1
|
Chen TA, Staples RJ, Warren TH. Copper catalyzed benzylic sp 3 C-H alkenylation. Chem Sci 2024:d4sc03430a. [PMID: 39391381 PMCID: PMC11459437 DOI: 10.1039/d4sc03430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/15/2024] [Indexed: 10/12/2024] Open
Abstract
The prenyl group is present in numerous biologically active small molecule drugs and natural products. We introduce benzylic C-H alkenylation of substrates Ar-CH3 with alkenylboronic esters (CH2)3O2B-CH[double bond, length as m-dash]CMe2 as a pathway to form prenyl functionalized arenes Ar-CH2CH[double bond, length as m-dash]CMe2. Mechanistic studies of this radical relay catalytic protocol reveal diverse reactivity pathways exhibited by the copper(ii) alkenyl intermediate [CuII]-CH[double bond, length as m-dash]CMe2 that involve radical capture, bimolecular C-C bond formation, and hydrogen atom transfer (HAT).
Collapse
Affiliation(s)
- Ting-An Chen
- Department of Chemistry, Georgetown University Washington D.C. 20057 USA
- Department of Chemistry, Michigan State University East Lansing Michigan 48824 USA
| | - Richard J Staples
- Department of Chemistry, Michigan State University East Lansing Michigan 48824 USA
| | - Timothy H Warren
- Department of Chemistry, Michigan State University East Lansing Michigan 48824 USA
| |
Collapse
|
2
|
Chong TC, Wong ILK, Cui J, Law MC, Zhu X, Hu X, Kan JWY, Yan CSW, Chan TH, Chow LMC. Characterization of a Potent, Selective, and Safe Inhibitor, Ac15(Az8) 2, in Reversing Multidrug Resistance Mediated by Breast Cancer Resistance Protein (BCRP/ABCG2). Int J Mol Sci 2022; 23:13261. [PMID: 36362047 PMCID: PMC9653733 DOI: 10.3390/ijms232113261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2023] Open
Abstract
Overexpression of breast cancer resistance transporter (BCRP/ABCG2) in cancers has been explained for the failure of chemotherapy in clinic. Inhibition of the transport activity of BCRP during chemotherapy should reverse multidrug resistance. In this study, a triazole-bridged flavonoid dimer Ac15(Az8)2 was identified as a potent, nontoxic, and selective BCRP inhibitor. Using BCRP-overexpressing cell lines, its EC50 for reversing BCRP-mediated topotecan resistance was 3 nM in MCF7/MX100 and 72 nM in S1M180 in vitro. Mechanistic studies revealed that Ac15(Az8)2 restored intracellular drug accumulation by inhibiting BCRP-ATPase activity and drug efflux. It did not down-regulate the cell surface BCRP level to enhance drug retention. It was not a transport substrate of BCRP and showed a non-competitive relationship with DOX in binding to BCRP. A pharmacokinetic study revealed that I.P. administration of 45 mg/kg of Ac15(Az8)2 resulted in plasma concentration above its EC50 (72 nM) for longer than 24 h. It increased the AUC of topotecan by 2-fold. In an in vivo model of BCRP-overexpressing S1M180 xenograft in Balb/c nude mice, it significantly reversed BCRP-mediated topotecan resistance and inhibited tumor growth by 40% with no serious body weight loss or death incidence. Moreover, it also increased the topotecan level in the S1M180 xenograft by 2-fold. Our results suggest that Ac15(Az8)2 is a promising candidate for further investigation into combination therapy for treating BCRP-overexpressing cancers.
Collapse
Affiliation(s)
- Tsz Cheung Chong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Iris L. K. Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jiahua Cui
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Chun Law
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuezhen Zhu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Xuesen Hu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Jason W. Y. Kan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Clare S. W. Yan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
| | - Larry M. C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
3
|
Mining Potential Drug Targets and Constructing Diagnostic Models for Heart Failure Based on miRNA-mRNA Networks. Mediators Inflamm 2022; 2022:9652169. [PMID: 36204659 PMCID: PMC9532133 DOI: 10.1155/2022/9652169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Heart failure (HF) is a globally prevalent cardiovascular disease, but effective drug targets and diagnostic models are still lacking. This study was designed to investigate effective drug targets and diagnostic models for HF in terms of miRNA targets, hoping to contribute to the understanding and treatment of HF. Using HF miRNA and gene expression profile data from the GEO database, we analyzed differentially expressed miRNAs/gene identification in HF using Limma and predicted miRNA targets by the online TargetScan database. Subsequently, gene set enrichment analysis and annotation were performed using WebGestaltR package. Protein-protein interactions were identified using the STRING database. The proximity of drugs to treat HF was also calculated and predicted for potential target therapeutic drug. In addition, further drug identification was performed by molecular docking. Finally, diagnostic models were constructed based on differential miRNAs. The GEO dataset was used to screen 66 differentially expressed miRNAs, incorporating 56 downregulated miRNAs and 10 upregulated miRNAs. The JAK-STAT signaling pathway, MAPK signaling pathway, p53 signaling pathway, Prolactin signaling pathway, and TGF-beta signaling pathway were enriched, as shown by KEGG enrichment analysis on the target genes. In addition, we found that 83 genes were upregulated and 92 genes were downregulated in HF patients vs. healthy individuals. Based on the inflammation-related score, hypoxia-related score, and energy metabolism-related score, we identified key miRNA-mRNA pairs and constructed an interaction network. Following that, TAP1, which had the highest expression and network connectivity in acute HF with crystal and molecular docking studies, was selected as a key candidate gene in the network. And the compound DB04847 was selected to produce a large number of favorable interactions with TAP1 protein. Finally, we constructed two diagnostic models based on the differential miRNAs hsa-miR-6785-5p and hsa-miR-4443. In conclusion, we identified TAP1, a key candidate gene in the diagnosis and treatment of HF, and determined that compound DB04847 is highly likely to be a potential inhibitor of TAP1. The TAP1 gene was also found to be regulated by hsa-miR-6785-5p and hsa-miR-4443, and a diagnostic model was constructed. This provides a new promising direction to improve the diagnosis, prognosis, and treatment outcome and guide more effective immunotherapy strategies of HF.
