1
|
Wen Y, Ma L, Liu Y, Xiong H, Shi D. Decoding the enigmatic role of T-cadherin in tumor angiogenesis. Front Immunol 2025; 16:1564130. [PMID: 40230838 PMCID: PMC11994602 DOI: 10.3389/fimmu.2025.1564130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
The cadherin family, which includes T-cadherin, plays a significant role in angiogenesis, a critical process involved in tumor growth, metastasis, and recurrence. T-cadherin is extensively expressed in both normal and tumor vascular tissues and has been shown to facilitate the proliferation and migration of vascular cells in some studies. However, T-cadherin also exerts inhibitory effects on angiogenesis in various tumor tissues. The functional role of T-cadherin may vary depending on the tumor type and the interaction between tumor cells and vascular cells, suggesting that it acts as a modulator rather than a primary driver of angiogenesis. Additionally, T-cadherin exhibits distinct characteristics depending on the tumor microenvironment. This review provides an overview of recent research on the role of T-cadherin in tumor angiogenesis and discusses its potential as a diagnostic or therapeutic marker in the field of tumor biology.
Collapse
Affiliation(s)
- Yiyang Wen
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, China
- Department of Pathology, Jining No.1 People’s Hospital, Jining, Shandong, China
| | - Li Ma
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, China
| | - Yuanyuan Liu
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
| | - Dongmei Shi
- Department of Pathology, Jining No.1 People’s Hospital, Jining, Shandong, China
- Department of Dermatology, Jining No.1 People’s Hospital, Jining, Shandong, China
| |
Collapse
|
2
|
Semina E, Popov V, Khabibullin N, Klimovich P, Sysoeva V, Kurilina E, Tsokolaeva Z, Tkachuk V, Rubina K. New evidence for T-cadherin in COVID-19 pathogenesis, endothelial dysfunction, and lung fibrosis. Front Cell Dev Biol 2025; 13:1476329. [PMID: 40109358 PMCID: PMC11920143 DOI: 10.3389/fcell.2025.1476329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/04/2025] [Indexed: 03/22/2025] Open
Abstract
The COVID-19 pandemic had an unprecedented impact on all aspects of human activity worldwide, frequently resulting in post-acute sequelae and affecting multiple organ systems. The underlying mechanisms driving both acute and post-acute manifestations of COVID-19 are still poorly understood, warranting further investigation for new targets. The study represents the first attempt to explore the role of T-cadherin in COVID-19 pathogenesis as well as its implications in pulmonary fibrosis and endothelial dysfunction. First, we revealed a significant decrease in T-cadherin expression in post-mortem lung samples from COVID-19 patients. This downregulated T-cadherin expression correlated with the elevated levels of VE-cadherin and reduced levels of β-catenin, suggesting a disruption in endothelial cell-cell contact integrity and function. Second, the reciprocal relation of T-cadherin and VE-cadherin expression was further confirmed using cultured human endothelial Ea.hy926 cells. T-cadherin overexpression caused a decrease in VE-cadherin mRNA expression in cultured endothelial cells providing additional evidence in favor of their interplay. Third, employing Cdh13 -/- mice, we unveiled the protective role of T-cadherin deficiency against bleomycin-induced lung fibrosis. Fourth, we demonstrated the mice lacking T-cadherin to have downregulated reactive oxygen species production and Nox2 mRNA expression in an angiotensin II-mediated endothelial dysfunction model. Our findings provide rationale for further studies into T-cadherin-mediated mechanisms in these processes.
