K, Niklinski J, Chomczyk MA, Henneman P, Mannens MMAM. DNA methylation abundantly associates with fetal alcohol spectrum disorder and its subphenotypes. Epigenomics 2019; 11:767-785. [DOI: 10.2217/epi-2018-0221] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Fetal alcohol spectrum disorder (FASD) involves prenatal growth delay, impaired facial and CNS development and causes severe clinical, social-economic burdens. Here, we aim to detect DNA-methylation aberrations associated with FASD and potential FASD diagnostic and prognostic biomarkers. Patients & methods: The FASD diagnosis was established according to golden-standard protocols in a discovery and independent replication cohort. Genome-wide differential methylation association and replication analyses were performed. Results: We identified several loci that were robustly associated with FASD or one of its sub phenotypes. Our findings were evaluated using previously reported genome-wide surveys. Conclusion: We have detected robust FASD associated differentially methylated positions and differentially methylated regions for FASD in general and for FASD subphenotypes, in other words on growth delay, impaired facial and CNS development.
Collapse
Affiliation(s)
- Jan Maarten Cobben
- Department of Pediatrics, Amsterdam University Medical Centers, Location AMC, Emma Children's Hospital, Amsterdam, The Netherlands
| | - Izabela M Krzyzewska
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Adri N Mul
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Abeltje Polstra
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Alex V Postma
- Department of Clinical Genetics, Genome Diagnostics Laboratory, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Department of Anatomy, Embryology & Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Robert Smigiel
- Department of Pediatrics & Rare Disorders, Medical University of Wroclaw, Poland
| | - Karolina Pesz
- Department of Genetics, Medical University of Wroclaw, Poland
| | - Jacek Niklinski
- Department of Molecular Biology, Medical University of Bialystok, Poland
| | - Monika A Chomczyk
- Department of Molecular Biology, Medical University of Bialystok, Poland
| | - Peter Henneman
- Department of Anatomy, Embryology & Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Marcel MAM Mannens
- Department of Anatomy, Embryology & Physiology, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abramyan J. Hedgehog Signaling and Embryonic Craniofacial Disorders. J Dev Biol 2019; 7:E9. [PMID: 31022843 PMCID: PMC6631594 DOI: 10.3390/jdb7020009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Since its initial discovery in a Drosophila mutagenesis screen, the Hedgehog pathway has been revealed to be instrumental in the proper development of the vertebrate face. Vertebrates possess three hedgehog paralogs: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Of the three, Shh has the broadest range of functions both in the face and elsewhere in the embryo, while Ihh and Dhh play more limited roles. The Hedgehog pathway is instrumental from the period of prechordal plate formation early in the embryo, until the fusion of the lip and secondary palate, which complete the major patterning events of the face. Disruption of Hedgehog signaling results in an array of developmental disorders in the face, ranging from minor alterations in the distance between the eyes to more serious conditions such as severe clefting of the lip and palate. Despite its critical role, Hedgehog signaling seems to be disrupted through a number of mechanisms that may either be direct, as in mutation of a downstream target of the Hedgehog ligand, or indirect, such as mutation in a ciliary protein that is otherwise seemingly unrelated to the Hedgehog pathway. A number of teratogens such as alcohol, statins and steroidal alkaloids also disrupt key aspects of Hedgehog signal transduction, leading to developmental defects that are similar, if not identical, to those of Hedgehog pathway mutations. The aim of this review is to highlight the variety of roles that Hedgehog signaling plays in developmental disorders of the vertebrate face.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| |
Collapse
|
5
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
6
|
Zaffran S, Odelin G, Stefanovic S, Lescroart F, Etchevers HC. Ectopic expression of Hoxb1 induces cardiac and craniofacial malformations. Genesis 2018; 56:e23221. [PMID: 30134070 DOI: 10.1002/dvg.23221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Members of the large family of Hox transcription factors are encoded by genes whose tightly regulated expression in development and in space within different embryonic tissues confer positional identity from the neck to the tips of the limbs. Many structures of the face, head, and heart develop from cell populations expressing few or no Hox genes. Hoxb1 is the member of its chromosomal cluster expressed in the most rostral domain during vertebrate development, but never by the multipotent neural crest cell population anterior to the cerebellum. We have developed a novel floxed transgenic mouse line, CAG-Hoxb1,-EGFP (CAG-Hoxb1), which upon recombination by Cre recombinase conditionally induces robust Hoxb1 and eGFP overexpression. When induced within the neural crest lineage, pups die at birth. A variable phenotype develops from E11.5 on, associating frontonasal hypoplasia/aplasia, micrognathia/agnathia, major ocular and forebrain anomalies, and cardiovascular malformations. Neural crest derivatives in the body appear unaffected. Transcription of effectors of developmental signaling pathways (Bmp, Shh, Vegfa) and transcription factors (Pax3, Sox9) is altered in mutants. These outcomes emphasize that repression of Hoxb1, along with other paralog group 1 and 2 Hox genes, is strictly necessary in anterior cephalic NC for craniofacial, visual, auditory, and cardiovascular development.