Collapse
|
4
|
Daniela SV, Gabriela OM, Andrea PM. A state-of-the-art review and prospective therapeutic applications of prenyl flavonoids as chemosensitizers against antifungal multidrug resistance in Candida albicans. Curr Med Chem 2022; 29:4251-4281. [PMID: 35139777 DOI: 10.2174/0929867329666220209103538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Multidrug resistance (MDR) in the opportunistic pathogen Candida albicans is defined as non-susceptibility to at least one agent in two or more drug classes. This phenomenon has been increasingly reported since the rise in the incidence of fungal infections in immunocompromised patients at the end of the last century. After the discovery of efflux pump overexpression as a principal mechanism causing MDR in Candida strains, drug discovery targeting fungal efflux transporters has had a growing impact. Chemosensitization aims to enhance azole intracellular concentrations through combination therapy with transporter inhibitors. Consequently, the use of drug efflux inhibitors combined with the antifungal agent will sensitize the pathogen. As a result, the use of lower drug concentrations will reduce possible adverse effects on the host. Through an extensive revision of the literature, this review aims to provide an exhaustive and critical analysis of the studies carried out in the past two decades, regarding the chemosensitization strategy to cope with multidrug resistance in C. albicans. This work provides a deep analysis of the research about the inhibition of drug-efflux membrane transporters by prenylated flavonoids and the interactions of these phytocompounds with azole antifungals as an approach to chemosensitize multidrug-resistant C. albicans strains. We highlight the importance of prenylflavonoids and their particular chemical and pharmacological characteristics that make them excellent candidates with therapeutic potential as chemosensitizers. Finally, we propose the need for further research of prenyl flavonoids as inhibitors of drug-efflux mediated fungal resistance.
Collapse
Affiliation(s)
- Santi V Daniela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Ortega María Gabriela
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| | - Peralta Mariana Andrea
- Farmacognosia, Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la torre y Medina Allende, Edificio Ciencias II, X5000HUA Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET), Ciudad Universitaria. X5000HUA Córdoba, Argentina
| |
Collapse
|
5
|
Tinoush B, Shirdel I, Wink M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front Pharmacol 2020; 11:832. [PMID: 32636741 PMCID: PMC7317022 DOI: 10.3389/fphar.2020.00832] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in the treatment of cancers. MDR cancer cells are resistant to multiple anticancer drugs. One of the major mechanisms of MDR is the efflux of anticancer drugs by ABC transporters. Increased activity and overexpression of these transporters are important causes of drug efflux and, therefore, resistance to cancer chemotherapy. Overcoming MDR is a fundamental prerequisite for developing an efficient treatment of cancer. To date, various types of ABC transporter inhibitors have been employed but no effective anticancer drug is available at present, which can completely overcome MDR. Phytochemicals can reverse MDR in cancer cells via affecting the expression or activity of ABC transporters, and also through exerting synergistic interactions with anticancer drugs by addressing additional molecular targets. We have listed numerous phytochemicals which can affect the expression and activity of ABC transporters in MDR cancer cell lines. Phytochemicals in the groups of flavonoids, alkaloids, terpenes, carotenoids, stilbenoids, lignans, polyketides, and curcuminoids have been examined for MDR-reversing activity. The use of MDR-reversing phytochemicals with low toxicity to human in combination with effective anticancer agents may result in successful treatment of chemotherapy-resistant cancer. In this review, we summarize and discuss published evidence for natural products with MDR modulation abilities.