Collapse
Affiliation(s)
- Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ella Kurilina
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Zoya Tsokolaeva
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Experimental Cardiology, National Cardiology Research Center of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
3
|
Gianopoulos I, Mantzoros CS, Daskalopoulou SS. Adiponectin and Adiponectin Receptors in Atherosclerosis. Endocr Rev 2025; 46:1-25. [PMID: 39106421 PMCID: PMC11720176 DOI: 10.1210/endrev/bnae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Adiponectin is an abundantly secreted hormone that communicates information between the adipose tissue, and the immune and cardiovascular systems. In metabolically healthy individuals, adiponectin is usually found at high levels and helps improve insulin responsiveness of peripheral tissues, glucose tolerance, and fatty acid oxidation. Beyond its metabolic functions in insulin-sensitive tissues, adiponectin plays a prominent role in attenuating the development of atherosclerotic plaques, partially through regulating macrophage-mediated responses. In this context, adiponectin binds to its receptors, adiponectin receptor 1 (AdipoR1) and AdipoR2 on the cell surface of macrophages to activate a downstream signaling cascade and induce specific atheroprotective functions. Notably, macrophages modulate the stability of the plaque through their ability to switch between proinflammatory responders, and anti-inflammatory proresolving mediators. Traditionally, the extremes of the macrophage polarization spectrum span from M1 proinflammatory and M2 anti-inflammatory phenotypes. Previous evidence has demonstrated that the adiponectin-AdipoR pathway influences M1-M2 macrophage polarization; adiponectin promotes a shift toward an M2-like state, whereas AdipoR1- and AdipoR2-specific contributions are more nuanced. To explore these concepts in depth, we discuss in this review the effect of adiponectin and AdipoR1/R2 on 1) metabolic and immune responses, and 2) M1-M2 macrophage polarization, including their ability to attenuate atherosclerotic plaque inflammation, and their potential as therapeutic targets for clinical applications.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Section of Endocrinology, Diabetes and Metabolism, Boston VA Healthcare System, Boston, MA 02130, USA
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
4
|
Fornari Laurindo L, Minniti G, Rodrigues VD, Fornari Laurindo L, Strozze Catharin VMC, Baisi Chagas EF, Dos Anjos VD, de Castro MVM, Baldi Júnior E, Ferraroni Sanches RC, Mendez-Sanchez N, Maria Barbalho S. Exploring the Logic and Conducting a Comprehensive Evaluation of the Adiponectin Receptor Agonists AdipoRon and AdipoAI's Impacts on Bone Metabolism and Repair-A Systematic Review. Curr Med Chem 2025; 32:1168-1194. [PMID: 39206478 DOI: 10.2174/0109298673308301240821052742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Adiponectin replacement therapy shows promising outcomes in various diseases, especially for bone-related disorders. Challenges in using the complete protein have led to alternative approaches, with AdipoRon and AdipoAI emerging as extensively researched drug candidates. Their influence on models of bone-related disorders has progressed considerably but there has been no review of their effectiveness in modulating bone metabolism and repair. METHODS This systematic review seeks to address this knowledge gap. Based on preclinical evidence from PubMed, EMBASE, and COCHRANE, ten studies were included following PRISMA guidelines. The JBI Checklist Critical Appraisal Tool assessed the quality of this systematic review. The studies encompassed various animal models, addressing bone defects, osseointegration, diabetes-associated periodontitis, fracture repair, growth retardation, and diabetes-associated peri-implantitis. RESULTS AdipoRon and AdipoAI demonstrated effectiveness in modulating bone metabolism and repair through diverse pathways, including the activation of AdipoR1/APPL1, inhibition of F-actin ring formation, suppression of IκB-α phosphorylation, p65 nuclear translocation and Wnt5a-Ror2 signaling pathway, reduction of CCL2 secretion and expression, regulation of autophagy via LC3A/B expression, modulation of SDF-1 production, activation of the ERK1/2 signaling pathway, modulation of bone integration-related markers and osteokines such as RANKL, BMP-2, OPG, OPN, and Runx2, inhibition of RANKL in osteoblasts, and inhibition of podosome formation via the activation of AMPK. CONCLUSION While preclinical studies show promise, human trials are crucial to confirm the clinical safety and effectiveness of AdipoRon and AdipoAI. Caution is necessary due to potential off-target effects, especially in bone therapy with multi-target approaches. Structural biology and computational methods can help predict and understand these effects.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Victoria Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Medical Department, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, São Paulo, Brazil
| | - Virginia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Vinicius Dias Dos Anjos
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Edgar Baldi Júnior
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Raquel Cristina Ferraroni Sanches
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Nahum Mendez-Sanchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| |
Collapse
|
5
|
