1
|
Taylor SKB, Hartman JH, Gupta BP. The neurotrophic factor MANF regulates autophagy and lysosome function to promote proteostasis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2024; 121:e2403906121. [PMID: 39418305 PMCID: PMC11513987 DOI: 10.1073/pnas.2403906121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The conserved mesencephalic astrocyte-derived neurotrophic factor (MANF) is known for protecting dopaminergic neurons and functioning in various other tissues. Previously, we showed that Caenorhabditis elegans manf-1 null mutants exhibit defects such as increased endoplasmic reticulum (ER) stress, dopaminergic neurodegeneration, and abnormal protein aggregation. These findings suggest an essential role for MANF in cellular processes. However, the mechanisms by which intracellular and extracellular MANF regulate broader cellular functions remain unclear. We report a unique mechanism of action for MANF-1 that involves the transcription factor HLH-30/TFEB-mediated signaling to regulate autophagy and lysosomal function. Multiple transgenic strains overexpressing MANF-1 showed extended lifespan of animals, reduced protein aggregation, and improved neuronal survival. Using fluorescently tagged MANF-1, we observed tissue-specific localization of the protein, which was dependent on the ER retention signal. Further subcellular analysis showed that MANF-1 localizes within cells to the lysosomes and utilizes the endosomal pathway. Consistent with the lysosomal localization, our transcriptomic study of MANF-1 and analyses of autophagy regulators demonstrated that MANF-1 promotes proteostasis by regulating autophagic flux and lysosomal activity. Collectively, our findings establish MANF as a critical regulator of stress response, proteostasis, and aging.
Collapse
Affiliation(s)
| | - Jessica H. Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC29425
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC29425
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
2
|
Anttila JE, Mattila OS, Liew HK, Mätlik K, Mervaala E, Lindholm P, Lindahl M, Lindsberg PJ, Tseng KY, Airavaara M. MANF protein expression is upregulated in immune cells in the ischemic human brain and systemic recombinant MANF delivery in rat ischemic stroke model demonstrates anti-inflammatory effects. Acta Neuropathol Commun 2024; 12:10. [PMID: 38229173 DOI: 10.1186/s40478-023-01701-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) has cytoprotective effects on various injuries, including cerebral ischemia, and it can promote recovery even when delivered intracranially several days after ischemic stroke. In the uninjured rodent brain, MANF protein is expressed almost exclusively in neurons, but post-ischemic MANF expression has not been characterized. We aimed to investigate how endogenous cerebral MANF protein expression evolves in infarcted human brains and rodent ischemic stroke models. During infarct progression, the cerebral MANF expression pattern both in human and rat brains shifted drastically from neurons to expression in inflammatory cells. Intense MANF immunoreactivity took place in phagocytic microglia/macrophages in the ischemic territory, peaking at two weeks post-stroke in human and one-week post-stroke in rat ischemic cortex. Using double immunofluorescence and mice lacking MANF gene and protein from neuronal stem cells, neurons, astrocytes, and oligodendrocytes, we verified that MANF expression was induced in microglia/macrophage cells in the ischemic hemisphere. Embarking on the drastic expression transition towards inflammatory cells and the impact of blood-borne inflammation in stroke, we hypothesized that exogenously delivered MANF protein can modulate tissue recovery processes. In an attempt to enhance recovery, we designed a set of proof-of-concept studies using systemic delivery of recombinant MANF in a rat model of cortical ischemic stroke. Intranasal recombinant MANF treatment decreased infarct volume and reduced the severity of neurological deficits. Intravenous recombinant MANF treatment decreased the levels of pro-inflammatory cytokines and increased the levels of anti-inflammatory cytokine IL-10 in the infarcted cortex one-day post-stroke. In conclusion, MANF protein expression is induced in activated microglia/macrophage cells in infarcted human and rodent brains, and this could implicate MANF's involvement in the regulation of post-stroke inflammation in patients and experimental animals. Moreover, systemic delivery of recombinant MANF shows promising immunomodulatory effects and therapeutic potential in experimental ischemic stroke.