Collapse
Affiliation(s)
- Boshra Tinoush
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
6
|
Zhang E, Liu J, Shi L, Guo X, Liang Z, Zuo J, Xu H, Wang H, Shu X, Huang S, Zhang S, Kang X, Zhen Y. 7-O-geranylquercetin contributes to reverse P-gp-mediated adriamycin resistance in breast cancer. Life Sci 2019; 238:116938. [DOI: 10.1016/j.lfs.2019.116938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022]
|
7
|
Rusli N, Amanah A, Kaur G, Adenan MI, Sulaiman SF, Wahab HA, Tan ML. The inhibitory effects of mitragynine on P-glycoprotein in vitro. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:481-496. [DOI: 10.1007/s00210-018-01605-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
|
8
|
Fang Y, Sun J, Zhong X, Hu R, Gao J, Duan G, Ji C, Chen L, Zhang W, Miao C, Aisa HA, Zhang X. ES2 enhances the efficacy of chemotherapeutic agents in ABCB1-overexpressing cancer cells in vitro and in vivo. Pharmacol Res 2018; 129:388-399. [DOI: 10.1016/j.phrs.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022]
|
9
|
Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep 2018; 8:967. [PMID: 29343829 PMCID: PMC5772368 DOI: 10.1038/s41598-018-19325-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/27/2017] [Indexed: 12/17/2022] Open
Abstract
Overexpression of ATP-binding cassette (ABC) transporters is often linked to multidrug resistance (MDR) in cancer chemotherapies. P-glycoprotein (P-gp) is one of the best studied drug transporters associated with MDR. There are currently no approved drugs available for clinical use in cancer chemotherapies to reverse MDR by inhibiting P-glycoprotein. Using computational studies, we previously identified several compounds that inhibit P-gp by targeting its nucleotide binding domain and avoiding its drug binding domains. Several of these compounds showed successful MDR reversal when tested on a drug resistant prostate cancer cell line. Using conventional two-dimensional cell culture of MDR ovarian and prostate cancer cells and three dimensional prostate cancer microtumor spheroids, we demonstrated here that co-administration with chemotherapeutics significantly decreased cell viability and survival as well as cell motility. The P-gp inhibitors were not observed to be toxic on their own. The inhibitors increased cellular retention of chemotherapeutics and reporter compounds known to be transport substrates of P-gp. We also showed that these compounds are not transport substrates of P-gp and that two of the three inhibit P-gp, but not the closely related ABC transporter, ABCG2/BCRP. The results presented suggest that these P-gp inhibitors may be promising leads for future drug development.
Collapse
|
10
|
Wongrattanakamon P, Nimmanpipug P, Sirithunyalug B, Jiranusornkul S. Molecular modeling elucidates the cellular mechanism of synaptotagmin-SNARE inhibition: a novel plausible route to anti-wrinkle activity of botox-like cosmetic active molecules. Mol Cell Biochem 2017; 442:97-109. [DOI: 10.1007/s11010-017-3196-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/05/2017] [Indexed: 11/30/2022]
|
11
|
Wongrattanakamon P, Nimmanpipug P, Sirithunyalug B, Chansakaow S, Jiranusornkul S. A significant mechanism of molecular recognition between bioflavonoids and P-glycoprotein leading to herb-drug interactions. Toxicol Mech Methods 2017; 28:1-11. [PMID: 28678657 DOI: 10.1080/15376516.2017.1351506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of P-glycoprotein (P-gp)'s function may conduct significant changes in the prescription drugs' pharmacokinetic profiles and escalate potential risks in taking place of drug/herb-drug interactions. Computational modeling was advanced to scrutinize some bioflavonoids which play roles in herb-drug interactions as P-gp inhibitors utilizing molecular docking and pharmacophore analyses. Twenty-five flavonoids were utilized as ligands for the modeling. The mouse P-gp (code: 4Q9H) was acquired from the PDB. The docking was operated utilizing AutoDock version 4.2.6 (Scripps Research Institute, La Jolla, CA) against the NBD2 of 4Q9H. The result illustrated the high correlation between the docking scores and observed activities of the flavonoids and the putative binding site of these flavonoids was proposed and compared with the site for ATP. To evaluate hotspot amino acid residues within the NBD2, Binding modes for the ligands were achieved using LigandScout to originate the NBD2-flavonoid pharmacophore models. The results asserted that these inhibitors competed with ATP for binding site in the NBD2 (as competitive inhibitors) including the hotspot residues which associated with electrostatic and van der Waals interactions with the flavonoids. In MD simulation of eight delegated complexes selected from the analyzed flavonoid subclasses, RMSD analysis of the trajectories indicated the residues were stable throughout the duration of simulations.