Sysoeva V, Semina E, Klimovich P, Kulebyakin K, Dzreyan V, Sotskaya E, Shchipova A, Popov V, Shilova A, Brodsky I, Khabibullin N, Voloshin N, Tkachuk V, Rubina K. T-cadherin modulates adipogenic differentiation in mesenchymal stem cells: insights into ligand interactions. Front Cell Dev Biol 2024; 12:1446363. [PMID: 39717846 PMCID: PMC11663858 DOI: 10.3389/fcell.2024.1446363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/16/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction T-cadherin, a non-canonical member of the cadherin superfamily, was initially identified for its involvement in homophilic recognition within the nervous and vascular systems. Apart from its adhesive function, T-cadherin acts as a receptor for two ligands: LDL, contributing to atherogenic processes, and HMW adiponectin, a hormone with well-known cardiovascular protective properties. However, the precise role of T-cadherin in adipose tissue remains elusive. Previously, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene, which encodes the T-cadherin protein, and characterized their phenotype. Methods Using wild-type (WT) and T-cadherin-deficient mice (Cdh13ΔExon3), we isolated and cultured mesenchymal stem cells to explore the role of T-cadherin in adipogenic differentiation. The experimental approaches employed include culturing cells under standard or adipogenic conditions, performing Oil Red O and Nile Red staining followed by quantitative analysis, conducting rescue experiments to reintroduce T-cadherin using lentiviral constructs in T-cadherin-deficient cells combined with automated adipocyte differentiation quantification via a neural network. Additionally, Western blotting, ELISA assays, and statistical analysis were utilized to verify the results. Results In this study, we demonstrate for the first time that T-cadherin influences the adipogenic differentiation of MSCs. The presence of T-cadherin dictates distinct morphological characteristics in MSCs. Lack of T-cadherin leads to spontaneous differentiation into adipocytes with the formation of large lipid droplets. T-cadherin-deficient cells (T-/- MSCs) exhibit an enhanced adipogenic potential upon induction with differentiating factors. Western Blot, ELISA assays, and rescue experiments collectively corroborate the conclusion that T-/- MSCs are predisposed toward adipogenic differentiation. We carried out an original comparative analysis to explore the effects of T-cadherin ligands on lipid droplet accumulation. LDL stimulate adipogenic differentiation, while T-cadherin expression mitigates the impact of LDL on lipid droplet accumulation. We also examined the effects of both low molecular weight (LMW) and high molecular weight (HMW) adiponectin on lipid droplet accumulation relative to T-cadherin. LMW adiponectin suppressed lipid droplet accumulation independently of T-cadherin, while the absence of T-cadherin enhanced susceptibility to the suppressive effects of HMW adiponectin on adipogenesis. Discussion These findings shed light on the role of T-cadherin in adipogenic differentiation and suggest an interplay with other receptors, such as LDLR and AdipoRs, wherein downstream signaling may be modulated through lateral interactions with T-cadherin.
Collapse
Affiliation(s)
- Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Semina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- Institute of Medicine and Life Science, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Polina Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Valentina Dzreyan
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | | | - Anna Shchipova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir Popov
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Alena Shilova
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya Brodsky
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Nikita Khabibullin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Kseniya Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Su R, Wen Z, Zhan X, Long Y, Wang X, Li C, Su Y, Fei J. Small RNA activation of CDH13 expression overcome BCR-ABL1-independent imatinib-resistance and their signaling pathway studies in chronic myeloid leukemia. Cell Death Dis 2024; 15:615. [PMID: 39179585 PMCID: PMC11343752 DOI: 10.1038/s41419-024-07006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
BCR-ABL1-independent resistance to imatinib has no effective treatment due to its complexity and diversity. We previously reported that the CDH13 oncogene was expressed at low levels in BCR-ABL1-independent resistant CML cell lines. However, its effects on CML resistant cells and mechanisms remain unknown. This study investigated the effects of saRNA-based CDH13 activation on BCR-ABL1-independent imatinib resistance in CML and its underlying mechanism, and proposes a unique treatment method to overcome imatinib resistance. Specifically, this study demonstrated that using the DSIR (Designer of Small Interfering RNA) website tool, saRNAs targeting the CDH13 promoter region were generated and validated using qPCR and western blotting. Among the predicted sequences, C2 and C3 efficiently elevated CDH13 mRNA and protein expression, as well as inhibited the relative vitality of cells and the ability to form clones. After promoting CDH13 expression in K562-IMR cells, it inhabited the NF-κB signaling pathway and induced apoptosis in imatinib-resistant CML cells. LNP-saRNA (C3) was also observed to limit the growth of K562-IMR cells in vivo. From the above, the activation of CDH13 expression by saRNA promotes cell apoptosis by inhibiting the NF-κB signaling pathway to overcome to BCR-ABL1-independent resistance to imatinib in patients with CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Cadherins/metabolism
- Cadherins/genetics
- Signal Transduction/drug effects
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/genetics
- K562 Cells
- RNA, Small Interfering/metabolism
- Animals
- Apoptosis/drug effects
- Mice
- NF-kappa B/metabolism
- Mice, Nude
- Cell Line, Tumor
Collapse
Affiliation(s)
- Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Ziqi Wen
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xingri Zhan