Collapse
Affiliation(s)
- Jenni E Anttila
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Olli S Mattila
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, 00290, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien County, Hualien, 970, Taiwan
| | - Kert Mätlik
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eero Mervaala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, University of Helsinki, 00290, Helsinki, Finland
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital and National Defense Medical Center, Taipei, 114, Taiwan.
| | - Mikko Airavaara
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, P.O. Box 56, 00014, Helsinki, Finland.
- Neuroscience Center, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
3
|
Taylor SKB, Hartman JH, Gupta BP. Neurotrophic factor MANF regulates autophagy and lysosome function to promote proteostasis in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551399. [PMID: 38260421 PMCID: PMC10802257 DOI: 10.1101/2023.07.31.551399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The conserved mesencephalic astrocyte-derived neurotrophic factor (MANF) protects dopaminergic neurons but also functions in several other tissues. Previously, we showed that Caenorhabditis elegans manf-1 null mutants have increased ER stress, dopaminergic neurodegeneration, protein aggregation, slower growth, and a reduced lifespan. The multiple requirements of MANF in different systems suggest its essential role in regulating cellular processes. However, how intracellular and extracellular MANF regulates broader cellular function remains unknown. Here, we report a novel mechanism of action for manf-1 that involves the autophagy transcription factor HLH-30/TFEB-mediated signaling to regulate lysosomal function and aging. We generated multiple transgenic strains overexpressing MANF-1 and found that animals had extended lifespan, reduced protein aggregation, and improved neuronal health. Using a fluorescently tagged MANF-1, we observed different tissue localization of MANF-1 depending on the ER retention signal. Further subcellular analysis showed that MANF-1 localizes within cells to the lysosomes. These findings were consistent with our transcriptomic studies and, together with analysis of autophagy regulators, demonstrate that MANF-1 regulates protein homeostasis through increased autophagy and lysosomal activity. Collectively, our findings establish MANF as a critical regulator of the stress response, proteostasis, and aging.
Collapse
Affiliation(s)
- Shane K. B. Taylor
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jessica H. Hartman
- Department of Biochemistry & Molecular Biology and Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bhagwati P. Gupta
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
4
|
Zhang C, Zhang M, Cao X, Jiao B, Zhang W, Yu S, Zhang X. Navigating the Landscape of MANF Research: A Scientometric Journey with CiteSpace Analysis. Cell Mol Neurobiol 2023; 43:3897-3913. [PMID: 37751132 PMCID: PMC10661837 DOI: 10.1007/s10571-023-01412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023]
Abstract
This study employs bibliometric analysis through CiteSpace to comprehensively evaluate the status and trends of MANF (mesencephalic astrocyte-derived neurotrophic factor) research spanning 25 years (1997-2022). It aims to fill the gap in objective and comprehensive reviews of MANF research. MANF-related studies were extracted from the Web of Science database. MANF publications were quantitatively and qualitatively analyzed for various factors by CiteSpace, including publication volume, journals, countries/regions, institutions, and authors. Keywords and references were visually analyzed to unveil research evolution and hotspot. Analysis of 353 MANF-related articles revealed escalating annual publications, indicating growing recognition of MANF's importance. High-impact journals such as the International Journal of Molecular Sciences and Journal of Biological Chemistry underscored MANF's interdisciplinary significance. Collaborative networks highlighted China and the USA's pivotal roles, while influential figures and partnerships drove understanding of MANF's mechanisms. Co-word analysis of MANF-related keywords exposed key evolutionary hotspots, encompassing neurotrophic effects, cytoprotective roles, MANF-related diseases, and the CDNF/MANF family. This progression from basic understanding to clinical potential showcased MANF's versatility from cellular protection to therapy. Bibliometric analysis reveals MANF's diverse research trends and pathways, from basics to clinical applications, driving medical progress. This comprehensive assessment enriches understanding and empowers researchers for dynamic evolution, advancing innovation, and benefiting patients. Bibliometric analysis of MANF research. The graphical abstract depicts the bibliometric analysis of MANF research, highlighting its aims, methods, and key results.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Mi Zhang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Bo Jiao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Shangchen Yu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jie Fang Avenue, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