Collapse
Affiliation(s)
- Pathomwat Wongrattanakamon
- a Laboratory for Molecular Design and Simulation (LMDS), Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Piyarat Nimmanpipug
- b Computational Simulation and Modelling Laboratory (CSML), Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai , Thailand
| | - Busaban Sirithunyalug
- c Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Sunee Chansakaow
- c Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Supat Jiranusornkul
- a Laboratory for Molecular Design and Simulation (LMDS), Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
12
|
Wongrattanakamon P, Lee VS, Nimmanpipug P, Sirithunyalug B, Chansakaow S, Jiranusornkul S. Insight into the molecular mechanism of P-glycoprotein mediated drug toxicity induced by bioflavonoids: an integrated computational approach. Toxicol Mech Methods 2017; 27:253-271. [PMID: 27996361 DOI: 10.1080/15376516.2016.1273428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, molecular docking, pharmacophore modeling and molecular dynamics (MD) simulation were rendered for the mouse P-glycoprotein (P-gp) (code: 4Q9H) and bioflavonoids; amorphigenin, chrysin, epigallocatechin, formononetin and rotenone including a positive control; verapamil to identify protein-ligand interaction features including binding affinities, interaction characteristics, hot-spot amino acid residues and complex stabilities. These flavonoids occupied the same binding site with high binding affinities and shared the same key residues for their binding interactions and the binding region of the flavonoids was revealed that overlapped the ATP binding region with hydrophobic and hydrophilic interactions suggesting a competitive inhibition mechanism of the compounds. Root mean square deviations (RMSDs) analysis of MD trajectories of the protein-ligand complexes and NBD2 residues, and ligands pointed out these residues were stable throughout the duration of MD simulations. Thus, the applied preliminary structure-based molecular modeling approach of interactions between NBD2 and flavonoids may be gainful to realize the intimate inhibition mechanism of P-gp at NBD2 level and on the basis of the obtained data, it can be concluded that these bioflavonoids have the potential to cause herb-drug interactions or be used as lead molecules for the inhibition of P-gp (as anti-multidrug resistance agents) via the NBD2 blocking mechanism in future.
Collapse
Affiliation(s)
- Pathomwat Wongrattanakamon
- a Laboratory for Molecular Design and Simulation (LMDS), Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Vannajan Sanghiran Lee
- b Department of Chemistry, Faculty of Science , University of Malaya , Kuala Lumpur , Malaysia
| | - Piyarat Nimmanpipug
- c Computational Simulation and Modelling Laboratory (CSML), Department of Chemistry, Faculty of Science , Chiang Mai University , Chiang Mai , Thailand
| | - Busaban Sirithunyalug
- d Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Sunee Chansakaow
- d Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| | - Supat Jiranusornkul
- a Laboratory for Molecular Design and Simulation (LMDS), Department of Pharmaceutical Sciences, Faculty of Pharmacy , Chiang Mai University , Chiang Mai , Thailand
| |
Collapse
|
13
|
Yuan Z, Chen D, Chen X, Yang H, Wei Y. Overexpression of trefoil factor 3 (TFF3) contributes to the malignant progression in cervical cancer cells. Cancer Cell Int 2017; 17:7. [PMID: 28070169 PMCID: PMC5216547 DOI: 10.1186/s12935-016-0379-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background There remains a great need for effective therapies for cervical cancers, the majority of which are aggressive leaving patients with poor prognosis. Methods and results Here, we identify a novel candidate therapeutic target, trefoil factor 3 (TFF3) which overexpressed in cervical cancer cells and was associated with reduced postoperative survival. Functional studies demonstrated that TFF3 overexpression promoted the proliferation and invasion of cervical cancer cells, and inhibited the apoptosis by inducing the mRNA changes in SiHa and Hela cell lines. Conversely, TFF3 silencing disrupted the proliferation and invasion of cervical cancer cells, and induced the apoptosis via Click-iT EdU test, flow cytometry analysis and two-dimensional Matrigel Transwell analysis. Western blot analysis showed that overexpression of TFF3 repressed E-cadherin (CDH1) expression to promote the invasion of cervical cancer cells. Furthermore, down-regulated CDH1 via overexpression of TFF3 was significantly up-regulated by virtue of inhibitor of p-STAT3. Conclusions These results suggested that TFF3 stimulated the invasion of cervical cancer cells probably by activating the STAT3/CDH1 signaling pathway. Furthermore, overexpression of TFF3 decreased the sensitivity of cervical cancer cells to etoposide by increasing P-glycoprotein (P-gp) functional activity. Overall, our work provides a preclinical proof that TFF3 not only contributes to the malignant progression of cervical cancers and but also is a potential therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0379-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| | - Dandan Chen
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 China
| | - Xiaojie Chen
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| | - Huikuan Yang
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| |
Collapse
|
14
|
Kraege S, Stefan K, Köhler SC, Wiese M. Optimization of Acryloylphenylcarboxamides as Inhibitors of ABCG2 and Comparison with Acryloylphenylcarboxylates. ChemMedChem 2016; 11:2547-2558. [PMID: 27785905 DOI: 10.1002/cmdc.201600455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/05/2016] [Indexed: 11/08/2022]
Abstract
ABCG2 belongs to the superfamily of ATP binding cassette (ABC) proteins and is associated with the limited success of anticancer chemotherapy, given its responsibility for the cross-resistance of tumor cells, known as multidrug resistance (MDR). Several classes of ABCG2 inhibitors were developed for increasing the efficacy of chemotherapy. A series of chalcones coupled to an additional aromatic residue was synthesized and investigated for their inhibition of ABC transporters. In our previous work we determined the preferred position of the linker on the A-ring to be ortho, and found several substitution patterns at the additional ring that improved potency. In this study we investigated whether a methoxy group that improved the inhibitory activity of chalcones would also be beneficial for the acryloylphenylcarboxamide scaffold. Indeed, this modification led to highly potent ABCG2 inhibitors. To support the hypothesis of a beneficial effect of the amide linker, six acryloylphenylcarboxylates were synthesized and investigated for their inhibitory activity. Replacement of the amide linker with an ester group resulted in decreased inhibition. Molecular modeling showed that the conformational preference of both series differs, thereby explaining the positive effect of the amide linker. Several compounds were characterized in detail by investigating their intrinsic cytotoxicity and capacity to reverse MDR in MTT assays and their effect on vanadate-sensitive ATPase activity.