Collapse
Affiliation(s)
| | - Gaëlle Odelin
- Aix Marseille Univ, MMG, INSERM, Marseille, U1251, France
| | | | | | | |
Collapse
|
7
|
Rogers CD, Nie S. Specifying neural crest cells: From chromatin to morphogens and factors in between. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e322. [PMID: 29722151 PMCID: PMC6215528 DOI: 10.1002/wdev.322] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
Neural crest (NC) cells are a stem-like multipotent population of progenitor cells that are present in vertebrate embryos, traveling to various regions in the developing organism. Known as the "fourth germ layer," these cells originate in the ectoderm between the neural plate (NP), which will become the brain and spinal cord, and nonneural tissues that will become the skin and the sensory organs. NC cells can differentiate into more than 30 different derivatives in response to the appropriate signals including, but not limited to, craniofacial bone and cartilage, sensory nerves and ganglia, pigment cells, and connective tissue. The molecular and cellular mechanisms that control the induction and specification of NC cells include epigenetic control, multiple interactive and redundant transcriptional pathways, secreted signaling molecules, and adhesion molecules. NC cells are important not only because they transform into a wide variety of tissue types, but also because their ability to detach from their epithelial neighbors and migrate throughout developing embryos utilizes mechanisms similar to those used by metastatic cancer cells. In this review, we discuss the mechanisms required for the induction and specification of NC cells in various vertebrate species, focusing on the roles of early morphogenesis, cell adhesion, signaling from adjacent tissues, and the massive transcriptional network that controls the formation of these amazing cells. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Signaling Pathways > Cell Fate Signaling.
Collapse
Affiliation(s)
- Crystal D. Rogers
- Department of Biology, College of Science and Mathematics, California State University Northridge, Northridge, California
| | - Shuyi Nie
- School of Biological Sciences and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
8
|
Dyson L, Holmes A, Li A, Kulesa PM. A chemotactic model of trunk neural crest cell migration. Genesis 2018; 56:e23239. [PMID: 30133140 DOI: 10.1002/dvg.23239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/10/2018] [Accepted: 07/14/2018] [Indexed: 11/11/2022]
Abstract
Trunk neural crest cells follow a common ventral migratory pathway but are distributed into two distinct locations to form discrete sympathetic and dorsal root ganglia along the vertebrate axis. Although fluorescent cell labeling and time-lapse studies have recorded complex trunk neural crest cell migratory behaviors, the signals that underlie this dynamic patterning remain unclear. The absence of molecular information has led to a number of mechanistic hypotheses for trunk neural crest cell migration. Here, we review recent data in support of three distinct mechanisms of trunk neural crest cell migration and develop and simulate a computational model based on chemotactic signaling. We show that by integrating the timing and spatial location of multiple chemotactic signals, trunk neural crest cells may be accurately positioned into two distinct targets that correspond to the sympathetic and dorsal root ganglia. In doing so, we honor the contributions of Wilhelm His to his identification of the neural crest and extend the observations of His and others to better understand a complex question in neural crest cell biology.
Collapse
Affiliation(s)
- Louise Dyson
- Mathematics Institute, University of Warwick, Coventry, United Kingdom, CV4 7AL.,School of Life Sciences, University of Warwick, Coventry, UK, CV4 7AL
| | - Alexander Holmes
- Mathematics Institute, University of Warwick, Coventry, United Kingdom, CV4 7AL
| | - Ang Li
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas
| |
Collapse
|
9
|
Latin American contributions to the neural crest field. Mech Dev 2018; 153:17-29. [PMID: 30081090 DOI: 10.1016/j.mod.2018.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/15/2018] [Accepted: 07/26/2018] [Indexed: 11/21/2022]
Abstract
The neural crest (NC) is one of the most fascinating structures during embryonic development. Unique to vertebrate embryos, these cells give rise to important components of the craniofacial skeleton, such as the jaws and skull, as well as melanocytes and ganglia of the peripheral nervous system. Worldwide, several groups have been studying NC development and specifically in the Latin America (LA) they have been growing in numbers since the 1990s. It is important for the world to recognize the contributions of LA researchers on the knowledge of NC development, as it can stimulate networking and improvement in the field. We developed a database of LA publications on NC development using ORCID and PUBMED as search engines. We thoroughly describe all of the contributions from LA, collected in five major topics on NC development mechanisms: i) induction and specification; ii) migration; iii) differentiation; iv) adult NC; and, v) neurocristopathies. Further analysis was done to correlate each LA country with topics and animal models, and to access collaboration between LA countries. We observed that some LA countries have made important contributions to the comprehension of NC development. Interestingly, some LA countries have a topic and an animal model as their strength; in addition, collaboration between LA countries is almost inexistent. This review will help LA NC research to be acknowledged, and to facilitate networking between students and researchers worldwide.
