1
|
Du X, Lin L, Yu Y, Yang N, Gao S, Guo J, Fang L, Su P. The evolution and functional characterization of transcription factors E2Fs in lamprey, Lethenteron reissneri. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 165:105348. [PMID: 40031963 DOI: 10.1016/j.dci.2025.105348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
The E2 promoter binding factors (E2Fs) are a group of transcriptional regulators that govern the cell cycle and play crucial roles in various cellular physiological processes, including proliferation and embryonic development. In this study, we identified four homologous genes-Lr-E2F3, Lr-E2F4, Lr-E2F5, and Lr-E2F8-from the lamprey (Lethenteron reissneri) genome database. Phylogenetic tree analysis was conducted to elucidate the evolutionary relationships within the E2F family across different species. Furthermore, analyses of motifs, domains, gene structures, and 3D structures reinforced the conservation of the E2F family. Notably, synteny analysis revealed that the neighboring genes of the Lr-E2Fs exhibited greater diversity compared to those in jawed vertebrates. Activity assays indicated that Lr-E2Fs may be involved in lamprey innate immunity mediated by NF-кB. Additionally, morphological observations of embryos microinjected with Cas9/sgRNA demonstrated that E2F-deficient lamprey embryos displayed embryonic lethality, suggesting that Lr-E2Fs play a significant role in lamprey embryonic development. In summary, our research not only provides new insights into the evolution of Lr-E2Fs but also offers valuable clues regarding their functional roles.
Collapse
Affiliation(s)
- Xinyu Du
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Lin Lin
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Department of Gynaecology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116001, China
| | - Yongcheng Yu
- Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Department of Computing Science and Artificial Intelligence, Liaoning Normal University, Dalian, 116081, China
| | - Ning Yang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Si Gao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Jinyang Guo
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China
| | - Lingling Fang
- Department of Computing Science and Artificial Intelligence, Liaoning Normal University, Dalian, 116081, China
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China.
| |
Collapse
|
2
|
Bouchenafa R, Johnson de Sousa Brito FM, Piróg KA. Involvement of kinesins in skeletal dysplasia: a review. Am J Physiol Cell Physiol 2024; 327:C278-C290. [PMID: 38646780 PMCID: PMC11293425 DOI: 10.1152/ajpcell.00613.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Skeletal dysplasias are group of rare genetic diseases resulting from mutations in genes encoding structural proteins of the cartilage extracellular matrix (ECM), signaling molecules, transcription factors, epigenetic modifiers, and several intracellular proteins. Cell division, organelle maintenance, and intracellular transport are all orchestrated by the cytoskeleton-associated proteins, and intracellular processes affected through microtubule-associated movement are important for the function of skeletal cells. Among microtubule-associated motor proteins, kinesins in particular have been shown to play a key role in cell cycle dynamics, including chromosome segregation, mitotic spindle formation, and ciliogenesis, in addition to cargo trafficking, receptor recycling, and endocytosis. Recent studies highlight the fundamental role of kinesins in embryonic development and morphogenesis and have shown that mutations in kinesin genes lead to several skeletal dysplasias. However, many questions concerning the specific functions of kinesins and their adaptor molecules as well as specific molecular mechanisms in which the kinesin proteins are involved during skeletal development remain unanswered. Here we present a review of the skeletal dysplasias resulting from defects in kinesins and discuss the involvement of kinesin proteins in the molecular mechanisms that are active during skeletal development.
Collapse
Affiliation(s)
- Roufaida Bouchenafa
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Anna Piróg
- Skeletal Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Wang J, Li X, Qiang X, Yin X, Guo L. Analyzing the expression and clinical significance of CENPE in gastric cancer. BMC Med Genomics 2024; 17:119. [PMID: 38702677 PMCID: PMC11067209 DOI: 10.1186/s12920-024-01887-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a prevalent type of malignant gastrointestinal tumor. Many studies have shown that CENPE acts as an oncogene in some cancers. However, its expression level and clinical value in GC are not clear. METHODS Obtaining clinical data information on gastric adenocarcinoma from TCGA and GEO databases. The gene expression profiling interaction analysis (GEPIA) was used to evaluate the relationship between prognosis and CENPE expression in gastric cancer patients. Utilizing the UALCAN platform, the correlation between CENPE expression and clinical parameters was examined. Functions and signaling pathways of CENPE were analyzed using the Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). The association between immunological infiltrating cells and CENPE expression was examined using TIMER2.0. Validation was performed by real-time quantitative PCR (qPT-PCR) and immunohistochemical analysis. RESULTS According to the analysis of the GEPIA database, the expression of CENPE is increased in gastric cancer tissues compared to normal tissues. It was also found to have an important relationship with the prognosis of the patient (p<0.05). The prognosis was worse and overall survival was lower in individuals with increased expression of CENPE. In line with the findings of the GEPIA, real-time fluorescence quantitative PCR (qPT-PCR) confirmed that CENPE was overexpressed in gastric cancer cells. Furthermore, It was discovered that H. pylori infection status and tumor grade were related to CENPE expression. Enrichment analysis revealed that CENPE expression was linked to multiple biological functions and tumor-associated pathways. CENPE expression also correlated with immune-infiltrating cells in the gastric cancer microenvironment and was positively connected to NK cells and mast cells. According to immunohistochemical examination, paracancerous tissues had minimal expression of CENPE, but gastric cancer showed significant expression of the protein. CONCLUSIONS According to our findings, CENPE is substantially expressed in GC and may perhaps contribute to its growth. CENPE might be a target for gastric cancer therapy and a predictor of a bad prognosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xiaofei Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xihui Qiang
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Xueqing Yin
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Lianyi Guo
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China.
