1
|
Fu L, Zou Y, Yu B, Hong D, Guan T, Hu J, Xu Y, Wu Y, Kou J, Lv Y. Background and roles: myosin in autoimmune diseases. Front Cell Dev Biol 2023; 11:1220672. [PMID: 37691828 PMCID: PMC10484797 DOI: 10.3389/fcell.2023.1220672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
The myosin superfamily is a group of molecular motors. Autoimmune diseases are characterized by dysregulation or deficiency of the immune tolerance mechanism, resulting in an immune response to the human body itself. The link between myosin and autoimmune diseases is much more complex than scientists had hoped. Myosin itself immunization can induce experimental autoimmune diseases of animals, and myosins were abnormally expressed in a number of autoimmune diseases. Additionally, myosin takes part in the pathological process of multiple sclerosis, Alzheimer's disease, Parkinson's disease, autoimmune myocarditis, myositis, hemopathy, inclusion body diseases, etc. However, research on myosin and its involvement in the occurrence and development of diseases is still in its infancy, and the underlying pathological mechanisms are not well understood. We can reasonably predict that myosin might play a role in new treatments of autoimmune diseases.
Collapse
Affiliation(s)
- Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yonghui Zou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangxi, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Teng Guan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yi Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yaoqi Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangxi, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Invertebrate Models Untangle the Mechanism of Neurodegeneration in Parkinson's Disease. Cells 2021; 10:cells10020407. [PMID: 33669308 PMCID: PMC7920059 DOI: 10.3390/cells10020407] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, afflicting ~10 million people worldwide. Although several genes linked to PD are currently identified, PD remains primarily an idiopathic disorder. Neuronal protein α-synuclein is a major player in disease progression of both genetic and idiopathic forms of PD. However, it cannot alone explain underlying pathological processes. Recent studies demonstrate that many other risk factors can accelerate or further worsen brain dysfunction in PD patients. Several PD models, including non-mammalian eukaryotic organisms, have been developed to identify and characterize these factors. This review discusses recent findings in three PD model organisms, i.e., yeast, Drosophila, and Caenorhabditis elegans, that opened new mechanisms and identified novel contributors to this disorder. These non-mammalian models share many conserved molecular pathways and cellular processes with humans. New players affecting PD pathogenesis include previously unknown genes/proteins, novel signaling pathways, and low molecular weight substances. These findings might respond to the urgent need to discover novel drug targets for PD treatment and new biomarkers for early diagnostics of this disease. Since the study of neurodegeneration using simple eukaryotic organisms brought a huge amount of information, we include only the most recent or the most important relevant data.
Collapse
|