Collapse
|
10
|
Cavodeassi F, Creuzet S, Etchevers HC. The hedgehog pathway and ocular developmental anomalies. Hum Genet 2018; 138:917-936. [PMID: 30073412 PMCID: PMC6710239 DOI: 10.1007/s00439-018-1918-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022]
Abstract
Mutations in effectors of the hedgehog signaling pathway are responsible for a wide variety of ocular developmental anomalies. These range from massive malformations of the brain and ocular primordia, not always compatible with postnatal life, to subtle but damaging functional effects on specific eye components. This review will concentrate on the effects and effectors of the major vertebrate hedgehog ligand for eye and brain formation, Sonic hedgehog (SHH), in tissues that constitute the eye directly and also in those tissues that exert indirect influence on eye formation. After a brief overview of human eye development, the many roles of the SHH signaling pathway during both early and later morphogenetic processes in the brain and then eye and periocular primordia will be evoked. Some of the unique molecular biology of this pathway in vertebrates, particularly ciliary signal transduction, will also be broached within this developmental cellular context.
Collapse
Affiliation(s)
- Florencia Cavodeassi
- Institute for Medical and Biomedical Education, St. George´s University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Sophie Creuzet
- Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Heather C Etchevers
- Aix-Marseille Univ, Marseille Medical Genetics (MMG), INSERM, Faculté de Médecine, 27 boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
11
|
Fainsod A, Kot-Leibovich H. Xenopus embryos to study fetal alcohol syndrome, a model for environmental teratogenesis. Biochem Cell Biol 2018; 96:77-87. [DOI: 10.1139/bcb-2017-0219] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrate model systems are central to characterize the outcomes of ethanol exposure and the etiology of fetal alcohol spectrum disorder (FASD), taking advantage of their genetic and morphological closeness and similarity to humans. We discuss the contribution of amphibian embryos to FASD research, focusing on Xenopus embryos. The Xenopus experimental system is characterized by external development and accessibility throughout embryogenesis, large clutch sizes, gene and protein activity manipulation, transgenesis and genome editing, convenient chemical treatment, explants and conjugates, and many other experimental approaches. Taking advantage of these methods, many insights regarding FASD have been obtained. These studies characterized the malformations induced by ethanol including quantitative analysis of craniofacial malformations, induction of fetal growth restriction, delay in gut maturation, and defects in the differentiation of the neural crest. Mechanistic, biochemical, and molecular studies in Xenopus embryos identified early gastrula as the high alcohol sensitivity window, targeting the embryonic organizer and inducing a delay in gastrulation movements. Frog embryos have also served to demonstrate the involvement of reduced retinoic acid production and an increase in reactive oxygen species in FASD. Amphibian embryos have helped pave the way for our mechanistic, molecular, and biochemical understanding of the etiology and pathophysiology of FASD.
