1
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
2
|
Hall E, Mendiola K, Lightsey NK, Hanjaya-Putra D. Mimicking blood and lymphatic vasculatures using microfluidic systems. BIOMICROFLUIDICS 2024; 18:031502. [PMID: 38726373 PMCID: PMC11081709 DOI: 10.1063/5.0175154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
The role of the circulatory system, containing the blood and lymphatic vasculatures, within the body, has become increasingly focused on by researchers as dysfunction of either of the systems has been linked to serious complications and disease. Currently, in vivo models are unable to provide the sufficient monitoring and level of manipulation needed to characterize the fluidic dynamics of the microcirculation in blood and lymphatic vessels; thus in vitro models have been pursued as an alternative model. Microfluidic devices have the required properties to provide a physiologically relevant circulatory system model for research as well as the experimental tools to conduct more advanced research analyses of microcirculation flow. In this review paper, the physiological behavior of fluid flow and electrical communication within the endothelial cells of the systems are detailed and discussed to highlight their complexities. Cell co-culturing methods and other relevant organ-on-a-chip devices will be evaluated to demonstrate the feasibility and relevance of the in vitro microfluidic model. Microfluidic systems will be determined as a noteworthy model that can display physiologically relevant flow of the cardiovascular and lymphatic systems, which will enable researchers to investigate the systems' prevalence in diseases and identify potential therapeutics.
Collapse
Affiliation(s)
- Eva Hall
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | - N. Keilany Lightsey
- Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
3
|
Beird HC, Bielack SS, Flanagan AM, Gill J, Heymann D, Janeway KA, Livingston JA, Roberts RD, Strauss SJ, Gorlick R. Osteosarcoma. Nat Rev Dis Primers 2022; 8:77. [PMID: 36481668 DOI: 10.1038/s41572-022-00409-y] [Citation(s) in RCA: 231] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Osteosarcoma is the most common primary malignant tumour of the bone. Osteosarcoma incidence is bimodal, peaking at 18 and 60 years of age, and is slightly more common in males. The key pathophysiological mechanism involves several possible genetic drivers of disease linked to bone formation, causing malignant progression and metastasis. While there have been significant improvements in the outcome of patients with localized disease, with event-free survival outcomes exceeding 60%, in patients with metastatic disease, event-free survival outcomes remain poor at less than 30%. The suspicion of osteosarcoma based on radiographs still requires pathological evaluation of a bone biopsy specimen for definitive diagnosis and CT imaging of the chest should be performed to identify lung nodules. So far, population-based screening and surveillance strategies have not been implemented due to the rarity of osteosarcoma and the lack of reliable markers. Current screening focuses only on groups at high risk such as patients with genetic cancer predisposition syndromes. Management of osteosarcoma requires a multidisciplinary team of paediatric and medical oncologists, orthopaedic and general surgeons, pathologists, radiologists and specialist nurses. Survivors of osteosarcoma require specialized medical follow-up, as curative treatment consisting of chemotherapy and surgery has long-term adverse effects, which also affect the quality of life of patients. The development of osteosarcoma model systems and related research as well as the evaluation of new treatment approaches are ongoing to improve disease outcomes, especially for patients with metastases.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stefan S Bielack
- Pediatric Oncology, Hematology, Immunology, Klinikum Stuttgart - Olgahospital, Stuttgart Cancer Center, Stuttgart, Germany
| | - Adrienne M Flanagan
- Research Department of Pathology, Cancer Institute, University College London, London, UK
| | - Jonathan Gill
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Institut de Cancérologie de l'Ouest, Saint-Herblain, France
| | - Katherine A Janeway
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - J Andrew Livingston
- Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ryan D Roberts
- Center for Childhood Cancer, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Sandra J Strauss
- University College London Hospitals NHS Foundation Trust, University College London, London, UK
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA. .,Department of Sarcoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
4
|
Heymann D. Meet Our Editorial Board Member. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/157018081804210402112525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Heymann MF, Lezot F, Heymann D. Bisphosphonates in common pediatric and adult bone sarcomas. Bone 2020; 139:115523. [PMID: 32622877 DOI: 10.1016/j.bone.2020.115523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/23/2023]
Abstract
The therapeutic strategies proposed currently for bone sarcomas are based on neo-adjuvant chemotherapy, delayed en-bloc wide resection, and adjuvant chemotherapy. Unfortunately, bone sarcomas are characterized by high rates of poor drug response, with a high risk of drug resistance, local recurrence and/or a high propensity for induced metastases. The pathogenesis of bone sarcomas is strongly associated with dysregulation of local bone remodeling and increased osteolysis that plays a part in tumor development. In this context, bisphosphonates (BPs) have been proposed as a single agent or in combination with conventional drugs to block bone resorption and the vicious cycle established between bone and sarcoma cells. Pre-clinical in vitro studies revealed the potential "anti-tumor" activities of nitrogen-bisphosphonates (N-BPs). In pre-clinical models, N-BPs reduced significantly primary tumor growth in osteosarcoma and Ewing sarcoma, and the installation of lung metastases. In chondrosarcoma, N-BPs reduced the recurrence of local tumors after intralesional curettage, and increased overall survival. In pediatric and adult osteosarcoma patients, N-BPs have been assessed in combination with conventional chemotherapy and surgery in randomized phase 3 studies with no improvement in clinical outcome. The lack of benefit may potentially be explained by the biological impact of N-BPs on macrophage differentiation/recruitment which may alter CD8+-T lymphocyte infiltration. Thanks to their considerable affinity for the mineralized extracellular matrix, BPs are an excellent platform for drug delivery in malignant bone sites with reduced systemic toxicity, which opens up new opportunities for their future use.
