1
|
Gładkowski W, Ortlieb S, Niezgoda N, Chojnacka A, Fortuna P, Wiercik P. Novel Lipid-Based Carriers of Provitamin D 3: Synthesis and Spectroscopic Characterization of Acylglycerol Conjugated with 7-Dehydrocholesterol Residue and Its Glycerophospholipid Analogue. Molecules 2024; 29:5805. [PMID: 39683962 DOI: 10.3390/molecules29235805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
The aim of this research was to design and synthesize new lipid conjugates of 7-DHC that could serve as a new storage form of esterified provitamin D3, increasing the reservoir of this biomolecule in the epidermis and enabling controlled production of vitamin D3 even during periods of sunlight deficiency. Acylglycerol and glycerophospholipid containing succinate-linked provitamin D3 at the sn-2 position of the glycerol backbone were synthesized from dihydroxyacetone (DHA) and sn-glycerophosphocholine (GPC), respectively. The three-step synthesis of 1,3-dipalmitoyl-2-(7-dehydrocholesterylsuccinoyl)glycerol involved the esterification of DHA with palmitic acid, reduction of the carbonyl group, and conjugation of the resulting 1,3-dipalmitoylglycerol with 7-dehydrocholesterol hemisuccinate (7-DHC HS). The use of NaBH3CN as a reducing agent was crucial to avoid acyl migration and achieve the final product with 100% regioisomeric purity. For the preparation of 1-palmitoyl-2-(7-dehydrocholesterylsuccinoyl)-sn-glycero-3-phosphocholine, a two-step process was applied, involving the esterification of GPC at the sn-1 position with palmitic acid, followed by the conjugation of 1-palmitoyl-sn-glycero-3-phosphocholine with 7-DHC HS. Alongside the main product, a small amount of its regioisomer with provitamin D3 linked at the sn-1 position and palmitic acid at the sn-2 position was detected, indicating acyl migration from the sn-1 to the sn-2 position in the intermediate 1-palmitoyl-sn-glycerophosphocholine. The synthesized novel lipids were fully characterized using spectroscopic methods. They can find applications as novel lipid-based prodrugs as additives to sunscreen creams.
Collapse
Affiliation(s)
- Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Susanna Ortlieb
- Research Institute of Textile Chemistry and Textile Physics, University of Innsbruck, Hoechsterstraße 73, 6850 Dornbirn, Austria
| | - Natalia Niezgoda
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Anna Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Paulina Fortuna
- Omics Research Center, Wrocław Medical University, 50-368 Wrocław, Poland
| | - Paweł Wiercik
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, Grunwaldzki Square 24, 50-363 Wrocław, Poland
| |
Collapse
|
2
|
Wang X, Yun Y, Chen L, Guo S, Niu B, Fang J, Yuan Q, Shen J, Xie X, Wang K. A novel approach to exploit Small-Molecule glucagon-like Peptide-1 receptor agonists with high potency. Bioorg Med Chem 2024; 107:117761. [PMID: 38795571 DOI: 10.1016/j.bmc.2024.117761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Small-molecule glucagon-like peptide-1 receptor (GLP-1R) agonists are recognized as promising therapeutics for type 2 diabetes mellitus (T2DM) and obesity. Danuglipron, an investigational small-molecule agonist, has demonstrated high efficacy in clinical trials. However, further development of danuglipron is challenged by a high rate of gastrointestinal adverse events. While these effects may be target-related, it is plausible that the carboxylic acid group present in danuglipron may also play a role in these outcomes by affecting the pharmacokinetic properties and dosing regimen of danuglipron, as well as by exerting direct gastrointestinal irritation. Therefore, this study aims to replace the problematic carboxylic acid group by exploring the internal binding cavity of danuglipron bound to GLP-1R using a water molecule displacement strategy. A series of novel triazole-containing compounds have been designed and synthesized during the structure-activity relationship (SAR) study. These efforts resulted in the discovery of compound 2j with high potency (EC50 = 0.065 nM). Moreover, docking simulations revealed that compound 2j directly interacts with the residue Glu387 within the internal cavity of GLP-1R, effectively displacing the structural water previously bound to Glu387. Subsequent in vitro and in vivo experiments demonstrated that compound 2j had comparable efficacy to danuglipron in enhancing insulin secretion and improving glycemic control. Collectively, this study offers a practicable approach for the discovery of novel small-molecule GLP-1R agonists based on danuglipron, and compound 2j may serve as a lead compound to further exploit the unoccupied internal cavity of danuglipron's binding pocket.