5
|
Pakarinen E, Lindholm P. CDNF and MANF in the brain dopamine system and their potential as treatment for Parkinson's disease. Front Psychiatry 2023; 14:1188697. [PMID: 37555005 PMCID: PMC10405524 DOI: 10.3389/fpsyt.2023.1188697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 08/10/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by gradual loss of midbrain dopamine neurons, leading to impaired motor function. Preclinical studies have indicated cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) to be potential therapeutic molecules for the treatment of PD. CDNF was proven to be safe and well tolerated when tested in Phase I-II clinical trials in PD patients. Neuroprotective and neurorestorative effects of CDNF and MANF were demonstrated in animal models of PD, where they promoted the survival of dopamine neurons and improved motor function. However, biological roles of endogenous CDNF and MANF proteins in the midbrain dopamine system have been less clear. In addition to extracellular trophic activities, CDNF/MANF proteins function intracellularly in the endoplasmic reticulum (ER), where they modulate protein homeostasis and protect cells against ER stress by regulating the unfolded protein response (UPR). Here, our aim is to give an overview of the biology of endogenous CDNF and MANF in the brain dopamine system. We will discuss recent studies on CDNF and MANF knockout animal models, and effects of CDNF and MANF in preclinical models of PD. To elucidate possible roles of CDNF and MANF in human biology, we will review CDNF and MANF tissue expression patterns and regulation of CDNF/MANF levels in human diseases. Finally, we will discuss novel findings related to the molecular mechanism of CDNF and MANF action in ER stress, UPR, and inflammation, all of which are mechanisms potentially involved in the pathophysiology of PD.
Collapse
Affiliation(s)
| | - Päivi Lindholm
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Kovaleva V, Yu LY, Ivanova L, Shpironok O, Nam J, Eesmaa A, Kumpula EP, Sakson S, Toots U, Ustav M, Huiskonen JT, Voutilainen MH, Lindholm P, Karelson M, Saarma M. MANF regulates neuronal survival and UPR through its ER-located receptor IRE1α. Cell Rep 2023; 42:112066. [PMID: 36739529 DOI: 10.1016/j.celrep.2023.112066] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-located protein with cytoprotective effects in neurons and pancreatic β cells in vitro and in models of neurodegeneration and diabetes in vivo. However, the exact mode of MANF action has remained elusive. Here, we show that MANF directly interacts with the ER transmembrane unfolded protein response (UPR) sensor IRE1α, and we identify the binding interface between MANF and IRE1α. The expression of wild-type MANF, but not its IRE1α binding-deficient mutant, attenuates UPR signaling by decreasing IRE1α oligomerization; phosphorylation; splicing of Xbp1, Atf6, and Txnip levels; and protecting neurons from ER stress-induced death. MANF-IRE1α interaction and not MANF-BiP interaction is crucial for MANF pro-survival activity in neurons in vitro and is required to protect dopamine neurons in an animal model of Parkinson's disease. Our data show IRE1α as an intracellular receptor for MANF and regulator of neuronal survival.
Collapse
Affiliation(s)
- Vera Kovaleva
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| | - Li-Ying Yu
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Larisa Ivanova
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| | - Olesya Shpironok
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jinhan Nam
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Ave Eesmaa
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Sven Sakson
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | | | | | - Juha T Huiskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Mati Karelson
- Institute of Chemistry, University of Tartu, 50411 Tartu, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
7
|
Lõhelaid H, Anttila JE, Liew HK, Tseng KY, Teppo J, Stratoulias V, Airavaara M. UPR Responsive Genes Manf and Xbp1 in Stroke. Front Cell Neurosci 2022; 16:900725. [PMID: 35783104 PMCID: PMC9240287 DOI: 10.3389/fncel.2022.900725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF’s function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.