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yiling Long
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiuyuan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| |
Collapse
|
7
|
Rosario-Rodríguez LJ, Cantres-Rosario YM, Carrasquillo-Carrión K, Rosa-Díaz A, Rodríguez-De Jesús AE, Rivera-Nieves V, Tosado-Rodríguez EL, Méndez LB, Roche-Lima A, Bertrán J, Meléndez LM. Plasma Proteins Associated with COVID-19 Severity in Puerto Rico. Int J Mol Sci 2024; 25:5426. [PMID: 38791465 PMCID: PMC11121485 DOI: 10.3390/ijms25105426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Viral strains, age, and host factors are associated with variable immune responses against SARS-CoV-2 and disease severity. Puerto Ricans have a genetic mixture of races: European, African, and Native American. We hypothesized that unique host proteins/pathways are associated with COVID-19 disease severity in Puerto Rico. Following IRB approval, a total of 95 unvaccinated men and women aged 21-71 years old were recruited in Puerto Rico from 2020-2021. Plasma samples were collected from COVID-19-positive subjects (n = 39) and COVID-19-negative individuals (n = 56) during acute disease. COVID-19-positive individuals were stratified based on symptomatology as follows: mild (n = 18), moderate (n = 13), and severe (n = 8). Quantitative proteomics was performed in plasma samples using tandem mass tag (TMT) labeling. Labeled peptides were subjected to LC/MS/MS and analyzed by Proteome Discoverer (version 2.5), Limma software (version 3.41.15), and Ingenuity Pathways Analysis (IPA, version 22.0.2). Cytokines were quantified using a human cytokine array. Proteomics analyses of severely affected COVID-19-positive individuals revealed 58 differentially expressed proteins. Cadherin-13, which participates in synaptogenesis, was downregulated in severe patients and validated by ELISA. Cytokine immunoassay showed that TNF-α levels decreased with disease severity. This study uncovers potential host predictors of COVID-19 severity and new avenues for treatment in Puerto Ricans.
Collapse
Affiliation(s)
- Lester J. Rosario-Rodríguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
| | - Yadira M. Cantres-Rosario
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Kelvin Carrasquillo-Carrión
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Alexandra Rosa-Díaz
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Ana E. Rodríguez-De Jesús
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| | - Verónica Rivera-Nieves
- Interdisciplinary Studies, Natural Sciences, University of Puerto Rico, Río Piedras Campus, San Juan 00925, Puerto Rico; (A.R.-D.); (V.R.-N.)
| | - Eduardo L. Tosado-Rodríguez
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Loyda B. Méndez
- Department of Science & Technology, Ana G. Mendez University, Carolina 00928, Puerto Rico;
| | - Abiel Roche-Lima
- Integrated Informatics, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (K.C.-C.); (E.L.T.-R.); (A.R.-L.)
| | - Jorge Bertrán
- Infectious Diseases, Auxilio Mutuo Hospital, San Juan 00919, Puerto Rico;
| | - Loyda M. Meléndez
- Department of Microbiology and Medical Zoology, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico;
- Translational Proteomics Center, Research Capacity Core, Center for Collaborative Research in Health Disparities, University of Puerto Rico, Medical Sciences Campus, San Juan 00935, Puerto Rico; (Y.M.C.-R.); (A.E.R.-D.J.)
| |
Collapse
|
8
|
Hyun Boo K, Woo Kim J, Song M. Isolation and purification of high molecular weight adiponectin from human plasma fraction. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1238:124111. [PMID: 38603890 DOI: 10.1016/j.jchromb.2024.124111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/24/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Adiponectin, a crucial protein hormone originating from adipose tissue, regulates key metabolic processes, including lipid metabolism, mitochondrial activity, and insulin sensitivity. These pleiotropic roles of adiponectin, along with its inverse correlation with metabolic disorders such as obesity, type II diabetes, and atherosclerosis, establish this protein as a potential therapeutic target. However, due to this complexity, challenges have arisen in its production with a natural conformation in bacterial or mammalian expression systems, hindering clinical translation. Furthermore, while inducers for adiponectin secretion or chemical agonists targeting adiponectin receptors have shown promise in laboratory settings, clinical studies with these agents have not yet been conducted. This study proposes a method for isolating and purifying natural high molecular weight (HMW) adiponectin from discarded plasma fractions during the conventional pharmaceutical protein manufacturing process. The process involved Cohn-Oncley fractionation, initial chromatography using reduced cellufine formyl, and subsequent purification via DEAE Sepharose chromatography. Characterization involved gel electrophoresis and biological assays on a hepatocyte cell-line. The purification process effectively captured adiponectin from the I + III paste, demonstrating that this fraction contained a significant portion of total plasma adiponectin. The two-step chromatography led to highly purified HMW adiponectin, confirmed by native-PAGE showing a 780 kDa multimeric complex. Biological assessments demonstrated normal downstream signaling, with HMW adiponectin inducing AMPK phosphorylation. This study demonstrates the feasibility of obtaining purified HMW adiponectin by repurposing plasma fractionation processes. It offers a promising avenue for the HMW adiponectin production, tapping into HMW adiponectin's therapeutic potential against metabolic disorders while optimizing plasma resource utilization in healthcare.