Collapse
Affiliation(s)
- Abraham Fainsod
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hadas Kot-Leibovich
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Cellular Biochemistry and Cancer Research, Institute for Medical Research Israel–Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
12
|
Flentke GR, Smith SM. The avian embryo as a model for fetal alcohol spectrum disorder. Biochem Cell Biol 2017; 96:98-106. [PMID: 29024604 DOI: 10.1139/bcb-2017-0205] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Prenatal alcohol exposure (PAE) remains a leading preventable cause of structural birth defects and permanent neurodevelopmental disability. The chicken (Gallus gallus domesticus) is a powerful embryological research model, and was possibly the first in which the teratogenicity of alcohol was demonstrated. Pharmacologically relevant exposure to alcohol in the range of 20-70 mmol/L (20-80 mg/egg) disrupt the growth of chicken embryos, morphogenesis, and behavior, and the resulting phenotypes strongly parallel those of mammalian models. The avian embryo's direct accessibility has enabled novel insights into the teratogenic mechanisms of alcohol. These include the contribution of IGF1 signaling to growth suppression, the altered flow dynamics that reshape valvuloseptal morphogenesis and mediate its cardiac teratogenicity, and the suppression of Wnt and Shh signals thereby disrupting the migration, expansion, and survival of the neural crest, and underlie its characteristic craniofacial deficits. The genetic diversity within commercial avian strains has enabled the identification of unique loci, such as ribosome biogenesis, that modify vulnerability to alcohol. This venerable research model is equally relevant for the future, as the application of technological advances including CRISPR, optogenetics, and biophotonics to the embryo's ready accessibility creates a unique model in which investigators can manipulate and monitor the embryo in real-time to investigate the effect of alcohol on cell fate.
Collapse
Affiliation(s)
- George R Flentke
- UNC-Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA.,UNC-Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan M Smith
- UNC-Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA.,UNC-Nutrition Research Institute and Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC 28081, USA
| |
Collapse
|
13
|
Schock EN, Brugmann SA. Neural crest cells utilize primary cilia to regulate ventral forebrain morphogenesis via Hedgehog-dependent regulation of oriented cell division. Dev Biol 2017; 431:168-178. [PMID: 28941984 DOI: 10.1016/j.ydbio.2017.09.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/20/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Abstract
Development of the brain directly influences the development of the face via both physical growth and Sonic hedgehog (SHH) activity; however, little is known about how neural crest cells (NCCs), the mesenchymal population that comprise the developing facial prominences, influence the development of the brain. We utilized the conditional ciliary mutant Wnt1-Cre;Kif3afl/fl to demonstrate that loss of primary cilia on NCCs resulted in a widened ventral forebrain. We found that neuroectodermal Shh expression, dorsal/ventral patterning, and amount of proliferation in the ventral neuroectoderm was not changed in Wnt1-Cre;Kif3afl/fl mutants; however, tissue polarity and directional cell division were disrupted. Furthermore, NCCs of Wnt1-Cre;Kif3afl/fl mutants failed to respond to a SHH signal emanating from the ventral forebrain. We were able to recapitulate the ventral forebrain phenotype by removing Smoothened from NCCs (Wnt1-Cre;Smofl/fl) indicating that changes in the ventral forebrain were mediated through a Hedgehog-dependent mechanism. Together, these data suggest a novel, cilia-dependent mechanism for NCCs during forebrain development.
Collapse
Affiliation(s)
- Elizabeth N Schock
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha A Brugmann
- Division of Plastic Surgery, Department of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
14
|
Nogueira RC, Sampaio LDFS. Eye and heart morphogenesis are dependent on melatonin signaling in chick embryos. ACTA ACUST UNITED AC 2017; 220:3826-3835. [PMID: 28839011 DOI: 10.1242/jeb.159848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022]
Abstract
Calmodulin is vital for chick embryos morphogenesis in the incubation time 48-66 h when the rudimentary C-shaped heart attains an S-shaped pattern and the optic vesicles develop into optic cups. Melatonin is in the extraembryonic yolk sac of the avian egg; melatonin binds calmodulin. The aim of this study was to investigate the function of melatonin in the formation of the chick embryo optic cups and S-shaped heart, by pharmacological methods and immunoassays. Mel1a melatonin receptor immunofluorescence was distributed in the optic cups and rudimentary hearts. We separated embryonated chicken eggs at 48 h of incubation into basal, control and drug-treated groups, with treatment applied in the egg air sac. At 66 h of incubation, embryos were excised from the eggs and analyzed. Embryos from the basal, control (distilled water), melatonin and 6-chloromelatonin (melatonin receptor agonist) groups had regular optic cups and an S-shaped heart, while those from the calmidazolium (calmodulin inhibitor) group did not. Embryos from the luzindole (melatonin receptor antagonist) and prazosin (Mel1c melatonin receptor antagonist) groups did not have regular optic cups. Embryos from the 4-P-PDOT (Mel1b melatonin receptor antagonist) group did not have an S-shaped heart. Previous application of the melatonin, 6-chloromelatonin or forskolin (adenylate cyclase enhancer) prevented the abnormal appearance of chick embryos from the calmidazolium, luzindole, prazosin and 4-P-PDOT groups. However, 6-chloromelatonin and forskolin only partially prevented the development of defective eye cups in embryos from the calmidazolium group. The results suggested that melatonin modulates chick embryo morphogenesis via calmodulin and membrane receptors.