Collapse
Affiliation(s)
- Marie-Francoise Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France
| | - Frederic Lezot
- Université de Nantes, Inserm, U1238, Faculty of Medicine, Nantes, France
| | - Dominique Heymann
- Institut de Cancérologie de l'Ouest, Saint-Herblain, France; Université de Nantes, Nantes, France; University of Sheffield, Dept of Oncology and Metabolism, School of Medicine, Sheffield, UK.
| |
Collapse
|
6
|
The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell Immunol 2019; 343:103711. [DOI: 10.1016/j.cellimm.2017.10.011] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/22/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
7
|
Schiavone K, Garnier D, Heymann MF, Heymann D. The Heterogeneity of Osteosarcoma: The Role Played by Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:187-200. [PMID: 31134502 DOI: 10.1007/978-3-030-14366-4_11] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteosarcoma is the most common bone sarcoma and is one of the cancer entities characterized by the highest level of heterogeneity in humans. This heterogeneity takes place not only at the macroscopic and microscopic levels, with heterogeneous micro-environmental components, but also at the genomic, transcriptomic and epigenetic levels. Recent investigations have revealed the existence in osteosarcoma of cancer cells with stemness properties. Cancer stem cells are characterized by their specific phenotype and low cycling capacity, and are linked to drug resistance, tumour growth and the metastatic process. In addition, cancer stem cells contribute to the enrichment of tumour heterogeneity. The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity. Their clinical implications will also be briefly addressed.
Collapse
Affiliation(s)
- Kristina Schiavone
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Delphine Garnier
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Marie-Francoise Heymann
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France
| | - Dominique Heymann
- INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Institut de Cancérologie de l'Ouest, CRCINA, Université de Nantes, Université d'Angers, Saint Herblain, France.
| |
Collapse
|
8
|
Tellez-Gabriel M, Heymann MF, Heymann D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Am J Cancer Res 2019; 9:4580-4594. [PMID: 31367241 PMCID: PMC6643448 DOI: 10.7150/thno.34337] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor heterogeneity is the major cause of failure in cancer prognosis and prediction. Accurately detecting heterogeneity for the development of biomarkers and the detection of the clones resistant to therapy is one of the main goals of contemporary medicine. Metastases belong to the natural history of cancer. The present review gives an overview on the origin of tumor heterogeneity. Recent progress has made it possible to isolate and characterize circulating tumor cells (CTCs), which are the drivers of the disease between the primary sites and metastatic foci. The most recent methods for characterizing CTCs are summarized and we discuss the power of CTC profiling for analyzing tumor heterogeneity in early and advanced diseases.
Collapse
|
9
|
Isolation of circulating tumor cells in a preclinical model of osteosarcoma: Effect of chemotherapy. J Bone Oncol 2018; 12:83-90. [PMID: 30123735 PMCID: PMC6092555 DOI: 10.1016/j.jbo.2018.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a rare primary bone tumor, which mainly affects children and adolescents and has a poor prognosis, especially for patients with metastatic disease. A poor therapeutic response to the conventional chemotherapy is observed with the development of lung metastases, highlighting the need for improving the current regimens and the identification of early markers of the recurrent and metastatic disease. Circulating Tumour Cells (CTCs) play a key role in the metastatic process and could be powerful biomarkers of the progressive disease. The present study aimed to isolate CTCs by using a pre-clinical model of human osteosarcoma and to monitor their kinetic of release and their modulation by ifosfamide. CTCs were detectable into the bloodstream before any palpable primary tumors. Ifosfamide increased CTCs count and in contrast decreased the number of lung tumor nodules. On established tumors, ifosfamide slowed down the tumour growth and did not modulate CTC count that could be explained by a release of cancer cells from the primary tumour with reduced properties for inducing lung metastases. This report highlights the biological interest of CTCs in osteosarcoma.