Collapse
Affiliation(s)
- Stefanie Kraege
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sebastian C Köhler
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
15
|
Nucleotide binding domain 1 pharmacophore modeling for visualization and analysis of P-glycoprotein–flavonoid molecular interactions. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11515-016-1421-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Mohana S, Ganesan M, Agilan B, Karthikeyan R, Srithar G, Beaulah Mary R, Ananthakrishnan D, Velmurugan D, Rajendra Prasad N, Ambudkar SV. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer. MOLECULAR BIOSYSTEMS 2016; 12:2458-70. [PMID: 27216424 PMCID: PMC4955727 DOI: 10.1039/c6mb00187d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
P-Glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and they significantly reduced resistance in cytotoxicity assays to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Binding Sites
- Catalytic Domain
- Cell Line, Tumor
- Computer Simulation
- Dietary Supplements
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Humans
- Ligands
- Models, Molecular
- Molecular Docking Simulation
- Protein Binding
- Protein Conformation
- Structure-Activity Relationship
Collapse
Affiliation(s)
- S Mohana
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - M Ganesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - B Agilan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - R Karthikeyan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - G Srithar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - R Beaulah Mary
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - D Ananthakrishnan
- Bioinformatics Infrastructure Facility (BIF), University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - D Velmurugan
- Bioinformatics Infrastructure Facility (BIF), University of Madras, Guindy Campus, Chennai, Tamil Nadu, India and CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256, USA.
| |
Collapse
|
17
|
Hussain SA, Sulaiman AA, Balch C, Chauhan H, Alhadidi QM, Tiwari AK. Natural Polyphenols in Cancer Chemoresistance. Nutr Cancer 2016; 68:879-91. [DOI: 10.1080/01635581.2016.1192201] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
18
|
Wongrattanakamon P, Lee VS, Nimmanpipug P, Jiranusornkul S. Nucleotide-binding domain 1 modelling: A novel molecular docking approach for screening of P-glycoprotein inhibitory activity of bioflavonoids. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.cdc.2016.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Kraege S, Stefan K, Juvale K, Ross T, Willmes T, Wiese M. The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2). Eur J Med Chem 2016; 117:212-29. [PMID: 27100033 DOI: 10.1016/j.ejmech.2016.03.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022]
Abstract
During the last decade it has been found that chalcones and quinazolines are promising inhibitors of ABCG2. The combination of these two scaffolds offers a new class of heterocyclic compounds with potentially high inhibitory activity against ABCG2. For this purpose we investigated 22 different heterodimeric derivatives. In this series only methoxy groups were used as substituents as these had been proven superior for inhibitory activity of chalcones. All compounds were tested for their inhibitory activity, specificity and cytotoxicity. The most potent ABCG2 inhibitor in this series showed an IC50 value of 0.19 μM. It possesses low cytotoxicity (GI50 = 93 μM), the ability to reverse MDR and is nearly selective toward ABCG2. Most compounds containing dimethoxy groups showed slight activity against ABCB1 too. Among these three compounds (17, 19 and 24) showed even higher activity toward ABCB1 than ABCG2. All inhibitors were further screened for their effect on basal ATPase activity. Although the basal ATPase activity was partially stimulated, the compounds were not transported by ABCG2. Thus, quinazoline-chalcones are a new class of effective ABCG2 inhibitors.
