1
|
Yue L, Yan Y. Metabolic Regulation in Acute Respiratory Distress Syndrome: Implications for Inflammation and Oxidative Stress. Int J Chron Obstruct Pulmon Dis 2025; 20:373-388. [PMID: 39991071 PMCID: PMC11846517 DOI: 10.2147/copd.s491687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a severe and life-threatening pulmonary condition characterized by intense inflammation and disrupted oxygen exchange, which can lead to multiorgan failure. Recent findings have established ARDS as a systemic inflammatory disorder involving complex interactions between lung injury, systemic inflammation, and oxidative stress. This review examines the pivotal role of metabolic disturbances in the pathogenesis of ARDS, emphasizing their influence on inflammatory responses and oxidative stress. Common metabolic abnormalities in ARDS patients, including disruptions in carbohydrate, amino acid, and lipid metabolism, contribute significantly to the disease's severity. These metabolic dysfunctions interplay with systemic inflammation and oxidative stress, further exacerbating lung injury and worsening patient outcomes. By analyzing the regulatory mechanisms of various metabolites implicated in ARDS, we underscore the potential of targeting metabolic pathways as a therapeutic approach. Such interventions could help attenuate inflammation and oxidative stress, presenting a promising strategy for ARDS treatment. Additionally, we review potential drugs that modulate metabolic pathways, providing valuable insights into the etiology of ARDS and potential therapeutic directions. This comprehensive analysis enhances our understanding of ARDS and highlights the importance of metabolic regulation in the development of effective treatment strategies. Key findings from this review demonstrate that metabolic disturbances, particularly those affecting carbohydrate, amino acid, and lipid metabolism, play critical roles in amplifying inflammation and oxidative stress, underscoring the potential of metabolic-targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Lixia Yue
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| | - Yihe Yan
- Department of Critical Care Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, 312000, People’s Republic of China
| |
Collapse
|
2
|
Xanthine Oxidase-Induced Inflammatory Responses in Respiratory Epithelial Cells: A Review in Immunopathology of COVID-19. Int J Inflam 2021; 2021:1653392. [PMID: 34367545 PMCID: PMC8346299 DOI: 10.1155/2021/1653392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 01/16/2023] Open
Abstract
Xanthine oxidase (XO) is an enzyme that catalyzes the production of uric acid and superoxide radicals from purine bases: hypoxanthine and xanthine and is also expressed in respiratory epithelial cells. Uric acid, which is also considered a danger associated molecule pattern (DAMP), could trigger a series of inflammatory responses by activating the inflammasome complex path and NF-κB within the endothelial cells and by inducing proinflammatory cytokine release. Concurrently, XO also converts the superoxide radicals into hydroxyl radicals that further induce inflammatory responses. These conditions will ultimately sum up a hyperinflammation condition commonly dubbed as cytokine storm syndrome (CSS). The expression of proinflammatory cytokines and neutrophil chemokines may be reduced by XO inhibitor, as observed in human respiratory syncytial virus (HRSV)-infected A549 cells. Our review emphasizes that XO may have an essential role as an anti-inflammation therapy for respiratory viral infection, including coronavirus disease 2019 (COVID-19).
Collapse
|
3
|
Pratomo IP, Ariane A, Tedjo A, Heryanto R, Paramita RI. Xanthine oxidase inhibition in SARS-CoV-2 infection: the mechanism and potency of allopurinol and febuxostat in COVID-19 management. MEDICAL JOURNAL OF INDONESIA 2020. [DOI: 10.13181/mji.rev.204641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The number of coronavirus disease 2019 (COVID-19) infection cases has been increasing globally, including in Indonesia. Definitive therapy for COVID-19 has not yet been found; hence, repurposed drugs for COVID-19 have been considered and have been practiced by several researchers in the world. This literature review investigates the action of xanthine oxidase as a component of the biomolecular pathway against severe acute respiratory syndrome-related coronavirus-2, the cause of COVID-19, and describes the mechanism and potential of uric acid drugs (allopurinol and febuxostat) as prophylaxis and curative therapy for COVID-19.
Collapse
|
4
|
Dong G, Wang F, Xu L, Zhu M, Zhang B, Wang B. Serum interleukin-18: A novel prognostic indicator for acute respiratory distress syndrome. Medicine (Baltimore) 2019; 98:e15529. [PMID: 31124933 PMCID: PMC6571250 DOI: 10.1097/md.0000000000015529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The aim of this study is to determine the biological function of serum interleukin-18 (IL-18) on prognosis in acute respiratory distress syndrome (ARDS).From October 2016 to September 2017, 150 patients with ARDS in the ICU were enrolled according to the Berlin 2012 definition. The enzyme-linked immunosorbent assay (ELISA) was used to detect the expression level of IL-18 in serum isolated from the patients. Patients were divided into survival group (82 cases) and non-survival group (68 cases) and followed up for at least 2 months. The serum IL-18 expression level on the prognosis was calculated by receiver operating characteristic curve (ROC).The expression level of serum IL-18 was significantly higher in the non-survival group than that in the survival group (P < .05). Based on the ROC curve, the sensitivity and specificity of IL-18 as a predictor of prognosis at a cutoff of 509.5 pg/mL were 88% and 82%, respectively, and the area under the curve (RUC) was 0.84 (P < .05).The expression level of serum IL-18 could be used to evaluate the possible outcomes of patients with ARDS.
Collapse
|
5
|
Lee HW, Choi SM, Lee J, Park YS, Lee CH, Yim JJ, Yoo CG, Kim YW, Han SK, Lee SM. Serum Uric Acid Level as a Prognostic Marker in Patients With Acute Respiratory Distress Syndrome. J Intensive Care Med 2017; 34:404-410. [PMID: 28351229 DOI: 10.1177/0885066617698911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
PURPOSE: Uric acid acts as both a pathogenic inflammatory mediator and an antioxidative agent. Several studies have shown that uric acid level correlates with the incidence, severity, and prognosis of pulmonary diseases. However, the association between uric acid level and acute respiratory distress syndrome (ARDS) has not been studied. This study was conducted to elucidate how serum uric acid level is related with clinical prognosis of ARDS. METHODS: A retrospective cohort study with propensity score matching was conducted at a medical intensive care unit of a tertiary teaching hospital. The medical records of patients diagnosed with ARDS admitted from 2005 through 2011 were reviewed. RESULTS: Two hundred thirty-seven patients with ARDS met the inclusion criteria. Patients with a serum uric acid level <3.0 mg/dL were classified into the low uric acid group, and those with a level ≥3 mg/dL were classified into the normal to high uric acid group. We selected 40 patients in each group using propensity score matching. A higher percentage of patients in the low uric acid group experienced clinical improvement in ARDS. More patients died from sepsis in the normal to high uric acid group. Kaplan-Meier analysis showed that a low serum uric acid level was significantly associated with better survival rate. CONCLUSION: In patients with ARDS, a low serum uric acid level may be a prognostic marker of a low risk of in-hospital mortality.
Collapse
Affiliation(s)
- Hyun Woo Lee
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sun Mi Choi
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jinwoo Lee
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Sik Park
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chang-Hoon Lee
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jae-Joon Yim
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Chul-Gyu Yoo
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Whan Kim
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung Koo Han
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang-Min Lee
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|