Thavendiranathan P, Grant AD, Negishi T, Plana JC, Popović ZB, Marwick TH. Reproducibility of echocardiographic techniques for sequential assessment of left ventricular ejection fraction and volumes: application to patients undergoing cancer chemotherapy.
J Am Coll Cardiol 2012. [PMID:
23199515 DOI:
10.1016/j.jacc.2012.09.035]
[Citation(s) in RCA: 512] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES
The aim of this study was to identify the best echocardiographic method for sequential quantification of left ventricular (LV) ejection fraction (EF) and volumes in patients undergoing cancer chemotherapy.
BACKGROUND
Decisions regarding cancer therapy are based on temporal changes of EF. However the method for EF measurement with the lowest temporal variability is unknown.
METHODS
We selected patients in whom stable function in the face of chemotherapy for breast cancer was defined by stability of global longitudinal strain (GLS) at up to 5 time points (baseline, 3, 6, 9, and 12 months). In this way, changes in EF were considered to reflect temporal variability of measurements rather than cardiotoxicity. A comprehensive echocardiogram consisting of 2-dimensional (2D) and 3-dimensional (3D) acquisitions with and without contrast administration was performed at each time point. Stable LV function was defined as normal GLS (≤-16.0%) at each examination. The EF and volumes were measured with 2D-biplane Simpson's method, 2D-triplane, and 3-dimensional echocardiography (3DE) by 2 investigators blinded to any clinical data. Inter-, intra-, and test-retest variability were assessed in a subgroup. Variability was assessed by analysis of variance and compared with Levene's or t test.
RESULTS
Among 56 patients (all female, 54 ± 13 years of age), noncontrast 3D EF, end-diastolic volume, and end-systolic volume had significantly lower temporal variability than all other methods. Contrast only decreased the temporal variability of LV end-diastolic volume measurements by the 2D biplane method. Our data suggest that a temporal variability in EF of 0.06 might occur with noncontrast 3DE due to physiological differences and measurement variability, whereas this might be >0.10 with 2D methods. Overall, 3DE also had the best intra- and inter-observer as well as test-retest variability.
CONCLUSIONS
Noncontrast 3DE was the most reproducible technique for LVEF and LV volume measurements over 1 year of follow-up.
Collapse