Collapse
Affiliation(s)
- Stefanie Kraege
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Kapil Juvale
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Thomas Ross
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Thomas Willmes
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
20
|
Follit CA, Brewer FK, Wise JG, Vogel PD. In silico identified targeted inhibitors of P-glycoprotein overcome multidrug resistance in human cancer cells in culture. Pharmacol Res Perspect 2015; 3:e00170. [PMID: 26516582 PMCID: PMC4618641 DOI: 10.1002/prp2.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/21/2015] [Accepted: 06/23/2015] [Indexed: 11/24/2022] Open
Abstract
Failure of cancer chemotherapies is often linked to the over expression of ABC efflux transporters like the multidrug resistance P-glycoprotein (P-gp). P-gp expression in cells leads to the elimination of a variety of chemically unrelated, mostly cytotoxic compounds. Administration of chemotherapeutics during therapy frequently selects for cells that over express P-gp and are therefore capable of robustly exporting diverse compounds, including chemotherapeutics, from the cells. P-gp thus confers multidrug resistance to a majority of drugs currently available for the treatment of cancers and diseases like HIV/AIDS. The search for P-gp inhibitors for use as co-therapeutics to combat multidrug resistances has had little success to date. In a previous study (Brewer et al., Mol Pharmacol 86: 716–726, 2014), we described how ultrahigh throughput computational searches led to the identification of four drug-like molecules that specifically interfere with the energy harvesting steps of substrate transport and inhibit P-gp catalyzed ATP hydrolysis in vitro. In the present study, we demonstrate that three of these compounds reversed P-gp-mediated multidrug resistance of cultured prostate cancer cells to restore sensitivity comparable to naïve prostate cancer cells to the chemotherapeutic drug, paclitaxel. Potentiation concentrations of the inhibitors were <3 μmol/L. The inhibitors did not exhibit significant toxicity to noncancerous cells at concentrations where they reversed multidrug resistance in cancerous cells. Our results indicate that these compounds with novel mechanisms of P-gp inhibition are excellent leads for the development of co-therapeutics for the treatment of multidrug resistances.
Collapse
Affiliation(s)
- Courtney A Follit
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| | - Frances K Brewer
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| | - John G Wise
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| | - Pia D Vogel
- Department of Biological Sciences, The Center for Drug Discovery, Design and Delivery, Southern Methodist University Dallas, Texas, 75275-0376
| |
Collapse
|
21
|
Ferreira A, Pousinho S, Fortuna A, Falcão A, Alves G. Flavonoid compounds as reversal agents of the P-glycoprotein-mediated multidrug resistance: biology, chemistry and pharmacology. PHYTOCHEMISTRY REVIEWS 2015; 14:233-272. [DOI: 10.1007/s11101-014-9358-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Thai KM, Huynh NT, Ngo TD, Mai TT, Nguyen TH, Tran TD. Three- and four-class classification models for P-glycoprotein inhibitors using counter-propagation neural networks. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2015; 26:139-163. [PMID: 25588022 DOI: 10.1080/1062936x.2014.995701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
P-glycoprotein (P-gp) is an ATP binding cassette (ABC) transporter that helps to protect several certain human organs from xenobiotic exposure. This efflux pump is also responsible for multi-drug resistance (MDR), an issue of the chemotherapy approach in the fight against cancer. Therefore, the discovery of P-gp inhibitors is considered one of the most popular strategies to reverse MDR in tumour cells and to improve therapeutic efficacy of commonly used cytotoxic drugs. Until now, several generations of P-gp inhibitors have been developed but they have largely failed in preclinical and clinical studies due to lack of selectivity, poor solubility and severe pharmacokinetic interactions. In this study, three models (SION, SIO, SIN) to classify specific 'true' P-gp inhibitors as well as three other models (CPBN, CPB1, CPN) to distinguish between P-gp inhibitors, CYP 3A inhibitors and co-inhibitors of these proteins with rather high accuracy values for the test set and the external set were generated based on counter-propagation neural networks (CPG-NN). Such three and four-class classification models helped provide more information about the bioactivities of compounds not only on one target (P-gp), but also on a combination of multiple targets (P-gp, CYP 3A).
Collapse
Affiliation(s)
- K-M Thai
- a Department of Medicinal Chemistry, School of Pharmacy , University of Medicine and Pharmacy at Ho Chi Minh City , Ho Chi Minh City , Viet Nam
| | | | | | | | | | | |
Collapse
|
23
|
Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking. J Nutr Biochem 2015; 26:44-56. [DOI: 10.1016/j.jnutbio.2014.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/23/2014] [Accepted: 09/10/2014] [Indexed: 12/29/2022]
|
24
|
Yuan Z, Wang H, Hu Z, Huang Y, Yao F, Sun S, Wu B. Quercetin Inhibits Proliferation and Drug Resistance in KB/VCR Oral Cancer Cells and Enhances Its Sensitivity to Vincristine. Nutr Cancer 2014; 67:126-36. [DOI: 10.1080/01635581.2015.965334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Brewer FK, Follit CA, Vogel PD, Wise JG. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains. Mol Pharmacol 2014; 86:716-26. [PMID: 25270578 PMCID: PMC4244591 DOI: 10.1124/mol.114.095414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp.