| |
Collapse
|
4
|
Fang H, Zhang Y, Lin C, Sun Z, Wen W, Sheng H, Lin J. Primary microcephaly gene CENPE is a novel biomarker and potential therapeutic target for non-WNT/non-SHH medulloblastoma. Front Immunol 2023; 14:1227143. [PMID: 37593739 PMCID: PMC10427915 DOI: 10.3389/fimmu.2023.1227143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Background Non-WNT/non-SHH medulloblastoma (MB) is one of the subtypes with the highest genetic heterogeneity in MB, and its current treatment strategies have unsatisfactory results and significant side effects. As a member of the centromere protein (CENP) family, centromeric protein E (CENPE) is a microtubule plus-end-directed kinetochore protein. Heterozygous mutations in CENPE can leads to primary microcephaly syndrome. It has been reported that CENPE is upregulated in MB, but its role in MB development is still unknown. Methods We downloaded the relevant RNA seq data and matched clinical information from the GEO database. Bioinformatics analysis includes differential gene expression analysis, Kaplan-Meier survival analysis, nomogram analysis, ROC curve analysis, immune cell infiltration analysis, and gene function enrichment analysis. Moreover, the effects of CENPE expression on cell proliferation, cell cycle, and p53 signaling pathway of non-WNT/non-SHH MB were validated using CENPE specific siRNA in vitro experiments. Results Compared with normal tissues, CENPE was highly expressed in MB tissues and served as an independent prognostic factor for survival in non-WNT/non-SHH MB patients. The nomogram analysis and ROC curve further confirmed these findings. At the same time, immune cell infiltration analysis showed that CENPE may participate in the immune response and tumor microenvironment (TME) of non-WNT/non-SHH MB. In addition, gene enrichment analysis showed that CENPE was closely related to the cell cycle and p53 pathway in non-WNT/non-SHH MB. In vitro experimental validation showed that knockdown of CENPE inhibited cell proliferation by activating the p53 signaling pathway and blocking the cell cycle. Conclusion The expression of CENPE in non-WNT/non-SHH MB was positively correlated with poor prognosis. CENPE may affect tumor progression by regulating cell cycle, p53 pathway, and immune infiltration. Hence, CENPE is highly likely a novel biomarker and potential therapeutic target for non-WNT/non-SHH MB.
Collapse
Affiliation(s)
- Huangyi Fang
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yusong Zhang
- Wenzhou Medical University, Wenzhou, China
- Department of Surgery, The First People’s Hospital of Jiashan, Jiaxing, China
| | | | - Zhenkai Sun
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Wen
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hansong Sheng
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Lin
- Wenzhou Medical University, Wenzhou, China
- Department of Neurosurgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- The Key Laboratory of Pediatric Hematology and Oncology Diseases of Wenzhou, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Wei YL, Fan XJ, Diao YY, She ZY, Wang XR. Kinesin-14 KIFC1 modulates spindle assembly and chromosome segregation in mouse spermatocytes. Exp Cell Res 2022; 414:113095. [DOI: 10.1016/j.yexcr.2022.113095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
6
|
Iegiani G, Di Cunto F, Pallavicini G. Inhibiting microcephaly genes as alternative to microtubule targeting agents to treat brain tumors. Cell Death Dis 2021; 12:956. [PMID: 34663805 PMCID: PMC8523548 DOI: 10.1038/s41419-021-04259-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
Medulloblastoma (MB) and gliomas are the most frequent high-grade brain tumors (HGBT) in children and adulthood, respectively. The general treatment for these tumors consists in surgery, followed by radiotherapy and chemotherapy. Despite the improvement in patient survival, these therapies are only partially effective, and many patients still die. In the last decades, microtubules have emerged as interesting molecular targets for HGBT, as various microtubule targeting agents (MTAs) have been developed and tested pre-clinically and clinically with encouraging results. Nevertheless, these treatments produce relevant side effects since they target microtubules in normal as well as in cancerous cells. A possible strategy to overcome this toxicity could be to target proteins that control microtubule dynamics but are required by HGBT cells much more than in normal cell types. The genes mutated in primary hereditary microcephaly (MCPH) are ubiquitously expressed in proliferating cells, but under normal conditions are selectively required during brain development, in neural progenitors. There is evidence that MB and glioma cells share molecular profiles with progenitors of cerebellar granules and of cortical radial glia cells, in which MCPH gene functions are fundamental. Moreover, several studies indicate that MCPH genes are required for HGBT expansion. Among the 25 known MCPH genes, we focus this review on KNL1, ASPM, CENPE, CITK and KIF14, which have been found to control microtubule stability during cell division. We summarize the current knowledge about the molecular basis of their interaction with microtubules. Moreover, we will discuss data that suggest these genes are promising candidates as HGBT-specific targets.
Collapse
Affiliation(s)
- Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy
| | - Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, 10043, Orbassano, Italy.
- Department of Neuroscience 'Rita Levi Montalcini', University of Turin, 10126, Turin, Italy.
| |
Collapse
|