1
|
Shariati K, Bedar M, Huang KX, Moghadam S, Mirzaie S, LaGuardia JS, Chen W, Kang Y, Ren X, Lee JC. Biomaterial Cues for Regulation of Osteoclast Differentiation and Function in Bone Regeneration. ADVANCED THERAPEUTICS 2025; 8:2400296. [PMID: 39867107 PMCID: PMC11756815 DOI: 10.1002/adtp.202400296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Indexed: 01/28/2025]
Abstract
Tissue regeneration involves dynamic dialogue between and among different cells and their surrounding matrices. Bone regeneration is specifically governed by reciprocity between osteoblasts and osteoclasts within the bone microenvironment. Osteoclast-directed resorption and osteoblast-directed formation of bone are essential to bone remodeling, and the crosstalk between these cells is vital to curating a sequence of events that culminate in the creation of bone tissue. Among bone biomaterial strategies, many have investigated the use of different material cues to direct the development and activity of osteoblasts. However, less attention has been given to exploring features that similarly target osteoclast formation and activity, with even fewer strategies demonstrating or integrating biomaterial-directed modulation of osteoblast-osteoclast coupling. This review aims to describe various biomaterial cues demonstrated to influence osteoclastogenesis and osteoclast function, emphasizing those that enhance a material construct's ability to achieve bone healing and regeneration. Additionally discussed are approaches that influence the communication between osteoclasts and osteoblasts, particularly in a manner that takes advantage of their coupling. Deepening our understanding of how biomaterial cues may dictate osteoclast differentiation, function, and influence on the microenvironment may enable the realization of bone-replacement interventions with enhanced integrative and regenerative capacities.
Collapse
Affiliation(s)
- Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Sarah Mirzaie
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Narasimhan S, Al Kawas S, Shetty SR, Al-Daghestani HS, Samsudin R. Impact of hypoxia on alveolar bone dynamics and remodeling. Heliyon 2024; 10:e40868. [PMID: 39717576 PMCID: PMC11664270 DOI: 10.1016/j.heliyon.2024.e40868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Oxygen is a fundamental requirement for cellular metabolism. Hypoxia is a state of oxygen deprivation of the tissues. Cells develop numerous adaptive mechanisms to survive hypoxic insult. Alveolar bone is a unique structure that encases and protects the tooth. Literature reports that hypoxia, in all forms, impacts alveolar bone health. The hypoxia-inducible pathway appears to play a key role in mediating changes in alveolar bone metabolism. Embryonic hypoxia plays a vital role in craniofacial skeletal development. Further, hypoxia has been anticipated in the repair of extraction sockets. Alveolar bone cells respond distinctly to hypoxic conditions with both beneficial and detrimental effects. Studies have demonstrated enhanced alveolar bone resorption upon hypoxic stimuli. However, hypoxia has also been shown to have potential therapeutic effects on alveolar bone by triggering an angiogenic response. Additionally, the type, duration, and mode of hypoxia are critical in triggering varied responses in alveolar bone metabolism. The main objective of this review is to recapitulate the effects of different types of hypoxia on the tooth supporting apparatus and to analyze some of the presumptive mechanisms underlying hypoxia-induced changes in alveolar bone remodeling.
Collapse
Affiliation(s)
- Sangeetha Narasimhan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Shishir Ram Shetty
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Hiba Saad Al-Daghestani
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Rani Samsudin
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Tan P, Yang J, Yi F, Mei L, Wang Y, Zhao C, Zhao B, Wang J. Strontium Attenuates LPS-Induced Inflammation via TLR4/MyD88/NF-κB Pathway in Bovine Ruminal Epithelial Cells. Biol Trace Elem Res 2024; 202:3988-3998. [PMID: 38057485 DOI: 10.1007/s12011-023-03992-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Subacute ruminal acidosis (SARA) is a common nutritional metabolic disease in ruminants that causes significant economic losses to dairy farming. Strontium (Sr) is known to be involved in bone metabolism and exhibits potent anti-inflammatory effects. To evaluate the effect of Sr on inflammation in bovine ruminal epithelial cells, a model of LPS-induced inflammation was established in this study, and the cell viability of bovine ruminal epithelial cells was measured using CCK-8. The production of pro-inflammatory cytokines was measured by ELISA and real-time PCR, respectively. The related proteins of the TLR4/MyD88/NF-κB pathway were assayed through Western blotting, and the fluorescence of p-p65 and p-IκB were assayed by immunofluorescence. Molecular docking of Sr and TLR4/MyD88/NF-κB pathway-related proteins was performed using MIB2 ( http://bioinfo.cmu.edu.tw/MIB2/ ). Results showed that after treatment for 24 h, the cell viability was decreased at the high concentration of Sr (≥ 10 mmol/L). Sr significantly decreased the production of TNF-α, IL-1β, and IL-6, downregulated the related proteins expression of the TLR4/MyD88/NF-κB pathway, and reduced the fluorescence levels of p-p65 and p-IκB. The NF-κB pathway inhibitor PDTC and molecular docking further revealed that Sr reduced LPS-induced pro-inflammatory cytokines production via the TLR4/MyD88/NF-κB pathway. These results suggest that Sr reduces LPS-induced pro-inflammatory cytokines production via the TLR4/MyD88/NF-κB pathway, thereby exerting an anti-inflammatory effect in bovine ruminal epithelial cells, providing a basis for Sr in the treatment of bovine rumen acidosis disease.
