1
|
House M, Khadayat K, Trybala TN, Nambiar N, Jones E, Abel SM, Baccile J, Joshi AS. Phosphatidic acid drives spatiotemporal distribution of Pex30 at ER-LD contact sites. J Cell Biol 2025; 224:e202405162. [PMID: 40407416 PMCID: PMC12101077 DOI: 10.1083/jcb.202405162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 03/18/2025] [Accepted: 04/25/2025] [Indexed: 05/26/2025] Open
Abstract
Lipid droplets (LDs) are ubiquitous neutral lipid storage organelles that form at discrete subdomains in the ER bilayer. The assembly of these ER subdomains and the mechanism by which proteins are recruited to them is poorly understood. Here, we investigate the spatiotemporal distribution of Pex30 at the ER-LD membrane contact sites (MCSs). Pex30, an ER membrane-shaping protein, has a reticulon homology domain, a dysferlin (DysF) domain, and a Duf4196 domain. Deletion of SEI1, which codes for seipin, a highly conserved protein required for LD biogenesis, results in accumulation of Pex30 and phosphatidic acid (PA) at ER-LD contact sites. We show that PA recruits Pex30 at ER subdomains by binding to the DysF domain. The distribution of Pex30 as well as PA is also affected by phosphatidylcholine (PC) levels. We propose that PA regulates the spatiotemporal distribution of Pex30 at ER subdomains that plays a critical role in driving the formation of LDs in the ER membrane.
Collapse
Affiliation(s)
- Morgan House
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Karan Khadayat
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Thomas N. Trybala
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Nikhil Nambiar
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth Jones
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| | - Steven M. Abel
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Joshua Baccile
- Department of Chemistry, University of Tennessee, Knoxville, TN, USA
| | - Amit S. Joshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
2
|
Bai W, Fang Q, Bi Y, Wang R, Xu K, Zhou A, Gu H, Chen H. Porcine SCD1 Regulates Lipid Droplet Number via CLSTN3B in PK15 Cells. Animals (Basel) 2025; 15:1663. [PMID: 40509129 PMCID: PMC12153863 DOI: 10.3390/ani15111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/30/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025] Open
Abstract
Fat deposition plays a key role in determining porcine meat quality traits, with lipid droplets serving as critical organelles for lipid storage in adipose tissue. Inhibiting lipid droplet biogenesis disrupts the lipid storage capacity of adipocytes. The Stearoyl-CoA Desaturase (SCD) family is crucial in regulating polyunsaturated fatty acid/monounsaturated fatty acid (PUFA/MUFA) composition, while its role in lipid droplet formation remains unclear. This study employed CRISPR/Cas9 to create SCD1-deficient porcine renal epithelial cells (PK15), enabling an investigation into SCD1's role in fatty acid composition and lipid droplet regulation. RNA-seq analysis was conducted to elucidate the mechanisms underlying SCD1's impact on lipid droplet numbers. Results showed that SCD1 deletion significantly decreased triacylglycerols (TAG) content, altered fatty acid composition, and decreased lipid droplet numbers. Conversely, SCD1 overexpression increased lipid droplet numbers, confirming SCD1's role in regulating lipid droplet abundance. RNA-seq analysis revealed that SCD1 regulates lipid metabolism via Calsyntenin 3β (CLSTN3B). Experimental validation confirmed the SCD1-CLSTN3B regulation of lipid droplet numbers. In summary, we discovered the role of SCD1 in regulating the number of lipid droplets, highlighting its potential impact on lipid metabolism and adipocyte function in pigs.
Collapse
Affiliation(s)
- Wenzhe Bai
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.B.); (R.W.); (K.X.); (A.Z.)