Collapse
Affiliation(s)
- Helike Lõhelaid
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- *Correspondence: Helike Lõhelaid,
| | - Jenni E. Anttila
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaakko Teppo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Mikko Airavaara
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Mikko Airavaara,
| |
Collapse
|
8
|
Wen W, Li H, Luo J. Potential Role of MANF, an ER Stress Responsive Neurotrophic Factor, in Protecting Against Alcohol Neurotoxicity. Mol Neurobiol 2022; 59:2992-3015. [PMID: 35254650 PMCID: PMC10928853 DOI: 10.1007/s12035-022-02786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Alcohol exposure during pregnancy is harmful to the fetus and causes a wide range of long-lasting physiological and neurocognitive impairments, collectively referred to as fetal alcohol spectrum disorders (FASD). The neurobehavioral deficits observed in FASD result from structural and functional damages in the brain, with neurodegeneration being the most destructive consequence. Currently, there are no therapies for FASD. It is exigent to delineate the underlying mechanisms of alcohol neurotoxicity and develop an effective strategy of treatment. ER stress, caused by the accumulation of unfolded/misfolded proteins in the ER, is the hallmark of many neurodegenerative diseases, including alcohol-induced neurodegeneration. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a newly discovered endoplasmic reticulum (ER) stress responsive neurotrophic factor that regulates diverse neuronal functions. This review summarizes the recent findings revealing the effects of MANF on the CNS and its protective role against neurodegeneration. Particularly, we focus the role of MANF on alcohol-induced ER stress and neurodegeneration and discuss the therapeutic potential of MANF in treating alcohol neurotoxicity such as FASD.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
| |
Collapse
|
9
|
Lindholm P, Saarma M. Cerebral dopamine neurotrophic factor protects and repairs dopamine neurons by novel mechanism. Mol Psychiatry 2022; 27:1310-1321. [PMID: 34907395 PMCID: PMC9095478 DOI: 10.1038/s41380-021-01394-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Midbrain dopamine neurons deteriorate in Parkinson's disease (PD) that is a progressive neurodegenerative movement disorder. No cure is available that would stop the dopaminergic decline or restore function of injured neurons in PD. Neurotrophic factors (NTFs), e.g., glial cell line-derived neurotrophic factor (GDNF) are small, secreted proteins that promote neuron survival during mammalian development and regulate adult neuronal plasticity, and they are studied as potential therapeutic agents for the treatment of neurodegenerative diseases. However, results from clinical trials of GDNF and related NTF neurturin (NRTN) in PD have been modest so far. In this review, we focus on cerebral dopamine neurotrophic factor (CDNF), an unconventional neurotrophic protein. CDNF delivered to the brain parenchyma protects and restores dopamine neurons in animal models of PD. In a recent Phase I-II clinical trial CDNF was found safe and well tolerated. CDNF deletion in mice led to age-dependent functional changes in the brain dopaminergic system and loss of enteric neurons resulting in slower gastrointestinal motility. These defects in Cdnf-/- mice intriguingly resemble deficiencies observed in early stage PD. Different from classical NTFs, CDNF can function both as an extracellular trophic factor and as an intracellular, endoplasmic reticulum (ER) luminal protein that protects neurons and other cell types against ER stress. Similarly to the homologous mesencephalic astrocyte-derived neurotrophic factor (MANF), CDNF is able to regulate ER stress-induced unfolded protein response (UPR) signaling and promote protein homeostasis in the ER. Since ER stress is thought to be one of the pathophysiological mechanisms contributing to the dopaminergic degeneration in PD, CDNF, and its small-molecule derivatives that are under development may provide useful tools for experimental medicine and future therapies for the treatment of PD and other neurodegenerative protein-misfolding diseases.