Collapse
Affiliation(s)
- Frances K Brewer
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| | - Courtney A Follit
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| | - Pia D Vogel
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| | - John G Wise
- Department of Biological Sciences, the Center for Drug Discovery, Design and Delivery, and the Center for Scientific Computing, Southern Methodist University, Dallas, Texas
| |
Collapse
|
26
|
Zeino M, Saeed MEM, Kadioglu O, Efferth T. The ability of molecular docking to unravel the controversy and challenges related to P-glycoprotein--a well-known, yet poorly understood drug transporter. Invest New Drugs 2014; 32:618-25. [PMID: 24748336 DOI: 10.1007/s10637-014-0098-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/30/2014] [Indexed: 01/26/2023]
Abstract
P-glycoprotein is the most crucial membrane transporter implicated in tumor resistance. Intensive efforts were paid to elucidate the complex mechanism of transport and to identify modulators of this transporter. However, the borderline between substrates and modulators is very thin and identification of the binding sites within P-glycoprotein is complex. Herein, we provide an intensive review of those issues and use molecular docking to assess its ability: first, to differentiate between three groups (substrates, modulators and non-substrates) and second to identify the binding sites. After thorough statistical analysis, we conclude despite the various challenges that molecular docking should not be underestimated as differences between the distinct groups were significant. However, when it comes to defining the binding site, care must be taken, since consensus throughout literature could not be reached.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Rhineland-Palatinate, Germany
| | | | | | | |
Collapse
|
27
|
Rungsardthong K, Mares- Sámano S, Penny J. Virtual screening of ABCC1 transporter nucleotidebinding domains as a therapeutic target in multidrug resistant cancer. Bioinformation 2012; 8:907-11. [PMID: 23144549 PMCID: PMC3488831 DOI: 10.6026/97320630008907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 09/20/2012] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED ABCC1 is a member of the ATP-binding Cassette super family of transporters, actively effluxes xenobiotics from cells. Clinically, ABCC1 expression is linked to cancer multidrug resistance. Substrate efflux is energised by ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) and inhibition of these events may help combat drug resistance. The aim of this study is to identify potential inhibitors of ABCC1 through virtual screening of National Cancer Institute (NCI) compounds. A threedimensional model of ABCC1 NBD2 was generated using MODELLER whilst the X-ray crystal structure of ABCC1 NBD1 was retrieved from the Protein Data Bank. A pharmacophore hypothesis was generated based on flavonoids known to bind at the NBDs using PHASE, and used to screen the NCI database. GLIDE was employed in molecular docking studies for all hit compounds identified by pharmacophore screening. The best potential inhibitors were identified as compounds possessing predicted binding affinities greater than ATP. Approximately 5% (13/265) of the hit compounds possessed lower docking scores than ATP in ABCC1 NBD1 (NSC93033, NSC662377, NSC319661, NSC333748, NSC683893, NSC226639, NSC94231, NSC55979, NSC169121, NSC166574, NSC73380, NSC127738, NSC115534), whereas approximately 7% (7/104) of docked NCI compounds were predicted to possess lower docking scores than ATP in ABCC1 NBD2 (NSC91789, NSC529483, NSC211168, NSC318214, NSC116519, NSC372332, NSC526974). Analyses of docking orientations revealed P-loop residues of each NBD and the aromatic amino acids Trp653 (NBD1) and Tyr1302 (NBD2) were key in interacting with high-affinity compounds. On the basis of docked orientation and docking score the compounds identified may be potential inhibitors of ABCC1 and require further pharmacological analysis. ABBREVIATIONS ABC - ATP-binding cassette, DHS - dehydrosilybin, MDR - multidrug resistance, NBD - nucleotide-binding domain, PDB - protein data bank.
Collapse
Affiliation(s)
- Kanin Rungsardthong
- University of Manchester, School of Pharmacy & Pharmaceutical Sciences, Stopford Building, M13 9PT, UK
| | - Sergio Mares- Sámano
- University of Manchester, School of Pharmacy & Pharmaceutical Sciences, Stopford Building, M13 9PT, UK
| | - Jeffrey Penny
- University of Manchester, School of Pharmacy & Pharmaceutical Sciences, Stopford Building, M13 9PT, UK
| |
Collapse
|
28
|
Targeting drug transporters - combining in silico and in vitro approaches to predict in vivo. Methods Mol Biol 2010; 637:65-103. [PMID: 20419430 DOI: 10.1007/978-1-60761-700-6_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transporter proteins are expressed throughout the human body in different vital organs. They play an important role to various extents in determining absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties of therapeutic molecules. Over the past decade, numerous drug transporters have been cloned and considerable progress has been made toward understanding the molecular characteristics of individual transporters. In this chapter several in vitro and in silico techniques are described with applications to understand transporter behavior. These include employing new techniques to rapidly identify novel ligands for transporters. Ultimately these methods should lead to a greater overall appreciation of the role of transporters in vivo.