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Q.F.); (Y.B.)
| | - Qianhai Fang
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Q.F.); (Y.B.)
| | - Yanzhen Bi
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Q.F.); (Y.B.)
| | - Rui Wang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.B.); (R.W.); (K.X.); (A.Z.)
| | - Ke Xu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.B.); (R.W.); (K.X.); (A.Z.)
| | - Ao Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.B.); (R.W.); (K.X.); (A.Z.)
| | - Hao Gu
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Wuhan 430064, China; (Q.F.); (Y.B.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (W.B.); (R.W.); (K.X.); (A.Z.)
| |
Collapse
|
3
|
Chaudhary R, Choudhary V. Protocol to determine the topology of integral endoplasmic reticulum membrane protein in Saccharomyces cerevisiae. STAR Protoc 2025; 6:103727. [PMID: 40186862 PMCID: PMC12002983 DOI: 10.1016/j.xpro.2025.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/10/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
Here, we present a protocol to determine the topology of Fld1 (few lipid droplets), an integral endoplasmic reticulum (ER) membrane protein in Saccharomyces cerevisiae. We describe steps to generate functional N-terminal GFP and C-terminal mCherry fusion with Fld1. We detail the strategy to perform subcellular fractionation to isolate ER-derived microsomes that were subjected to salt detergent extraction analysis. We then provide procedures to determine the topology of Fld1 using proteinase K treatment.
Collapse
Affiliation(s)
- Ritika Chaudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Vineet Choudhary
- Lipid Metabolism Laboratory, Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
4
|
Basile L, Cannarella R, Magni P, Condorelli RA, Calogero AE, La Vignera S. Role of gliflozins on hepatocellular carcinoma progression: a systematic synthesis of preclinical and clinical evidence. Expert Opin Drug Saf 2025; 24:413-426. [PMID: 39714931 DOI: 10.1080/14740338.2024.2447057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/02/2024] [Accepted: 12/22/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION The risk of HCC is twice as high in diabetic patients compared to non-diabetic ones, suggesting that diabetes advances carcinogenesis in the liver through a variety of mechanisms. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been shown to improve liver outcomes, emerging as promising agents to treat hepatocellular carcinoma (HCC) in patients with type 2 diabetes mellitus (T2DM). METHODS We searched PubMed and Scopus databases for articles presenting an association between SGLT2is and HCC to explore the putative mechanisms of action underlying the anti-proliferative activity of SGLT2is. RESULTS A total of 24 articles were selected for inclusion, of which 14 were preclinical and 10 were clinical. Preclinical studies were mainly focused on canagliflozin, used alone or in combination with other drugs. CONCLUSIONS Overall, canagliflozin had a negative effect on HCC cell proliferation by interfering with glucose-dependent and independent metabolic pathways, negatively impacting angiogenesis, and inducing apoptosis in in-vitro cell models. In-vivo, a protective effect on hepatic steatosis and fibrosis and HCC development has been reported. Human studies showed a lower risk of developing HCC in patients on SGLT2is. However, this is supported by retrospective cohort studies. Clinical trials are needed to confirm the causal relationship between SGLT2i administration and HCC development.
Collapse
Affiliation(s)
- Livia Basile
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
5
|
Clews AC, Whitehead PS, Zhang L, Lü S, Shockey JM, Chapman KD, Dyer JM, Xu Y, Mullen RT. Identification and Characterization of Lipid Droplet-Associated Protein (LDAP) Isoforms from Tung Tree ( Vernicia fordii). PLANTS (BASEL, SWITZERLAND) 2025; 14:814. [PMID: 40094817 PMCID: PMC11901875 DOI: 10.3390/plants14050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025]
Abstract
Lipid droplets (LDs) are cytoplasmic organelles responsible primarily for the storage of neutral lipids, such as triacyclglycerols (TAGs). Derived from the endoplasmic reticulum bilayer, LDs are composed of a hydrophobic lipid core encased by a phospholipid monolayer and surface-associated proteins. To date, only a relatively few LD 'coat' proteins in plants have been identified and characterized, most of which come from studies of the model plant Arabidopsis thaliana. To expand our knowledge of the plant LD proteome, the LD-associated protein (LDAP) family from the tung tree (Vernicia fordii), whose seeds are rich in a commercially valuable TAG containing the conjugated fatty acid α-eleostearic acid (C18:3Δ9cis,11trans,13trans [α-ESA]), was identified and characterized. Based on the tung tree transcriptome, three LDAP isoforms (VfLDAP1-3) were elucidated and the encoded proteins distinctly clustered into three clades along with their respective isoforms from other angiosperm species. Ectopic expression of the VfLDAPs in Nicotiana benthamiana leaves revealed that they localized specifically to LDs and influenced LD numbers and sizes, as well as increasing TAG content and altering TAG fatty acid composition. Interestingly, in a partially reconstructed TAG-ESA biosynthetic pathway, the co-expression of VfLDAP3 and, to a lesser degree, VfLDAP2, significantly increased the content of α-ESA stored within the LDs. These results suggest that the VfLDAPs can influence the steady-state content and composition of TAG in plant cells and that certain LDAP isoforms may have evolved to more efficiently package TAGs into LDs containing unusual fatty acids, such as α-ESA.