Collapse
Affiliation(s)
- Xiaoyan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lili Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Buying Niu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jiahui Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Qianting Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China.
| | - Kai Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Gładkowski W, Włoch A, Pruchnik H, Chojnacka A, Grudniewska A, Wysota A, Dunal A, Rubiano Castro D, Rudzińska M. Acylglycerols of Myristic Acid as New Candidates for Effective Stigmasterol Delivery-Design, Synthesis, and the Influence on Physicochemical Properties of Liposomes. Molecules 2022; 27:molecules27113406. [PMID: 35684341 PMCID: PMC9182174 DOI: 10.3390/molecules27113406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
New carriers of phytosterols; acylglycerols containing natural myristic acid at sn-1 and sn-3 positions and stigmasterol residue linked to sn-2 position by carbonate and succinate linker have been designed and synthesized in three-step synthesis from dihydroxyacetone (DHA). The synthetic pathway involved Steglich esterification of DHA with myristic acid; reduction of carbonyl group of 1,3-dimyristoylpropanone and esterification of 1,3-dimyristoylglicerol with stigmasterol chloroformate or stigmasterol hemisuccinate. The structure of the obtained hybrids was established by the spectroscopic methods (NMR; IR; HRMS). Obtained hybrid molecules were used to form new liposomes in the mixture with model phospholipid and their effect on their physicochemical properties was determined, including the polarity, fluidity, and main phase transition of liposomes using differential scanning calorimetry and fluorimetric methods. The results confirm the significant effect of both stigmasterol-containing acylglycerols on the hydrophilic and hydrophobic region of liposome membranes. They significantly increase the order in the polar heads of the lipid bilayer and increase the rigidity in the hydrophobic region. Moreover, the presence of both acylglycerols in the membranes shifts the temperature of the main phase transition towards higher temperatures. Our results indicate stabilization of the bilayer over a wide temperature range (above and below the phase transition temperature), which in addition to the beneficial effects of phytosterols on human health makes them more attractive components of novel lipid nanocarriers compared to cholesterol.
Collapse
Affiliation(s)
- Witold Gładkowski
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
- Correspondence: (W.G.); (A.W.); (A.D.); Tel.: +48-71-3205-154 (W.G.); +48-71-3205-461 (A.W.); +48-724-540-245 (A.D.)
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
- Correspondence: (W.G.); (A.W.); (A.D.); Tel.: +48-71-3205-154 (W.G.); +48-71-3205-461 (A.W.); +48-724-540-245 (A.D.)
| | - Hanna Pruchnik
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Anna Chojnacka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
| | - Aleksandra Grudniewska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
| | - Agnieszka Wysota
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
| | - Anna Dunal
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (A.C.); (A.G.); (A.W.)
- Correspondence: (W.G.); (A.W.); (A.D.); Tel.: +48-71-3205-154 (W.G.); +48-71-3205-461 (A.W.); +48-724-540-245 (A.D.)
| | - Daniel Rubiano Castro
- Facultat de Biologia, Universitat de Barcelona, Avinguda de Diagonal 643, 08007 Barcelona, Spain;
| | - Magdalena Rudzińska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland;
| |
Collapse
|
4
|
Yamauchi Y, Doi N, Kondo SI, Sasai Y, Kuzuya M. Characterization of a novel polymeric prodrug of an antibacterial agent synthesized by mechanochemical solid-state polymerization. Drug Dev Res 2020; 81:867-874. [PMID: 32501557 DOI: 10.1002/ddr.21700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 12/21/2022]
Abstract
Polycrystalline methacryloyl monomers of the antibacterial drug nalidixic acid with an anhydride bond to the drug carboxyl group were prepared. The physicochemical properties of the synthesized vinyl monomer were characterized using X-ray powder diffraction, thermal analysis, and polarized light microscopy measurements. Mechanochemical solid-state polymerization of the resulting monomers was carried out to yield a novel polymeric prodrug. The in vitro hydrolysis behavior of the polymeric prodrug indicated that the release rate of drug from the polymeric prodrug was clearly dependent on the pH value of the hydrolysis solution. Moreover, sustained release of the drug at an almost constant rate for more than 10 hr was shown in both neutral and alkaline solutions. The results suggest that anhydride-based polymeric prodrugs could be potentially useful in colon targeted drug delivery systems.
Collapse
Affiliation(s)
- Yukinori Yamauchi
- Department of Pharmaceutical Physical Chemistry, College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime, Japan
| | - Naoki Doi
- Laboratory of Pharmaceutical Physical Chemistry, Department of Drug Delivery Technology and Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Shin-Ichi Kondo
- Laboratory of Pharmaceutical Physical Chemistry, Department of Drug Delivery Technology and Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasushi Sasai
- Laboratory of Pharmaceutical Physical Chemistry, Department of Drug Delivery Technology and Sciences, Gifu Pharmaceutical University, Gifu, Japan
| | - Masayuki Kuzuya
- Department of Health and Welfare, Faculty of Human Welfare, Chubu Gakuin University, Gifu, Japan
| |
Collapse
|
5
|
Tian C, Guo J, Wang G, Sun B, Na K, Zhang X, Xu Z, Cheng M, He Z, Sun J. Efficient Intestinal Digestion and On Site Tumor-Bioactivation are the Two Important Determinants for Chylomicron-Mediated Lymph-Targeting Triglyceride-Mimetic Docetaxel Oral Prodrugs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901810. [PMID: 31871861 PMCID: PMC6918103 DOI: 10.1002/advs.201901810] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The oral absorption of chemotherapeutical drugs is restricted by poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity. Intestinal lymphatic transport of lipophilic prodrugs is a promising strategy to improve the oral delivery efficiency of anticancer drugs via entrapment into a lipid formulation and to avoid first-pass metabolism. However, several basic principles have still not been clarified, such as intestinal digestibility and stability and on-site tumor bioactivation. Herein, triglyceride-mimetic prodrugs of docetaxel (DTX) are designed by conjugating them to the sn-2 position of triglyceride (TG) through different linkage bonds. The role of intestinal digestion in oral absorption of TG-like prodrugs is then investigated by introducing significant steric-hindrance α-substituents into the prodrugs. It is surprisingly found that poor intestinal digestion leads to an unsatisfactory bioavailability but efficient intestinal digestion of TG-like prodrugs with a less steric-hindrance linkage (DTX-S-S-TG) facilitating oral absorption. Moreover, it is found that the TG-like reduction-sensitive prodrug (DTX-S-S-TG) has good stability during intestinal transport and blood circulation, and on-demand release of docetaxel at the tumor site, leading to a significantly improved antitumor efficiency with negligible gastrointestinal toxicity. In summary, the chylomicron-mediated lymph-targeting triglyceride-mimetic oral prodrug approach provides a good foundation for the development of oral chemotherapeutical formulations.