Collapse
Affiliation(s)
- Päivi Lindholm
- grid.7737.40000 0004 0410 2071Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
| |
Collapse
|
10
|
Koskela M, Piepponen TP, Lindahl M, Harvey BK, Andressoo JO, Võikar V, Airavaara M. The overexpression of GDNF in nucleus accumbens suppresses alcohol-seeking behavior in group-housed C57Bl/6J female mice. J Biomed Sci 2021; 28:87. [PMID: 34923968 PMCID: PMC8686589 DOI: 10.1186/s12929-021-00782-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Background Craving for alcohol, in other words powerful desire to drink after withdrawal, is an important contributor to the development and maintenance of alcoholism. Here, we studied the role of GDNF (glial cell line-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) on alcohol-seeking behavior in group-housed female mice. Methods We modeled alcohol-seeking behavior in C57Bl/6J female mice. The behavioral experiments in group-housed female mice were performed in an automated IntelliCage system. We conducted RT-qPCR analysis of Gdnf, Bdnf, Manf and Cdnf expression in different areas of the female mouse brain after alcohol drinking conditioning. We injected an adeno-associated virus (AAV) vector expressing human GDNF or BDNF in mouse nucleus accumbens (NAc) after ten days of alcohol drinking conditioning and assessed alcohol-seeking behavior. Behavioral data were analyzed by two-way repeated-measures ANOVA, and statistically significant effects were followed by Bonferroni’s post hoc test. The student’s t-test was used to analyze qPCR data. Results The RT-qPCR data showed that Gdnf mRNA level in NAc was more than four times higher (p < 0.0001) in the mice from the sweetened alcohol group compared to the water group. Our data showed a more than a two-fold decrease in Manf mRNA (p = 0.04) and Cdnf mRNA (p = 0.02) levels in the hippocampus and Manf mRNA in the VTA (p = 0.04) after alcohol consumption. Two-fold endogenous overexpression of Gdnf mRNA and lack of CDNF did not affect alcohol-seeking behavior. The AVV-GDNF overexpression in nucleus accumbens suppressed alcohol-seeking behavior while overexpression of BDNF did not. Conclusions The effect of increased endogenous Gdnf mRNA level in female mice upon alcohol drinking has remained unknown. Our data suggest that an increase in endogenous GDNF expression upon alcohol drinking occurs in response to the activation of another mesolimbic reward pathway participant.
Collapse
Affiliation(s)
- Maryna Koskela
- Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.,Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - T Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Brandon K Harvey
- National Institute on Drug Abuse, IRP, NIH, Biomedical Research Center, 251 Bayview Boulevard Suite 200, Baltimore, MD, 21224, USA
| | - Jaan-Olle Andressoo
- Faculty of Medicine, University of Helsinki, PO Box 56, 00014, Helsinki, Finland.,Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, 17177, Stockholm, Sweden
| | - Vootele Võikar
- Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Mikko Airavaara
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland. .,Neuroscience Center, HiLIFE, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
11
|
Eremin DV, Ilchibaeva TV, Tsybko AS. Cerebral Dopamine Neurotrophic Factor (CDNF): Structure, Functions, and Therapeutic Potential. BIOCHEMISTRY (MOSCOW) 2021; 86:852-866. [PMID: 34284712 DOI: 10.1134/s0006297921070063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The cerebral dopamine neurotrophic factor (CDNF) together with the mesencephalic astrocyte-derived neurotrophic factor (MANF) form a unique family of neurotrophic factors (NTFs) structurally and functionally different from other proteins with neurotrophic activity. CDNF has no receptors on the cell membrane, is localized mainly in the cavity of endoplasmic reticulum (ER), and its primary function is to regulate ER stress. In addition, CDNF is able to suppress inflammation and apoptosis. Due to its functions, CDNF has demonstrated outstanding protective and restorative properties in various models of neuropathology associated with ER stress, including Parkinson's disease (PD). That is why CDNF already passed clinical trials in patients with PD. However, despite the name, CDNF functions extend far beyond the dopamine system in the brain. In particular, there are data on participation of CDNF in the maturation and maintenance of other neurotransmitter systems, regulation of the processes of neuroplasticity and non-motor behavior. In the present review, we discuss the features of CDNF structure and functions, its protective and regenerative properties.