Collapse
Affiliation(s)
- Panpan Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jiaqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fanxuan Yi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Linshan Mei
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yazhou Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenxu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jianguo Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Wirsig K, Bacova J, Richter RF, Hintze V, Bernhardt A. Cellular response of advanced triple cultures of human osteocytes, osteoblasts and osteoclasts to high sulfated hyaluronan (sHA3). Mater Today Bio 2024; 25:101006. [PMID: 38445011 PMCID: PMC10912908 DOI: 10.1016/j.mtbio.2024.101006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
Bone remodelling, important for homeostasis and regeneration involves the controlled action of osteoblasts, osteocytes and osteoclasts. The present study established a three-dimensional human in vitro bone model as triple culture with simultaneously differentiating osteocytes and osteoclasts, in the presence of osteoblasts. Since high sulfated hyaluronan (sHA3) was reported as a biomaterial to enhance osteogenesis as well as to dampen osteoclastogenesis, the triple culture was exposed to sHA3 to investigate cellular responses compared to the respective bone cell monocultures. Osteoclast formation and marker expression was stimulated by sHA3 only in triple culture. Osteoprotegerin (OPG) gene expression and protein secretion, but not receptor activator of NF-κB ligand (RANKL) or sclerostin (SOST), were strongly enhanced, suggesting an important role of sHA3 itself in osteoclastogenesis with other targets than indirect modulation of the RANKL/OPG ratio. Furthermore, sHA3 upregulated osteocalcin (BGLAP) in osteocytes and osteoblasts in triple culture, while alkaline phosphatase (ALP) was downregulated.
Collapse
Affiliation(s)
- Katharina Wirsig
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Jana Bacova
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic
| | - Richard F. Richter
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| | - Vera Hintze
- Max Bergmann Center of Biomaterials, Institute of Material Science, TUD University of Technology, Budapester Str. 27, 01069, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint- and Soft Tissue Research, Faculty of Medicine and University Hospital, TUD University of Technology, Fetscherstraße 74, 01307, Dresden, Germany
| |
Collapse
|
5
|
Ru X, Yang L, Shen G, Wang K, Xu Z, Bian W, Zhu W, Guo Y. Microelement strontium and human health: comprehensive analysis of the role in inflammation and non-communicable diseases (NCDs). Front Chem 2024; 12:1367395. [PMID: 38606081 PMCID: PMC11007224 DOI: 10.3389/fchem.2024.1367395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Strontium (Sr), a trace element with a long history and a significant presence in the Earth's crust, plays a critical yet often overlooked role in various biological processes affecting human health. This comprehensive review explores the multifaceted implications of Sr, especially in the context of non-communicable diseases (NCDs) such as cardiovascular diseases, osteoporosis, hypertension, and diabetes mellitus. Sr is predominantly acquired through diet and water and has shown promise as a clinical marker for calcium absorption studies. It contributes to the mitigation of several NCDs by inhibiting oxidative stress, showcasing antioxidant properties, and suppressing inflammatory cytokines. The review delves deep into the mechanisms through which Sr interacts with human physiology, emphasizing its uptake, metabolism, and potential to prevent chronic conditions. Despite its apparent benefits in managing bone fractures, hypertension, and diabetes, current research on Sr's role in human health is not exhaustive. The review underscores the need for more comprehensive studies to solidify Sr's beneficial associations and address the gaps in understanding Sr intake and its optimal levels for human health.
Collapse
Affiliation(s)
- Xin Ru
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lida Yang
- College of Nursing, Mudanjiang Medical University, Mudanjiang, China
| | - Guohui Shen
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kunzhen Wang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zihan Xu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Wenbo Bian
- Zibo Agricultural Science Research Institute, Shandong, China
- Digital Agriculture and Rural Research Institute of CAAS (Zibo), Shandong, China
| | - Wenqi Zhu
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanzhi Guo
- Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Strontium Ranelate Inhibits Osteoclastogenesis through NF-κB-Pathway-Dependent Autophagy. Bioengineering (Basel) 2023; 10:bioengineering10030365. [PMID: 36978756 PMCID: PMC10045081 DOI: 10.3390/bioengineering10030365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
Strontium ranelate (SR) is a pharmaceutical agent used for the prevention and treatment of osteoporosis and fragility fracture. However, little attention has been paid to the effect of SR on alveolar bone remodeling during orthodontic tooth movement and its underlying mechanism. Here, we investigated the influence of SR on orthodontic tooth movement and tooth resorption in Sprague–Dawley rats and the relationship between the nuclear factor–kappa B (NF-κB) pathway, autophagy, and osteoclastogenesis after the administration of SR in vitro and in vivo. In this study, it was found that SR reduced the expression of autophagy-related proteins at the pressure side of the first molars during orthodontic tooth movement. Similarly, the expression of these autophagy-related proteins and the size and number of autophagosomes were downregulated by SR in vitro. The results also showed that SR reduced the number of osteoclasts and suppressed orthodontic tooth movement and root resorption in rats, which could be partially restored using rapamycin, an autophagy inducer. Autophagy was attenuated after pre-osteoclasts were treated with Bay 11-7082, an NF-κB pathway inhibitor, while SR reduced the expression of the proteins central to the NF-κB pathway. Collectively, this study revealed that SR might suppress osteoclastogenesis through NF-κB-pathway-dependent autophagy, resulting in the inhibition of orthodontic tooth movement and root resorption in rats, which might offer a new insight into the treatment of malocclusion and bone metabolic diseases.
Collapse
|