Collapse
Affiliation(s)
- Chutong Tian
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Jingjing Guo
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Gang Wang
- School of PharmacyGuang Xi University of Chinese MedicineWuhe RodeNanning530200China
| | - Bingjun Sun
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Kexin Na
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Xuanbo Zhang
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Zhuangyan Xu
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityNo. 103, Wenhua RoadShenyang110016China
| | - Maosheng Cheng
- Key Laboratory of Structure‐Based Drug Design & Discovery of Ministry of EducationShenyang Pharmaceutical UniversityShenyang110016China
| | - Zhonggui He
- Department of PharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityShenyang110016P. R. China
| | - Jin Sun
- Municipal Key Laboratory of BiopharmaceuticsWuya College of InnovationShenyang Pharmaceutical UniversityShenyang110016P. R. China
| |
Collapse
|
6
|
Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv Colloid Interface Sci 2018; 253:35-65. [PMID: 29454464 DOI: 10.1016/j.cis.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
With the advent from the laboratory bench to patient bedside in last five decades, vesicular systems have now come to be widely accepted as pragmatic means for controlled delivery of drugs. Their success stories include those of liposomes, niosomes and even the lately developed ethosomes and transferosomes. Pharmacosomes, which, as delivery systems offer numerous advantages and have been widely researched, however, remain largely unacknowledged as a successful delivery system. Though a large number of drugs have been derivatized and formulated into self-assembled vesicular systems, the term pharmacosomes has not been widely used while reporting them. Therefore, their relative obscurity may be attributed to the non-usage of the nomenclature of pharmacosomes by the researchers working in the area. We present a review on the scenario that lead to origin of these bio-inspired vesicles composed of self-assembling amphiphilic molecules. Various drugs that have been formulated into pharmacosomes, their characterization techniques, their properties relative to those of other vesicular delivery systems, and the success achieved so far are also discussed.
Collapse
|
7
|
Synthesis, Bioevaluation and Molecular Dynamic Simulation Studies of Dexibuprofen-Antioxidant Mutual Prodrugs. Int J Mol Sci 2016; 17:ijms17122151. [PMID: 28009827 PMCID: PMC5187951 DOI: 10.3390/ijms17122151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023] Open
Abstract
Dexibuprofen–antioxidant conjugates were synthesized with the aim to reduce its gastrointestinal effects. The esters analogs of dexibuprofen 5a–c were obtained by reacting its –COOH group with chloroacetyl derivatives 3a–c. The in vitro hydrolysis data confirmed that synthesized prodrugs 5a–c were stable in stomach while undergo significant hydrolysis in 80% human plasma and thus release free dexibuprofen. The minimum reversion was observed at pH 1.2 suggesting that prodrugs are less irritating to stomach than dexibuprofen. The anti-inflammatory activity of 5c (p < 0.001) is more significant than the parent dexibuprofen. The prodrug 5c produced maximum inhibition (42.06%) of paw-edema against egg-albumin induced inflammation in mice. Anti-pyretic effects in mice indicated that prodrugs 5a and 5b showed significant inhibition of pyrexia (p < 0.001). The analgesic activity of 5a is more pronounced compared to other synthesized prodrugs. The mean percent inhibition indicated that the prodrug 5a was more active in decreasing the number of writhes induced by acetic acid than standard dexibuprofen. The ulcerogenic activity results assured that synthesized prodrugs produce less gastrointestinal adverse effects than dexibuprofen. The ex vivo antiplatelet aggregation activity results also confirmed that synthesized prodrugs are less irritant to gastrointestinal mucosa than the parent dexibuprofen. Molecular docking analysis showed that the prodrugs 5a–c interacts with the residues present in active binding sites of target protein. The stability of drug–target complexes is verified by molecular dynamic simulation study. It exhibited that synthesized prodrugs formed stable complexes with the COX-2 protein thus support our wet lab results. It is therefore concluded that the synthesized prodrugs have promising pharmacological activities with reduced gastrointestinal adverse effects than the parent drug.