Collapse
Affiliation(s)
- Kyung Hyun Boo
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; ECO lab, SK plasma, Seongnam 13494, Republic of Korea
| | - Jin Woo Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Minkyung Song
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
9
|
Kizer JR. The elusive quest for causality in adiponectin's bimodal relationship with cardiovascular disease: Mendelian randomization meets Janus. Cardiovasc Res 2024; 120:3-5. [PMID: 38170839 DOI: 10.1093/cvr/cvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Affiliation(s)
- Jorge R Kizer
- Cardiology Section, San Francisco Veterans Affairs Health Care System, 4150 Clement St., San Francisco, CA 94121, USA
- Department of Medicine, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, 550 16th St., San Francisco, CA 94158, USA
| |
Collapse
|
10
|
Minnai F, Biscarini F, Esposito M, Dragani TA, Bujanda L, Rahmouni S, Alarcón-Riquelme ME, Bernardo D, Carnero-Montoro E, Buti M, Zeberg H, Asselta R, Romero-Gómez M, Fernandez-Cadenas I, Fallerini C, Zguro K, Croci S, Baldassarri M, Bruttini M, Furini S, Renieri A, Colombo F. A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death. Sci Rep 2024; 14:3000. [PMID: 38321133 PMCID: PMC10847137 DOI: 10.1038/s41598-024-53310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways.
Collapse
Affiliation(s)
- Francesca Minnai
- Institute of Biomedical Technologies, National Research Council, Via F.lli Cervi, 93, 20054, Segrate, MI, Italy
- Department of Medical Biotechnology and Translational Medicine (BioMeTra), Università degli Studi di Milano, Milan, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council, Milan, Italy
| | - Martina Esposito
- Institute of Biomedical Technologies, National Research Council, Via F.lli Cervi, 93, 20054, Segrate, MI, Italy
| | | | - Luis Bujanda
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Biodonostia Health Research Institute, Universidad del País Vasco (UPV/EHU), San Sebastián, Spain
| | | | - Marta E Alarcón-Riquelme
- GENYO, University of Granada, Andalusian Regional Government, Granada, Spain
- Institute for Environmental Medicine, Karolinska Institute, Solna, Sweden
| | - David Bernardo
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Mucosal Immunology Lab, Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid-CSIC, Valladolid, Spain
| | - Elena Carnero-Montoro
- GENYO, University of Granada, Andalusian Regional Government, Granada, Spain
- University of Granada, Granada, Spain
| | - Maria Buti
- Vall D'Hebron Institut de Recerca, Barcelona, Spain
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
- IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
| | - Manuel Romero-Gómez
- Digestive Diseases Unit and CiberehdVirgen del Rocío University HospitalInstitute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Israel Fernandez-Cadenas
- Stroke Pharmacogenomics and Genetics Group, Sant Pau Hospital Research Institute, Barcelona, Spain
| | - Chiara Fallerini
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
| | - Kristina Zguro
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
| | - Susanna Croci
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy
| | - Simone Furini
- Dipartimento di Ingegneria dell'Energia Elettrica e dell'Informazione "Guglielmo Marconi", Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100, Siena, Italy
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100, Siena, Italy
| | - Francesca Colombo
- Institute of Biomedical Technologies, National Research Council, Via F.lli Cervi, 93, 20054, Segrate, MI, Italy.