Collapse
Affiliation(s)
- Dmitry V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana V Ilchibaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Anton S Tsybko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
12
|
Jӓntti M, Harvey BK. Trophic activities of endoplasmic reticulum proteins CDNF and MANF. Cell Tissue Res 2020; 382:83-100. [PMID: 32845431 DOI: 10.1007/s00441-020-03263-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are endoplasmic reticulum (ER) luminal proteins that confer trophic activities in a wide range of tissues under diverse pathological conditions. Despite initially being classified as neurotrophic factors, neither protein structurally nor functionally resembles bona fide neurotrophic factors. Their highly homologous structures comprise a unique globular, saposin-like domain within the N-terminus joined by a flexible linker to a C-terminus containing a SAP-like domain, CXXC motif and an ER retention sequence. Neurotrophic factors exert effects by binding to cognate receptors in the plasma membrane; however, no cell surface receptors have been identified for MANF and CDNF. Both can act as unfolded protein response (UPR) genes that modulate the UPR and inflammatory processes. The trophic activity of MANF and CDNF extends beyond the central nervous system with MANF being crucial for the development of pancreatic β cells and both have trophic effects in a variety of diseases related to the liver, heart, skeletal tissue, kidney and peripheral nervous system. In this article, the unique features of MANF and CDNF, such as their structure and mechanisms of action related to ER stress and inflammation, will be reviewed. Recently identified interactions with lipids and membrane trafficking will also be described. Lastly, their function and therapeutic potential in different diseases including a recent clinical trial using CDNF to treat Parkinson's disease will be discussed. Collectively, this review will highlight MANF and CDNF as broad-acting trophic factors that regulate functions of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Maria Jӓntti
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Lab, Intramural Research Program, National Institute on Drug Abuse, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
13
|
Teppo J, Vaikkinen A, Stratoulias V, Mätlik K, Anttila JE, Smolander OP, Pöhö P, Harvey BK, Kostiainen R, Airavaara M. Molecular profile of the rat peri-infarct region four days after stroke: Study with MANF. Exp Neurol 2020; 329:113288. [PMID: 32229226 PMCID: PMC11924106 DOI: 10.1016/j.expneurol.2020.113288] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
The peri-infarct region after ischemic stroke is the anatomical location for many of the endogenous recovery processes; however, -the molecular events in the peri-infarct region remain poorly characterized. In this study, we examine the molecular profile of the peri-infarct region on post-stroke day four, a time when reparative processes are ongoing. We used a multiomics approach, involving RNA sequencing, and mass spectrometry-based proteomics and metabolomics to characterize molecular changes in the peri-infarct region. We also took advantage of our previously developed method to express transgenes in the peri-infarct region where self-complementary adeno-associated virus (AAV) vectors were injected into the brain parenchyma on post-stroke day 2. We have previously used this method to show that mesencephalic astrocyte-derived neurotrophic factor (MANF) enhances functional recovery from stroke and recruits phagocytic cells to the peri-infarct region. Here, we first analyzed the effects of stroke to the peri-infarct region on post-stroke day 4 in comparison to sham-operated animals, finding that strokeinduced changes in 3345 transcripts, 341 proteins, and 88 metabolites. We found that after stroke, genes related to inflammation, proliferation, apoptosis, and regeneration were upregulated, whereas genes encoding neuroactive ligand receptors and calcium-binding proteins were downregulated. In proteomics, we detected upregulation of proteins related to protein synthesis and downregulation of neuronal proteins. Metabolomic studies indicated that in after stroke tissue there is an increase in saccharides, sugar phosphates, ceramides and free fatty acids and a decrease of adenine, hypoxantine, adenosine and guanosine. We then compared the effects of post-stroke delivery of AAV1-MANF to AAV1-eGFP (enhanced green fluorescent protein). MANF administration increased the expression of 77 genes, most of which were related to immune response. In proteomics, MANF administration reduced S100A8 and S100A9 protein levels. In metabolomics, no significant differences between MANF and eGFP treatment were detected, but relative to sham surgery group, most of the changes in lipids were significant in the AAV-eGFP group only. This work describes the molecular profile of the peri-infarct region during recovery from ischemic stroke, and establishes a resource for further stroke studies. These results provide further support for parenchymal MANF as a modulator of phagocytic function.