Collapse
|
8
|
Peesa JP, Yalavarthi PR, Rasheed A, Mandava VBR. A perspective review on role of novel NSAID prodrugs in the management of acute inflammation. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Bhatia N, Katkar K, Ashtekar S. Formulation and evaluation of co-prodrug of flurbiprofen and methocarbamol. Asian J Pharm Sci 2016. [DOI: 10.1016/j.ajps.2015.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Synthesis and Controlled Release Behavior of Biodegradable Polymers with Pendant Ibuprofen Group. INT J POLYM SCI 2016. [DOI: 10.1155/2016/5861419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The continuous use of nonsteroidal anti-inflammatory drugs such as ibuprofen frequently leads to some serious side-effects including stomach ulcers and bleeding. In this paper, two kinds of new biocompatible polyesters (PIGB, PIGH) and polyester-amide (PIGA) comprising biodegradable components (L-glutamic acid,1,4-butanediol, and1,6-hexanediol and6-amino hexanol) and ibuprofen as pendant group have been prepared by the melting polycondensation. The chemical structures of the monomer and polymers are characterized by FTIR,1H NMR spectrum, GPC, and contact angle measurements. The drug loading of ibuprofen reaches very high level (35–37%) for PIGB, PIGH, and PIGA carriers. The free ibuprofen molecules are releasedin vitrofrom polymer carriers in a controlled manner without a burst release, different from the release pattern observed in the other drug-encapsulated systems. It is also found that the different hydrophilicity among PIGB, PIGH, and PIGA plays a key role in the time-controlled release of ibuprofen. In addition, the viability of HeLa cells after 48 h of incubation reaches more than 100%, indicating no cytotoxicity for PIGB, PIGH, and PIGA carriers.
Collapse
|
11
|
Suthar SK, Sharma M. Recent Developments in Chimeric NSAIDs as Safer Anti-Inflammatory Agents. Med Res Rev 2014; 35:341-407. [DOI: 10.1002/med.21331] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sharad Kumar Suthar
- Department of Pharmacy; Jaypee University of Information Technology; Waknaghat 173234 India
| | - Manu Sharma
- Department of Pharmacy; Jaypee University of Information Technology; Waknaghat 173234 India
| |
Collapse
|
12
|
Germano D, Uteng M, Pognan F, Chibout SD, Wolf A. Determination of liver specific toxicities in rat hepatocytes by high content imaging during 2-week multiple treatment. Toxicol In Vitro 2014; 30:79-94. [PMID: 24933330 DOI: 10.1016/j.tiv.2014.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/26/2022]
Abstract
DILI is a major safety issue during drug development and one of the leading causes for market withdrawal. Despite many efforts made in the past, the prediction of DILI using in vitro models remains very unreliable. In the present study, the well-established hepatocyte Collagen I-Matrigel™ sandwich culture was used, mimicking chronic drug treatment after multiple incubations for 14 days. Ten drugs associated with different types of specific preclinical and clinical liver injury were evaluated at non-cytotoxic concentrations. Mrp2-mediated transport, intracellular accumulation of neutral lipids and phospholipids were selected as functional endpoints by using Cellomics™ Arrayscan® technology and assessed at five timepoints (day 1, 3, 7, 10, 14). Liver specific functional impairments after drug treatment were enhanced over time and could be monitored by HCI already after few days and before cytotoxicity. Phospholipidosis-inducing drugs Chlorpromazine and Amiodarone displayed the same response as in vivo. Cyclosporin A, Chlorpromazine, and Troglitazone inhibited Mrp2-mediated biliary transport, correlating with in vivo findings. Steatosis remained difficult to be reproduced under the current in vitro testing conditions, resulting into false negative and positive responses. The present results suggest that the repeated long-term treatment of rat hepatocytes in the Collagen I-Matrigel™ sandwich configuration might be a suitable tool for safety profiling of the potential to induce phospholipidosis and impair Mrp2-mediated transport processes, but not to predict steatosis.
Collapse
Affiliation(s)
- Davide Germano
- Discovery and Investigative Safety, Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Marianne Uteng
- Discovery and Investigative Safety, Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Francois Pognan
- Discovery and Investigative Safety, Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Salah-Dine Chibout
- Discovery and Investigative Safety, Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland
| | - Armin Wolf
- Discovery and Investigative Safety, Preclinical Safety, Novartis Institutes for Biomedical Research, CH-4057 Basel, Switzerland.
| |
Collapse
|
13
|
Oliveira FDA, Andrade LN, de Sousa EBV, de Sousa DP. Anti-ulcer activity of essential oil constituents. Molecules 2014; 19:5717-47. [PMID: 24802985 PMCID: PMC6290561 DOI: 10.3390/molecules19055717] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022] Open
Abstract
Essential oils have attracted considerable worldwide attention over the last few decades. These natural products have wide-ranging pharmacological activities and biotechnological applications. Faced with the need to find new anti-ulcer agents and the great effort on the development of drugs for the treatment of ulcers, in this review, the anti-ulcer activities of 21 bioactive compounds found in essential oils are discussed.