| |
Collapse
|
11
|
AlZaim I, de Rooij LPMH, Sheikh BN, Börgeson E, Kalucka J. The evolving functions of the vasculature in regulating adipose tissue biology in health and obesity. Nat Rev Endocrinol 2023; 19:691-707. [PMID: 37749386 DOI: 10.1038/s41574-023-00893-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
Adipose tissue is an endocrine organ and a crucial regulator of energy storage and systemic metabolic homeostasis. Additionally, adipose tissue is a pivotal regulator of cardiovascular health and disease, mediated in part by the endocrine and paracrine secretion of several bioactive products, such as adipokines. Adipose vasculature has an instrumental role in the modulation of adipose tissue expansion, homeostasis and metabolism. The role of the adipose vasculature has been extensively explored in the context of obesity, which is recognized as a global health problem. Obesity-induced accumulation of fat, in combination with vascular rarefaction, promotes adipocyte dysfunction and induces oxidative stress, hypoxia and inflammation. It is now recognized that obesity-associated endothelial dysfunction often precedes the development of cardiovascular diseases. Investigations have revealed heterogeneity within the vascular niche and dynamic reciprocity between vascular and adipose cells, which can become dysregulated in obesity. Here we provide a comprehensive overview of the evolving functions of the vasculature in regulating adipose tissue biology in health and obesity.
Collapse
Affiliation(s)
- Ibrahim AlZaim
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Laura P M H de Rooij
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Bilal N Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Emma Börgeson
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
12
|
Fagian Pansani V, Dolfini Celim LB, Amorim Oliveira G, Rosa Degasperi G. Adiponectin: A "Friendly adipokine" in Diabetic Retinopathy? Semin Ophthalmol 2023; 38:602-609. [PMID: 37157861 DOI: 10.1080/08820538.2023.2205929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE Adiponectin has also been associated with diabetic retinopathy, a diabetic microvascular complication. However, the mechanism of action of adiponectin in retinopathy is still under investigation. This review summarizes emerging evidence on the association with diabetic retinopathy in type 2 diabetes. METHODS We reviwed papers from 2004 to 2022 and included studies related to retinopathy and its association with blood and intraocular adiponectin in type 2 diabetes. RESULTS Most of the studies analyzed in this review suggested an association between the diabetic retinopathy progression and intraocular, serum, or plasma adiponectin levels. Increased levels of adiponectin contributed to the development of the disease in diabetic patients. In a minority of studies, it was indicated an inversely proportional relationship between adiponectin concentration and diabetic retinopathy severity. CONCLUSION The high levels of adiponectin in diabetic patients may be related to the decrease in renal clearance. Under this situation, if the predominant isoform is globular adiponectin, this may explain the retinopathy progression, considering a pro-inflammatory response induced by this isoform. However, the actions of adiponectin in diabetic retinopathy pathophysiology are still controversial.
Collapse
Affiliation(s)
- Victor Fagian Pansani
- Centro de Ciências da Saúde, Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, SP, Brazil
| | | | | | | |
Collapse
|
13
|
Popov VS, Brodsky IB, Balatskaya MN, Balatskiy AV, Ozhimalov ID, Kulebyakina MA, Semina EV, Arbatskiy MS, Isakova VS, Klimovich PS, Sysoeva VY, Kalinina NI, Tkachuk VA, Rubina KA. T-Cadherin Deficiency Is Associated with Increased Blood Pressure after Physical Activity. Int J Mol Sci 2023; 24:14204. [PMID: 37762507 PMCID: PMC10531645 DOI: 10.3390/ijms241814204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
T-cadherin is a regulator of blood vessel remodeling and angiogenesis, involved in adiponectin-mediated protective effects in the cardiovascular system and in skeletal muscles. GWAS study has previously demonstrated a SNP in the Cdh13 gene to be associated with hypertension. However, the role of T-cadherin in regulating blood pressure has not been experimentally elucidated. Herein, we generated Cdh13∆Exon3 mice lacking exon 3 in the Cdh13 gene and described their phenotype. Cdh13∆Exon3 mice exhibited normal gross morphology, life expectancy, and breeding capacity. Meanwhile, their body weight was considerably lower than of WT mice. When running on a treadmill, the time spent running and the distance covered by Cdh13∆Exon3 mice was similar to that of WT. The resting blood pressure in Cdh13∆Exon3 mice was slightly higher than in WT, however, upon intensive physical training their systolic blood pressure was significantly elevated. While adiponectin content in the myocardium of Cdh13∆Exon3 and WT mice was within the same range, adiponectin plasma level was 4.37-fold higher in Cdh13∆Exon3 mice. Moreover, intensive physical training augmented the AMPK phosphorylation in the skeletal muscles and myocardium of Cdh13∆Exon3 mice as compared to WT. Our data highlight a critically important role of T-cadherin in regulation of blood pressure and stamina in mice, and may shed light on the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Vladimir S. Popov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ilya B. Brodsky
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Maria N. Balatskaya
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Alexander V. Balatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ilia D. Ozhimalov
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Maria A. Kulebyakina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Ekaterina V. Semina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Mikhail S. Arbatskiy
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Viktoria S. Isakova
- V.I. Kulakov National Medical Center of Obstetrics Gynecology and Perinatology, Akademika Oparina Street, 4, 117198 Moscow, Russia
| | - Polina S. Klimovich
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Veronika Y. Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Natalia I. Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Vsevolod A. Tkachuk
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| | - Kseniya A. Rubina
- Faculty of Medicine, Lomonosov Moscow State University, Lomonosovsky Ave., 27/1, 119991 Moscow, Russia (I.B.B.); (M.N.B.)