Collapse
Affiliation(s)
- Jaakko Teppo
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Anu Vaikkinen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | - Vassilis Stratoulias
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Finland
| | - Kert Mätlik
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Jenni E Anttila
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
| | - Päivi Pöhö
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland
| | | | - Risto Kostiainen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Finland.
| | - Mikko Airavaara
- Institute of Biotechnology, HiLIFE, University of Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, Finland.
| |
Collapse
|
14
|
Fu J, Nchambi KM, Wu H, Luo X, An X, Liu D. Liraglutide protects pancreatic β cells from endoplasmic reticulum stress by upregulating MANF to promote autophagy turnover. Life Sci 2020; 252:117648. [PMID: 32275937 DOI: 10.1016/j.lfs.2020.117648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 11/30/2022]
Abstract
AIMS This study was conducted to determine the relationship between mesencephalic astrocyte-derived neurotrophic factor (MANF), autophagy and endoplasmic reticulum (ER) stress, and whether liraglutide (LRG) can protect β cells, promote autophagy and alleviate ER stress by regulating MANF expression. MAIN METHODS Human serum samples were collected from healthy controls (NC), simple hyperlipidemia (HLD), and newly diagnosed type 2 diabetes (T2D). The MANF levels were detected using ELISA. In vitro, after the mouse islet MIN6 cells were treated with glucose (GLU), palmitate (PA), thapsigargin (TG), LRG, and chloroquine (CQ), cell proliferation was detected using cell counting kit-8 (CCK-8), apoptosis-related protein cleaved caspase 3 (C-cas-3), ER stress, and autophagy-related proteins were detected by Western blotting, MANF, insulin, and C-cas-3 proteins were detected via immunofluorescence. Subcellular structures and autophagosomes were examined using electron microscopy. KEY FINDINGS Compared with the NC group, the MANF levels in the HLD and T2D groups increased significantly. After ER stress induced by GLU, PA, and TG, cell viability decreased, while MANF, c-cas3, ERS, and autophagy-related proteins increased, which was related to the concentration of GLU, PA, and TG. Compared with the BSA group, the number of mitochondria and autophagosomes in the PA group increased and the mitochondria were damaged. In the PA and TG plus CQ groups, the effect was further exaggerated. But after co-treatment with LRG, the effects of GLU, PA, and TG were attenuated. SIGNIFICANCE LRG protects islet β cells from ER stress by upregulating MANF to promote autophagy turnover.
Collapse
Affiliation(s)
- Jili Fu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76, Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Kija Malale Nchambi
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 76, Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Hao Wu
- Department of Hepatobiliary surgery, The Second Affiliated Hospital of Chongqing Medical University, 76, Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xie Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76, Linjiang Road, Yuzhong District, Chongqing 400010, China
| | - Xizhou An
- Department of Hematology, The Children Hospital of Chongqing Medical University, Yuzhong District, Chongqing 400014, China
| | - Dongfang Liu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, 76, Linjiang Road, Yuzhong District, Chongqing 400010, China.
| |
Collapse
|
15
|
Tao J, Hao Y, Li X, Yin H, Nie X, Zhang J, Xu B, Chen Q, Li B. Systematic Identification of Housekeeping Genes Possibly Used as References in Caenorhabditis elegans by Large-Scale Data Integration. Cells 2020; 9:786. [PMID: 32213971 PMCID: PMC7140892 DOI: 10.3390/cells9030786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
For accurate gene expression quantification, normalization of gene expression data against reliable reference genes is required. It is known that the expression levels of commonly used reference genes vary considerably under different experimental conditions, and therefore, their use for data normalization is limited. In this study, an unbiased identification of reference genes in Caenorhabditis elegans was performed based on 145 microarray datasets (2296 gene array samples) covering different developmental stages, different tissues, drug treatments, lifestyle, and various stresses. As a result, thirteen housekeeping genes (rps-23, rps-26, rps-27, rps-16, rps-2, rps-4, rps-17, rpl-24.1, rpl-27, rpl-33, rpl-36, rpl-35, and rpl-15) with enhanced stability were comprehensively identified by using six popular normalization algorithms and RankAggreg method. Functional enrichment analysis revealed that these genes were significantly overrepresented in GO terms or KEGG pathways related to ribosomes. Validation analysis using recently published datasets revealed that the expressions of newly identified candidate reference genes were more stable than the commonly used reference genes. Based on the results, we recommended using rpl-33 and rps-26 as the optimal reference genes for microarray and rps-2 and rps-4 for RNA-sequencing data validation. More importantly, the most stable rps-23 should be a promising reference gene for both data types. This study, for the first time, successfully displays a large-scale microarray data driven genome-wide identification of stable reference genes for normalizing gene expression data and provides a potential guideline on the selection of universal internal reference genes in C. elegans, for quantitative gene expression analysis.