Collapse
Affiliation(s)
| | - Luciana Nalone Andrade
- Universidade Federal de Sergipe, Departamento de Farmácia, São Cristóvão, SE 49100-000, Brazil
| | | | | |
Collapse
|
14
|
Synthesis, In Vitro and In Vivo Evaluation of the N-ethoxycarbonylmorpholine Ester of Diclofenac as a Prodrug. Pharmaceuticals (Basel) 2014; 7:453-63. [PMID: 24736104 PMCID: PMC4014702 DOI: 10.3390/ph7040453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/20/2014] [Accepted: 03/31/2014] [Indexed: 11/30/2022] Open
Abstract
The N-ethoxycarbonylmorpholine moiety was evaluated as a novel prodrug moiety for carboxylic acid containing drugs represented by diclofenac (1). Compound 2, the N-ethoxycarbonylmorpholine ester of diclofenac was synthesized and evaluated as a potential prodrug. The stability of the synthesized prodrug was evaluated in solutions of pH 1 and 7.4, and in plasma. The ester’s half lives were found to be 8 h, 47 h and 21 min in pH 1, pH 7.4 and plasma, respectively. Equimolar doses of diclofenac sodium and its synthesized prodrug were administered orally to a group of rabbits in a crossover study to evaluate their pharmacokinetic parameters. The prodrug 2 shows a similar rate and extent of absorption as the parent drug (1). The ulcerogenicity of the prepared prodrug was evaluated and compared with the parent drug. The prodrug showed less ulcerogenicity as detected by fewer number and smaller size of ulcers. In conclusion, the newly synthesized N-ethoxycarbonylmorpholine ester of diclofenac prodrug showed appropriate stability properties at different pHs, similar pharmacokinetic profile, and much less ulcerogenecity at the GIT compared to the parent drug diclofenac.
Collapse
|
15
|
Pharmacological evaluation and preparation of nonsteroidal anti-inflammatory drugs containing an N-acyl hydrazone subunit. Int J Mol Sci 2014; 15:5821-37. [PMID: 24714090 PMCID: PMC4013598 DOI: 10.3390/ijms15045821] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/14/2014] [Accepted: 03/18/2014] [Indexed: 02/01/2023] Open
Abstract
A series of anti-inflammatory derivatives containing an N-acyl hydrazone subunit (4a-e) were synthesized and characterized. Docking studies were performed that suggest that compounds 4a-e bind to cyclooxygenase (COX)-1 and COX-2 isoforms, but with higher affinity for COX-2. The compounds display similar anti-inflammatory activities in vivo, although compound 4c is the most effective compound for inhibiting rat paw edema, with a reduction in the extent of inflammation of 35.9% and 52.8% at 2 and 4 h, respectively. The anti-inflammatory activity of N-acyl hydrazone derivatives was inferior to their respective parent drugs, except for compound 4c after 5 h. Ulcerogenic studies revealed that compounds 4a-e are less gastrotoxic than the respective parent drug. Compounds 4b-e demonstrated mucosal damage comparable to celecoxib. The in vivo analgesic activities of the compounds are higher than the respective parent drug for compounds 4a-b and 4d-e. Compound 4a was more active than dipyrone in reducing acetic-acid-induced abdominal constrictions. Our results indicate that compounds 4a-e are anti-inflammatory and analgesic compounds with reduced gastrotoxicity compared to their respective parent non-steroidal anti-inflammatory drugs.
Collapse
|
16
|
Rosario-Meléndez R, Yu W, Uhrich KE. Biodegradable polyesters containing ibuprofen and naproxen as pendant groups. Biomacromolecules 2013; 14:3542-8. [PMID: 23957612 PMCID: PMC3812688 DOI: 10.1021/bm400889a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Controlled release of nonsteroidal anti-inflammatory drugs such as ibuprofen and naproxen could be beneficial for the treatment of inflammatory diseases while reducing the side effects resulting from their continuous use. Novel biodegradable polyesters solely comprised of biocompatible components (e.g., tartaric acid, 1,8-octanediol, and ibuprofen or naproxen as pendant groups) have been synthesized using tin(II) 2-ethylhexanoate as catalyst at 130 °C and subsequently characterized to determine their structures and physicochemical properties. The polymers release the free drug (ibuprofen or naproxen) in vitro in a controlled manner without burst release, unlike the release rates achieved when the drugs are encapsulated in other polymers. These new biomaterials are not cytotoxic toward mouse fibroblasts up to 0.10 mg/mL. The drugs retain their chemical structure following hydrolytic degradation of the polymer, suggesting that bioactivity is preserved.