Collapse
Affiliation(s)
- Alyssa C. Clews
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Payton S. Whitehead
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (P.S.W.); (K.D.C.)
| | - Lingling Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Jay M. Shockey
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA; (J.M.S.); (J.M.D.)
| | - Kent D. Chapman
- BioDiscovery Institute, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA; (P.S.W.); (K.D.C.)
| | - John M. Dyer
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, USA; (J.M.S.); (J.M.D.)
| | - Yang Xu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
6
|
Kumar A, Yadav S, Choudhary V. The evolving landscape of ER-LD contact sites. Front Cell Dev Biol 2024; 12:1483902. [PMID: 39421023 PMCID: PMC11484260 DOI: 10.3389/fcell.2024.1483902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Lipid droplets (LDs) are evolutionarily conserved dynamic organelles that play an important role in cellular physiology. Growing evidence suggests that LD biogenesis occurs at discrete endoplasmic reticulum (ER) subdomains demarcated by the lipodystrophy protein, Seipin, lack of which impairs adipogenesis. However, the mechanisms of how these domains are selected is not completely known. These ER sites undergo ordered assembly of proteins and lipids to initiate LD biogenesis and facilitate establishment of ER-LD contact sites, a prerequisite for proper growth and maturation of droplets. LDs retain both physical and functional association with the ER throughout their lifecycle to facilitate bi-directional communication, such as exchange of proteins and lipids between the two organelles at these ER-LD contact sites. In recent years several molecular tethers have been identified that bridge ER and LDs together including few proteins that are found exclusively at these ER-LD contact interface. Here, we discuss recent advances in understanding the role of factors that ensure functionality of ER-LD contact site machinery for LD homeostasis.
Collapse
Affiliation(s)
| | | | - Vineet Choudhary
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW This review aims to discuss the most recent evidence exploring the role of lipid droplets in steatotic liver disease (SLD). We highlight the breadth of mechanisms by which lipid droplets may contribute to the progression of SLD with a particular focus on the role of lipid droplets as inducers of mechanical stress within hepatocytes and genetic mutations in lipid droplet associated proteins. Finally, this review provides an update on clinical trials exploring the therapeutic potential and strategies targeting lipid droplets. RECENT FINDINGS The size, composition and location of hepatic lipid droplets strongly influence the pathological role of these organelles in SLD. Emerging studies are beginning to elucidate the importance of lipid droplet induced hepatocyte mechanical stress. Novel strategies targeting lipid droplets, including the effects of lipid droplet associated protein mutations, show promising therapeutic potential. SUMMARY Much more than a histological feature, lipid droplets are complex heterogenous organelles crucial to cellular metabolism with important causative roles in the development and progression of SLD. Lipid droplet induced mechanical stress may exacerbate hepatic inflammation and fibrogenesis and potentially contribute to the development of a pro-carcinogenic hepatic environment. The integration of advancements in genetics and molecular biology in upcoming treatments aspires to transcend symptomatic alleviation and address the fundamental causes and pathological development of SLD.
Collapse
Affiliation(s)
- Josh Bilson
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
| | - Eleonora Scorletti
- School of Human Development and Health, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton, UK
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|