| |
Collapse
|
14
|
Pei X, Li H, Yu H, Wang W, Mao D. APN Expression in Serum and Corpus Luteum: Regulation of Luteal Steroidogenesis Is Possibly Dependent on the AdipoR2/AMPK Pathway in Goats. Cells 2023; 12:1393. [PMID: 37408227 DOI: 10.3390/cells12101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/23/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Adiponectin (APN) is an essential adipokine for a variety of reproductive processes. To investigate the role of APN in goat corpora lutea (CLs), CLs and sera from different luteal phases were collected for analysis. The results showed that the APN structure and content had no significant divergence in different luteal phases both in CLs and sera; however, high molecular weight APN was dominant in serum, while low molecular weight APN was more present in CLs. The luteal expression of both AdipoR1/2 and T-cadherin (T-Ca) increased on D11 and 17. APN and its receptors (AdipoR1/2 and T-Ca) were mainly expressed in goat luteal steroidogenic cells. The steroidogenesis and APN structure in pregnant CLs had a similar model as in the mid-cycle CLs. To further explore the effects and mechanisms of APN in CLs, steroidogenic cells from pregnant CLs were isolated to detect the AMPK-mediated pathway by the activation of APN (AdipoRon) and knockdown of APN receptors. The results revealed that P-AMPK in goat luteal cells increased after incubation with APN (1 μg/mL) or AdipoRon (25 μM) for 1 h, and progesterone (P4) and steroidogenic proteins levels (STAR/CYP11A1/HSD3B) decreased after 24 h. APN did not affect the steroidogenic protein expression when cells were pretreated with Compound C or SiAMPK. APN increased P-AMPK and reduced the CYP11A1 expression and P4 levels when cells were pretreated with SiAdipoR1 or SiT-Ca, while APN failed to affect P-AMPK, the CYP11A1 expression or the P4 levels when pretreated with SiAdipoR2. Therefore, the different structural forms of APN in CLs and sera may possess distinct functions; APN might regulate luteal steroidogenesis through AdipoR2 which is most likely dependent on AMPK.
Collapse
Affiliation(s)
- Xiaomeng Pei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Haolin Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Peng J, Chen Q, Wu C. The role of adiponectin in cardiovascular disease. Cardiovasc Pathol 2023; 64:107514. [PMID: 36634790 DOI: 10.1016/j.carpath.2022.107514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease (CVD) is a common disease that seriously threatens the health of human beings, especially middle-aged and elderly people over 50 years old. It has the characteristics of high prevalence, high disability rate and high mortality rate. Previous studies have shown that adiponectin has therapeutic effects on a variety of CVDs. As a key adipokine, adiponectin, is an abundant peptide-regulated hormone that is mainly released by adipocytes and cardiomyocytes, as well as endothelial and skeletal cells. Adiponectin can protect against CVD by improving lipid metabolism, protecting vascular endothelial cells and inhibiting foam cell formation and vascular smooth muscle cell proliferation. Further investigation of the molecular and cellular mechanisms underlying the adiponectin system may provide new ideas for the treatment of CVD. Herein, this review aims to describe the structure and function of adiponectin and adiponectin receptors, introduce the function of adiponectin in the protection of cardiovascular disease and analyze the potential use and clinical significance of this hormone in the protection and treatment of cardiovascular disease, which shows that adiponectin can be expected to become a new therapeutic target and biomarker for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
- Jin Peng
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qian Chen
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chuncao Wu
- Insititution of Chinese Materia Medica Preparation, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
16
|
Shmakova AA, Semina EV, Neyfeld EA, Tsygankov BD, Karagyaur MN. [An analysis of the relationship between genetic factors and the risk of schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:26-36. [PMID: 36843456 DOI: 10.17116/jnevro202312302126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