Collapse
Affiliation(s)
- Roselin Rosario-Meléndez
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Weiling Yu
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | - Kathryn E. Uhrich
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| |
Collapse
|
17
|
Redasani VK, Bari SB. Synthesis and Evaluation of Glyceride Prodrugs of Naproxen. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojmc.2013.33011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Bazzo GC, Macedo ATD, Crenca JP, Silva VE, Pereira EM, Zétola M, Pezzini BR. Microspheres prepared with biodegradable PHBV and PLA polymers as prolonged-release system for ibuprofen: in vitro drug release and in vivo evaluation. BRAZ J PHARM SCI 2012. [DOI: 10.1590/s1984-82502012000400021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactide) (PLA) microspheres containing ibuprofen were prepared with the aim of prolonging the drug release. The oil-in-water (O/W) emulsion solvent evaporation technique was used, varying the polymer ratio. All formulations provided spherical particles with drug crystals on the surface and a porous and rough polymeric matrix when PHBV was used and smooth external surface when prepared with PLA. The in vitro dissolution profiles show that the formulation containing PHBV/PLA at the proportion of 30/70 presented the best results in terms of prolonging the ibuprofen release. The analysis of the concentration of ibuprofen in the blood of rats showed that maximum levels were achieved at between one and two hours after administration of the immediate-release form (pure drug), while the prolonged microspheres led to a small amount of the drug being released within the first two hours and reached the maximum level after six hours of administration. It was concluded that it is possible to prolong the release of ibuprofen through its incorporation into PHBV/PLA microspheres.
Collapse
|
19
|
Redasani VK, Bari SB. Synthesis and evaluation of mutual prodrugs of ibuprofen with menthol, thymol and eugenol. Eur J Med Chem 2012; 56:134-8. [DOI: 10.1016/j.ejmech.2012.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/18/2012] [Accepted: 08/20/2012] [Indexed: 10/28/2022]
|
20
|
Abstract
AIM Dexibuprofen, the S(+)-isomer of ibuprofen, is an effective therapeutic agent for the treatment of neurodegenerative disorders. However, its clinical use is hampered by a limited brain distribution. The aim of this study was to design and synthesize brain-targeting dexibuprofen prodrugs and to evaluate their brain-targeting efficiency using biodistribution and pharmacokinetic analysis. METHODS In vitro stability, biodistribution and pharmacokinetic studies were performed on male Sprague-Dawley rats. The concentrations of dexibuprofen in biosamples, including the plasma, brain, heart, liver, spleen, lung, and kidney, were measured using high pressure lipid chromatography (HPLC). The pharmacokinetic parameters of the drug in the plasma and tissues were calculated using obtained data and statistics. RESULTS Five dexibuprofen prodrugs that were modified to contain ethanolamine-related structures were designed and synthesized. Their chemical structures were confirmed using (1)H NMR, (13)C NMR, IR, and HRMS. In the biodistribution study, 10 min after intravenous administration of dexibuprofen (11.70 mg/kg) and its prodrugs (the dose of each compound was equivalent to 11.70 mg/kg of dexibuprofen) in male Sprague-Dawley rats, the dexibuprofen concentrations in the brain and plasma were measured. The C(brain)/C(plasma) ratios of prodrugs 1, 2, 3, 4, and 5 were 17.0-, 15.7-, 7.88-, 9.31-, and 3.42-fold higher than that of dexibuprofen, respectively (P<0.01). Thus, each of the prodrugs exhibited a significantly enhanced brain distribution when compared with dexibuprofen. In the pharmacokinetic study, prodrug 1 exhibited a brain-targeting index of 11.19 {DTI=(AUC(brain)/AUC(plasma))(1)/(AUC(brain)/AUC(plasma))(dexibuprofen)}. CONCLUSION The ethanolamine-related structures may play an important role in transport across the brain blood barrier.
Collapse
|
21
|
Wu D, Ao G, Cao Q, Chen D, Cui J. In vitro and in vivo evaluation of ibuprofen-paeonol conjugate. J Control Release 2011; 152 Suppl 1:e98-100. [PMID: 22195956 DOI: 10.1016/j.jconrel.2011.08.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dan Wu
- Department of Pharmaceutics, School of Pharmacy, Medical College of Soochow University, Suzhou 215123, China
| | | | | | | | | |
Collapse
|
22
|
Yáñez JA, Wang SW, Knemeyer IW, Wirth MA, Alton KB. Intestinal lymphatic transport for drug delivery. Adv Drug Deliv Rev 2011; 63:923-42. [PMID: 21689702 PMCID: PMC7126116 DOI: 10.1016/j.addr.2011.05.019] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 10/15/2010] [Accepted: 01/26/2011] [Indexed: 12/16/2022]
Abstract
Intestinal lymphatic transport has been shown to be an absorptive pathway following oral administration of lipids and an increasing number of lipophilic drugs, which once absorbed, diffuse across the intestinal enterocyte and while in transit associate with secretable enterocyte lipoproteins. The chylomicron-associated drug is then secreted from the enterocyte into the lymphatic circulation, rather than the portal circulation, thus avoiding the metabolically-active liver, but still ultimately returning to the systemic circulation. Because of this parallel and potentially alternative absorptive pathway, first-pass metabolism can be reduced while increasing lymphatic drug exposure, which opens the potential for novel therapeutic modalities and allows the implementation of lipid-based drug delivery systems. This review discusses the physiological features of the lymphatics, enterocyte uptake and metabolism, links between drug transport and lipid digestion/re-acylation, experimental model (in vivo, in vitro, and in silico) of lymphatic transport, and the design of lipid- or prodrug-based drug delivery systems for enhancing lymphatic drug transport.