Collapse
Affiliation(s)
- Jingxin Tao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Xudong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Huachun Yin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Xiner Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Jie Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Boying Xu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| | - Qiao Chen
- Scientific Research Office, Chongqing Normal University, Chongqing 401331, China;
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China; (J.T.); (Y.H.); (X.L.); (H.Y.); (X.N.); (J.Z.); (B.X.)
| |
Collapse
|
16
|
MANF Ablation Causes Prolonged Activation of the UPR without Neurodegeneration in the Mouse Midbrain Dopamine System. eNeuro 2020; 7:ENEURO.0477-19.2019. [PMID: 32005751 PMCID: PMC7053174 DOI: 10.1523/eneuro.0477-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) localized protein that regulates ER homeostasis and unfolded protein response (UPR). The biology of endogenous MANF in the mammalian brain is unknown and therefore we studied the brain phenotype of MANF-deficient female and male mice at different ages focusing on the midbrain dopamine system and cortical neurons. We show that a lack of MANF from the brain led to the chronic activation of UPR by upregulation of the endoribonuclease activity of the inositol-requiring enzyme 1α (IRE1α) pathway. Furthermore, in the aged MANF-deficient mouse brain in addition the protein kinase-like ER kinase (PERK) and activating transcription factor 6 (ATF6) branches of the UPR pathways were activated. Neuronal loss in neurodegenerative diseases has been associated with chronic ER stress. In our mouse model, increased UPR activation did not lead to neuronal cell loss in the substantia nigra (SN), decrease of striatal dopamine or behavioral changes of MANF-deficient mice. However, cortical neurons lacking MANF were more vulnerable to chemical induction of additional ER stress in vitro. We conclude that embryonic neuronal deletion of MANF does not cause the loss of midbrain dopamine neurons in mice. However, endogenous MANF is needed for maintenance of neuronal ER homeostasis both in vivo and in vitro.
Collapse
|
17
|
Danilova T, Galli E, Pakarinen E, Palm E, Lindholm P, Saarma M, Lindahl M. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Is Highly Expressed in Mouse Tissues With Metabolic Function. Front Endocrinol (Lausanne) 2019; 10:765. [PMID: 31781038 PMCID: PMC6851024 DOI: 10.3389/fendo.2019.00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) form a family of atypical growth factors discovered for their neuroprotective properties in the central nervous system (CNS) in animal models of neurodegenerative diseases. Although their mechanism of protective action still remains unclear, it has been suggested that both MANF and CDNF promote cell survival through regulating the unfolded protein response (UPR), thereby relieving endoplasmic reticulum (ER) stress. Recent studies identified MANF for its emerging roles in metabolic function, inflammation and pancreatic β-cells. We have found that MANF deletion from the pancreas and β-cells leads to postnatal depletion of β-cells and diabetes. Moreover, global MANF-deficiency in mice results in severe diabetes-independent growth retardation. As the expression pattern of MANF in mouse tissues has not been extensively studied, we set out to thoroughly investigate MANF expression in embryonic and adult mice using immunohistochemistry, histochemical X-gal staining, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription PCR (RT-qPCR). We found that MANF is highly expressed in brain neurons regulating energy homeostasis and appetite, as well as in hypothalamic nuclei producing hormones and neuropeptides important for different body functions. Strong expression of MANF was also observed in peripheral mouse tissues and cells with high secretory and metabolic function. These include pituitary gland and interestingly we found that the anterior pituitary gland is smaller in MANF-deficient mice compared to wild-type mice. Consequently, we found reduction in the number of growth hormone- and prolactin-producing cells. This combined with increased expression of UPR genes, reduced number of proliferating cells in the anterior pituitary and dysregulated expression of pituitary hormones might contribute to the severe growth defect seen in the MANF knockout mice. Moreover, in this study we compared MANF and CDNF levels in mouse tissues. Unlike MANF, CDNF protein levels are generally lower in mouse tissues, and the highest levels of CDNF was observed in the tissues with high-energy demands and oxidative roles, including heart, muscle, testis, and brown adipose tissue.
Collapse
|