Collapse
|
10
|
Brown HK, Schiavone K, Gouin F, Heymann MF, Heymann D. Biology of Bone Sarcomas and New Therapeutic Developments. Calcif Tissue Int 2018; 102:174-195. [PMID: 29238848 PMCID: PMC5805807 DOI: 10.1007/s00223-017-0372-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/29/2017] [Indexed: 02/06/2023]
Abstract
Bone sarcomas are tumours belonging to the family of mesenchymal tumours and constitute a highly heterogeneous tumour group. The three main bone sarcomas are osteosarcoma, Ewing sarcoma and chondrosarcoma each subdivided in diverse histological entities. They are clinically characterised by a relatively high morbidity and mortality, especially in children and adolescents. Although these tumours are histologically, molecularly and genetically heterogeneous, they share a common involvement of the local microenvironment in their pathogenesis. This review gives a brief overview of their specificities and summarises the main therapeutic advances in the field of bone sarcoma.
Collapse
Affiliation(s)
- Hannah K Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Kristina Schiavone
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - François Gouin
- European Associated Laboratory, "Sarcoma Research Unit", Faculty of Medicine, INSERM, UMR1238, INSERM, Nantes, France
- Faculty of Medicine, University of Nantes, 44035, Nantes, France
| | - Marie-Françoise Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Dominique Heymann
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- Faculty of Medicine, University of Nantes, 44035, Nantes, France.
- Institut de Cancérologie de l'Ouest, site René Gauducheau, INSERM, UMR 1232, 44805, Saint-Herblain, France.
- European Associated Laboratory, "Sarcoma Research Unit", INSERM, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
| |
Collapse
|
11
|
Talbot J, Brion R, Lamora A, Mullard M, Morice S, Heymann D, Verrecchia F. Connexin43 intercellular communication drives the early differentiation of human bone marrow stromal cells into osteoblasts. J Cell Physiol 2017; 233:946-957. [PMID: 28369869 DOI: 10.1002/jcp.25938] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023]
Abstract
Although it has been demonstrated that human bone marrow stromal cells (hBMSCs) express the ubiquitous connexin43 (Cx43) and form functional gap junctions, their role in the early differentiation of hBMSCs into osteoblasts remains poorly documented. Using in vitro assays, we show that Cx43 expression and gap junctional intercellular communication (GJIC) are increased during the differentiation of hBMSCs into osteoblasts, both at the protein and mRNA levels. Two independent procedures to reduce GJIC, a pharmacological approach with GJIC inhibitors (18α-glycyrrhetinic acid and Gap27 peptide) and a molecular approach using small interfering RNA against Cx43, demonstrated that the presence of Cx43 and functional junctional channels are essential to the ability of hBMSCs to differentiate into osteoblasts in vitro. In addition, a reduced GJIC decreases the expression of Runx2, the major transcription factor implicated in the control of osteoblast commitment and early differentiation of hBMSCs into osteoblasts, suggesting that GJIC mediated by Cx43 is implicated in this process. Together our results demonstrate that GJIC mediated by the Cx43 channels plays a central role throughout the differentiation of hBMSC into osteoblasts, from the early stages to the process of mineralization.
Collapse
Affiliation(s)
| | - Régis Brion
- INSERM, UMR 957, Nantes, France.,INSERM, UMR 1238, Nantes, France.,Université Bretagne Loire, Nantes, France.,CHU, Nantes, France
| | - Audrey Lamora
- INSERM, UMR 957, Nantes, France.,INSERM, UMR 1238, Nantes, France.,Université Bretagne Loire, Nantes, France.,CHU, Nantes, France
| | - Mathilde Mullard
- INSERM, UMR 957, Nantes, France.,INSERM, UMR 1238, Nantes, France.,Université Bretagne Loire, Nantes, France
| | - Sarah Morice
- INSERM, UMR 957, Nantes, France.,INSERM, UMR 1238, Nantes, France.,Université Bretagne Loire, Nantes, France
| | - Dominique Heymann
- INSERM, UMR 957, Nantes, France.,CHU, Nantes, France.,Department of Oncology and metabolism, INSERM European Associated Laboratory, University of Sheffield, Shefflied, UK
| | - Franck Verrecchia
- INSERM, UMR 957, Nantes, France.,INSERM, UMR 1238, Nantes, France.,Université Bretagne Loire, Nantes, France
| |
Collapse
|