Collapse
|
23
|
Ibuprofenamide: a convenient method of synthesis by catalytic hydration of 2-(4-isobutylphenyl)propionitrile in pure aqueous medium. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.06.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Dhaneshwar S, Tewari K, Joshi S, Godbole D, Ghosh P. Diglyceride prodrug strategy for enhancing the bioavailability of norfloxacin. Chem Phys Lipids 2011; 164:307-13. [PMID: 21477584 DOI: 10.1016/j.chemphyslip.2011.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/25/2011] [Accepted: 03/28/2011] [Indexed: 10/18/2022]
Abstract
Prodrug approach using diglyceride as a promoiety is a promising strategy to improve bioavailability of poorly absorbed drugs and the same was explored in the present work to improve oral bioavailability of norfloxacin; a second generation fluoroquinolone antibacterial. The prodrug was synthesized by standard procedures using dipalmitine as a carrier and the structure was confirmed by spectral analysis. Higher LogP indicated improved lipophilicity. The ester linkage between norfloxacin and dipalmitine would be susceptible to hydrolysis by lipases to release the parent drug and carrier in the body. In vivo kinetic studies in rats indicated 53% release of norfloxacin in plasma at the end of 8h. The prodrug exhibited improved pharmacological profile than the parent compound at equimolar dose that indirectly indicated improved bioavailability.
Collapse
Affiliation(s)
- Suneela Dhaneshwar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandwane, Pune, Maharashtra, India.
| | | | | | | | | |
Collapse
|
25
|
Nayak A, Jain A. In Vitro and In Vivo Study of Poly(ethylene glycol) Conjugated Ibuprofen to Extend the Duration of Action. Sci Pharm 2011; 79:359-73. [PMID: 21773072 PMCID: PMC3134853 DOI: 10.3797/scipharm.0911-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 03/04/2011] [Indexed: 11/22/2022] Open
Abstract
Ibuprofen-polyethylene glycol (PEG) conjugates (PEG-Ibu) were prepared and their potential as a prolonged release system was investigated. Two PEG-Ibu conjugates were synthesized from Ibuprofen and PEG with two different molecular weights by esterification in the presence of DCC and DMAP. The PEG-Ibu conjugates were characterized by FT-IR, (1)H NMR, Mass spectroscopy and DSC analysis. The solubility study in aqueous system showed an increase in solubility of conjugates. The dissolution / hydrolysis studies showed a specific acid-base catalysis pattern dependent on the pH of the medium. This indicated a good chemical stability in aqueous buffer solution of acidic medium and the extended release behavior was found in both prodrugs after 9 hour. The results demonstrate that, in the same condition, the rate of hydrolysis for PEG(4000)-Ibu is slower than other. The Writhing induced by acetic acid experiment and paw edema test after oral administration showed that both conjugates had extended analgesic and anti-inflammatory effects compared with Ibuprofen. These results suggest that PEG-Ibu could be a promising NSAID prodrug with an extended pharmacological effect owing to delayed-release of parent drug.
Collapse
Affiliation(s)
- Anjali Nayak
- B. R. Nahata College of Pharmacy, Mandsaur 458001, India
| | | |
Collapse
|
26
|
Abu Zanat FZ, Qandil AM, Tashtoush BM. A promising codrug of nicotinic acid and ibuprofen for managing dyslipidemia. I: Synthesis andin vitroevaluation. Drug Dev Ind Pharm 2011; 37:1090-9. [DOI: 10.3109/03639045.2011.560155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Stepanović-Petrović RM, Tomić MA, Vučković SM, Poznanović G, Ugrešić ND, Prostran MŠ, Bošković B. Pharmacological interaction between oxcarbazepine and two COX inhibitors in a rat model of inflammatory hyperalgesia. Pharmacol Biochem Behav 2011; 97:611-8. [DOI: 10.1016/j.pbb.2010.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 12/29/2022]
|
28
|
Rasheed A, Ashok Kumar CK. Tyrosine and glycine derivatives as potential prodrugs: design, synthesis, and pharmacological evaluation of amide derivatives of mefenamic acid. J Enzyme Inhib Med Chem 2010; 25:804-11. [PMID: 20578977 DOI: 10.3109/14756360903468163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study deals with the synthesis, pharmacological activity, and kinetic studies of mefenamic acid (MA) prodrugs of tyrosine and glycine. The synthesis involved a series of protection and deprotection reactions. The hydrolysis of these prodrugs in the intestine was confirmed by hydrolysis kinetics studies in simulated gastric fluid, simulated intestinal fluid, and 80% plasma. The prodrugs were also evaluated for analgesic, anti-inflammatory, and ulcerogenic activities. The glycine prodrug showed maximum analgesic activity of 86%, and both tyrosine and glycine prodrugs showed better anti-inflammatory activity of 74% and 81%, respectively, when compared to the 40% of MA. Further, the prodrugs showed fewer gastric ulcers compared to MA; tyrosine and glycine prodrugs had an average ulcer index of 9.1 and 4.5, respectively, while an average ulcer index of 24.2 was observed with MA. These findings suggest that both prodrugs are better in action as compared to MA, and are advantageous in having fewer gastrointestinal side effects.