Collapse
Affiliation(s)
- Renato C Nogueira
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará. Av. Augusto Corrêa 1, CEP: 66075-110 Belém, PA, Brazil
| | - Lucia de Fatima S Sampaio
- Laboratório de Bioquímica do Desenvolvimento do Sistema Nervoso, Instituto de Ciências Biológicas, Universidade Federal do Pará. Av. Augusto Corrêa 1, CEP: 66075-110 Belém, PA, Brazil
| |
Collapse
|
15
|
Eason J, Williams AL, Chawla B, Apsey C, Bohnsack BL. Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome. Birth Defects Res 2017; 109:1212-1227. [PMID: 28681995 DOI: 10.1002/bdr2.1069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Ethanol (ETOH) exposure during pregnancy is associated with craniofacial and neurologic abnormalities, but infrequently disrupts the anterior segment of the eye. In these studies, we used zebrafish to investigate differences in the teratogenic effect of ETOH on craniofacial, periocular, and ocular neural crest. METHODS Zebrafish eye and neural crest development was analyzed by means of live imaging, TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay, immunostaining, detection of reactive oxygen species, and in situ hybridization. RESULTS Our studies demonstrated that foxd3-positive neural crest cells in the periocular mesenchyme and developing eye were less sensitive to ETOH than sox10-positive craniofacial neural crest cells that form the pharyngeal arches and jaw. ETOH increased apoptosis in the retina, but did not affect survival of periocular and ocular neural crest cells. ETOH also did not increase reactive oxygen species within the eye. In contrast, ETOH increased ventral neural crest apoptosis and reactive oxygen species production in the facial mesenchyme. In the eye and craniofacial region, sod2 showed high levels of expression in the anterior segment and in the setting of Sod2 knockdown, low levels of ETOH decreased migration of foxd3-positive neural crest cells into the developing eye. However, ETOH had minimal effect on the periocular and ocular expression of transcription factors (pitx2 and foxc1) that regulate anterior segment development. CONCLUSION Neural crest cells contributing to the anterior segment of the eye exhibit increased ability to withstand ETOH-induced oxidative stress and apoptosis. These studies explain the rarity of anterior segment dysgenesis despite the frequent craniofacial abnormalities in fetal alcohol syndrome. Birth Defects Research 109:1212-1227, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jessica Eason
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Antionette L Williams
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Bahaar Chawla
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Christian Apsey
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| | - Brenda L Bohnsack
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
16
|
Yang L, Du X, Wei S, Gu L, Li N, Gong Y, Li S. Genome-wide association analysis identifies potential regulatory genes for eumelanin pigmentation in chicken plumage. Anim Genet 2017. [PMID: 28639704 DOI: 10.1111/age.12573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Plumage color in chicken is determined by the proportion of eumelanin and pheomelanin pigmentation. As the main ingredient in plumage melanin, eumelanin plays a key role in the dark black, brown and grey coloration. However, very few studies have been performed to identify the related genes and mutations on a genome-wide scale. Herein, a resource family consisting of one backcross population and two F2 cross populations between a black roster and Yukou Brown I parent stockbreed was constructed for identification of genes related to eumelanin pigmentation. Chickens with eumelanin in their plumage were classified as the case group, and the rest were considered the control group. A genome-wide association study of this phenotype and genotypes using Affymetrix 600K HD SNP arrays in this F2 family revealed 13 significantly associated SNPs and in 10 separate genes on chromosomes 1, 2, 3 and 5. Based on previous studies in model species, we inferred that genes, including NUAK family kinase 1 (NUAK1) and sonic hedgehog (SHH), may play roles in the development of neural crest cells or melanoblasts during the embryonic period, which may also affect the eumelanin pigmentation. Our results facilitate the understanding of the genetic basis of eumelanin pigmentation in chicken plumage.
Collapse
Affiliation(s)
- L Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China.,Collage of Life Science, Foshan University, Foshan, Guangdong, 528231, China
| | - X Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - S Wei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - L Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - N Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - Y Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| | - S Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei Province, 430070, China
| |
Collapse
|
17
|
Dworkin S, Boglev Y, Owens H, Goldie SJ. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival. J Dev Biol 2016; 4:jdb4030024. [PMID: 29615588 PMCID: PMC5831778 DOI: 10.3390/jdb4030024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 01/01/2023] Open
Abstract
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh), a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Yeliz Boglev
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Harley Owens
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| | - Stephen J Goldie
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Surgery, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| |
Collapse
|