The etiology and pathogenesis of schizophrenia remain poorly understood, but it has been established that the contribution of heredity to the development of the disease is about 80-85%. Over the past decade, significant progress has been made in the search for specific genetic variants associated with the development of schizophrenia. The review discusses the results of modern large-scale studies aimed at searching for genetic associations with schizophrenia: genome-wide association studies (GWAS) and the search for rare variants (mutations or copy number variations, CNV), including the use of whole exome sequencing. We synthesize data on currently known genes that are significantly associated with schizophrenia and discuss their biological functions in order to identify the main molecular pathways involved in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- A A Shmakova
- Koltzov Institute of Developmental Biology, Moscow, Russia
| | - E V Semina
- Lomonosov Moscow State University, Moscow, Russia.,Institute for Regenerative Medicine - Lomonosov Moscow State University, Moscow, Russia
| | - E A Neyfeld
- Lomonosov Moscow State University, Moscow, Russia
| | | | - M N Karagyaur
- Lomonosov Moscow State University, Moscow, Russia.,Institute for Regenerative Medicine - Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Haage A, Dhasarathy A. Working a second job: Cell adhesion proteins that moonlight in the nucleus. Front Cell Dev Biol 2023; 11:1163553. [PMID: 37169022 PMCID: PMC10164977 DOI: 10.3389/fcell.2023.1163553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Cells are adept at sensing changes in their environment, transmitting signals internally to coordinate responses to external stimuli, and thereby influencing adaptive changes in cell states and behavior. Often, this response involves modulation of gene expression in the nucleus, which is seen largely as a physically separated process from the rest of the cell. Mechanosensing, whereby a cell senses physical stimuli, and integrates and converts these inputs into downstream responses including signaling cascades and gene regulatory changes, involves the participation of several macromolecular structures. Of note, the extracellular matrix (ECM) and its constituent macromolecules comprise an essential part of the cellular microenvironment, allowing cells to interact with each other, and providing both structural and biochemical stimuli sensed by adhesion transmembrane receptors. This highway of information between the ECM, cell adhesion proteins, and the cytoskeleton regulates cellular behavior, the disruption of which results in disease. Emerging evidence suggests a more direct role for some of these adhesion proteins in chromatin structure and gene regulation, RNA maturation and other non-canonical functions. While many of these discoveries were previously limited to observations of cytoplasmic-nuclear transport, recent advances in microscopy, and biochemical, proteomic and genomic technologies have begun to significantly enhance our understanding of the impact of nuclear localization of these proteins. This review will briefly cover known cell adhesion proteins that migrate to the nucleus, and their downstream functions. We will outline recent advances in this very exciting yet still emerging field, with impact ranging from basic biology to disease states like cancer.
Collapse
Affiliation(s)
- Amanda Haage
- *Correspondence: Amanda Haage, ; Archana Dhasarathy,
| | | |
Collapse
|
18
|
Sapio L, Ragone A, Spina A, Salzillo A, Naviglio S. AdipoRon and Pancreatic Ductal Adenocarcinoma: a future perspective in overcoming chemotherapy-induced resistance? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:625-636. [PMID: 36176754 PMCID: PMC9511794 DOI: 10.20517/cdr.2022.34] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
The latest scientific knowledge has provided additional insights accountable for the worst prognosis for pancreatic ductal adenocarcinoma (PDAC). Among the causative factors, the aptitude to develop resistance towards approved medications denotes the master key for understanding the lack of improvement in PDAC survival over the years. Even though several compounds have achieved encouraging results at preclinical stage, no new adjuvant agents have reached the bedside of PDAC patients lately. The adiponectin receptor agonist AdipoRon is emerging as a promising anticancer drug in different cancer models, particularly in PDAC. Building on the existing findings, we recently reinforced its candidacy in PDAC cells, proposing AdipoRon either as a suitable partner in gemcitabine-based treatment or as an effective drug in resistant cells. Crossing the current state-of-the-art, herein we provide a critical perspective on AdipoRon to figure out whether this receptor agonist can potentially be considered a future therapeutic choice in overcoming chemotherapy-induced resistance, expressly in PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| |
Collapse
|