Collapse
Affiliation(s)
- Arun Rasheed
- Department of Pharmaceutical Chemistry, Sree Vidyanikethan College of Pharmacy, Sree Sainath Nagar, Tirupati, Andhra Pradesh, India.
| | | |
Collapse
|
29
|
Properties of ibuprofen ion-selective electrodes based on the ion pair complex of tetraoctylammonium cation. OPEN CHEM 2010. [DOI: 10.2478/s11532-010-0005-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIbuprofen membrane electrodes based on different plasticizers: diisobutyl phthalate (DIBP), o-nitrophenyloctyl ether (o-NPOE), dioctyl sebacate (DOS) and tetraoctylammonium 2-(4-isobutylphenyl)propionate were prepared. All electrodes show: a near Nernstian slope of characteristic (58.3–60.9 mV decade−1) in the measurement range (10−4–10−1 mol L−1), limit of detection (5.0×10−5 mol L−1), really long lifetime (12 months), dependence of the electrode potential on pH (5.5–9.0), reproducibility of potential (0.6–1.2 mV) and selectivity coefficients in relation to some organic and inorganic anions. The electrodes were applied for the determination of ibuprofen in tablets by the calibration curve method and the standard addition method.
Collapse
|
30
|
Fun HK, Kia R, Jebas SR, Sujith KV, Kalluraya B. 1-[2-(4-Isobutyl-phen-yl)propano-yl]thiosemicarbazide. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o621. [PMID: 21582273 PMCID: PMC2968597 DOI: 10.1107/s1600536809006527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 02/23/2009] [Indexed: 11/23/2022]
Abstract
In the title compound, C14H21N3OS, intermolecular N—H⋯O interactions generate ten-membered rings with R22(10) ring motifs, whereas N—H⋯S interactions generate eight, 14- and 16-membered rings with R22(8), R44(14) and R44(16) ring motifs, respectively. There are weak intramolecular N—H⋯π interactions which might influence the conformation of the molecule. The compound has a stereogenic center but the space group is centrosymmetic so the molecule exists as a racemate.
Collapse
|
31
|
Chatterjee NR, Kulkarni AA, Ghulekar SP. Synthesis, pharmacological activity and hydrolytic behavior of ethylenediamine and benzathine conjugates of ibuprofen. Eur J Med Chem 2008; 43:2819-23. [DOI: 10.1016/j.ejmech.2007.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 10/05/2007] [Accepted: 10/05/2007] [Indexed: 11/28/2022]
|
32
|
Zhao X, Wei D, Song Q, Zhang M. Study of Ibuprofen Glucopyranoside Derivative Synthesis byCandida antarcticaLipase in Organic Solvent. Prep Biochem Biotechnol 2007; 37:27-38. [PMID: 17134980 DOI: 10.1080/10826060601039428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The direct esterification of ibuprofen and methyl alpha-D-glucopyranoside in organic solvent by Novozym 435 was investigated in terms of the main variables controlling the process, including initial water activity (a(w), 0.05-0.75), incubation time, (0-168 h) and substrate concentration. The results showed that the lower initial aw values resulted in higher enzymatic activity and bioconversion yield. The most appropriate initial aw and incubation time were 0.06 and 144 h, respectively. The results also showed that the optimal ratio of ibuprofen to methyl alpha-D-glucopyranoside was 2.0. By optimizing these parameters, the yield increased about 50%. In addition, the product was confirmed to be methyl 6-O-(2'-(4'-isobutylphenyl) propionyl) D-alpha-glucopyranoside.
Collapse
Affiliation(s)
- Xiangguo Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biochemistry, East China University of Science and Technology, Shanghai, PR China
| | | | | | | |
Collapse
|
33
|
Zhao X, Tao X, Wei D, Song Q. Pharmacological activity and hydrolysis behavior of novel ibuprofen glucopyranoside conjugates. Eur J Med Chem 2006; 41:1352-8. [PMID: 16806590 DOI: 10.1016/j.ejmech.2006.05.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/20/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
Novel ester prodrugs (II, III and IV) of ibuprofen (I) were synthesized using alpha-methyl, ethyl and propyl glucopyranoside as promoieties and tested for their anti-inflammatory, analgesic and ulcerogenic activities. Study of their chemical hydrolysis in aqueous buffer (pH 3.0-10.0) showed that these compounds acted as true prodrugs of ibuprofen, giving the ibuprofen and alkyl glucopyranoside. Additionally, all the derivatives studied did cleave rapidly inside the biological system and on oral administration did elicit a pharmacological profile quite similar to that of ibuprofen, but, unlike this drug, they displayed reduced gastric ulceration. In conclusion, these alkyl glucopyranoside esters have promising properties as prodrugs for oral delivery of ibuprofen.
Collapse
Affiliation(s)
- Xiangguo Zhao
- State Key Laboratory of Bioreactor Engineering, Institute of Biochemistry, East China University of Science and Technology, Shanghai, China
| | | | | | | |
Collapse
|
34
|
Zhao XG, Wei DZ, Song QX. A facile enzymatic process for the preparation of ibuprofen ester prodrug in organic media. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2005.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|