Collapse
|
29
|
Borska S, Sopel M, Chmielewska M, Zabel M, Dziegiel P. Quercetin as a potential modulator of P-glycoprotein expression and function in cells of human pancreatic carcinoma line resistant to daunorubicin. Molecules 2010; 15:857-70. [PMID: 20335952 PMCID: PMC6263194 DOI: 10.3390/molecules15020857] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/28/2010] [Accepted: 02/03/2010] [Indexed: 12/22/2022] Open
Abstract
P-glycoprotein (P-gp) is one of the ABC transporters responsible for the resistance of several tumours to successful chemotherapy. Numerous agents are capable of interfering with the P-gp-mediated export of drugs but unfortunately most of them produce serious side effects. Some plant polyphenols, including the flavonol quercetin (Q), manifest anti-neoplastic activity mainly due to their influence on cell cycle control and apoptosis. Reports are also available which show that Q may intensify action of cytostatic drugs and suppress the multidrug resistance (MDR) phenomenon. The study aimed at determination if Q sensitizes cells resistant to daunorubicin (DB) through its effect on P-gp expression and action. The experiments were conducted on two cell lines of human pancreatic carcinoma, resistant to DB EPP85-181RDB and sensitive EPP85-181P as a comparison. Cells of both lines were exposed to selected concentrations of Q and DB, and then membranous expression of P-gp and its transport function were examined. The influence on expression of gene for P-gp (ABCB1) was also investigated. Results of the studies confirmed that Q affects expression and function of P-gp in a concentration-dependent manner. Moreover it decreased expression of ABCB1. Thus, Q may be considered as a potential modulator of P-gp.
Collapse
Affiliation(s)
- Sylwia Borska
- Department of Histology and Embryology, Medical University, T. Chalubinski Street 6a, 50-368 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
30
|
Cancer-relevant biochemical targets of cytotoxic Lonchocarpus flavonoids: A molecular docking analysis. J Mol Model 2009; 16:311-26. [DOI: 10.1007/s00894-009-0547-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 06/11/2009] [Indexed: 11/25/2022]
|
31
|
Mares-Sámano S, Badhan R, Penny J. Identification of putative steroid-binding sites in human ABCB1 and ABCG2. Eur J Med Chem 2009; 44:3601-11. [PMID: 19303670 DOI: 10.1016/j.ejmech.2009.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 02/17/2009] [Accepted: 02/26/2009] [Indexed: 12/17/2022]
Abstract
Homology modelling was used to generate three-dimensional structures of the nucleotide-binding domains (NBDs) of human ABCB1 and ABCG2. Interactions between a series of steroidal ligands and transporter NBDs were investigated using an in silico docking approach. C-terminal ABCB1 NBD (ABCB1 NBD2) was predicted to bind steroids within a cavity formed partly by the P-Loop, Tyr1044 and Ile1050. The P-Loop within ABCG2 NBD was also predicted to be involved in steroid binding. No overlap between ATP- and RU-486-binding sites was predicted in either NBD, though overlaps between ATP- and steroid-binding sites were predicted in the vicinity of the P-Loop in both nucleotide-binding domains.
Collapse
Affiliation(s)
- Sergio Mares-Sámano
- University of Manchester, School of Pharmacy & Pharmaceutical Sciences, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
32
|
Boccard J, Bajot F, Di Pietro A, Rudaz S, Boumendjel A, Nicolle E, Carrupt PA. A 3D linear solvation energy model to quantify the affinity of flavonoid derivatives toward P-glycoprotein. Eur J Pharm Sci 2009; 36:254-64. [DOI: 10.1016/j.ejps.2008.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 09/21/2008] [Accepted: 09/22/2008] [Indexed: 11/29/2022]
|
33
|
Nicolle E, Boumendjel A, Macalou S, Genoux E, Ahmed-Belkacem A, Carrupt PA, Di Pietro A. QSAR analysis and molecular modeling of ABCG2-specific inhibitors. Adv Drug Deliv Rev 2009; 61:34-46. [PMID: 19135106 DOI: 10.1016/j.addr.2008.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/01/2008] [Indexed: 01/27/2023]
Abstract
In addition to its critical role is controlling drug availability and protecting sensitive organs and stem cells through cellular detoxification, breast cancer resistance protein (BCRP/ABCG2) plays an important role in cancer cell resistance to chemotherapy, together with P-glycoprotein/ABCB1. A main approach to abolish multidrug resistance is to find out specific inhibitors of the drug-efflux activity, able to chemosensitize cancer cell proliferation. Many efforts have been primarily focused on ABCB1, discovered thirty years ago, whereas very few studies have concerned ABCG2, identified much more recently. This review describes the main types of inhibitors presently known for ABCG2, and how quantitative structure-activity relationship analysis among series of compounds may lead to build up molecular models and pharmacophores allowing to design lead inhibitors as future candidates for clinical trials. A special attention is drawn on flavonoids which constitute a structurally-diverse class of compounds, well suited to identify potent ABCG2-specific inhibitors.
Collapse
Affiliation(s)
- E Nicolle
- Département de Pharmacochimie Moléculaire, UMR 5063. ICMG-FR 2607-Université Joseph Fourier Grenoble I, 470 rue de la Chimie, 38240 St Martin d'Hères, France
| | | | | | | | | | | | | |
Collapse
|
34
|
QSAR modeling for lipid peroxidation inhibition potential of flavonoids using topological and structural parameters. OPEN CHEM 2008. [DOI: 10.2478/s11532-008-0014-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn the present study, Quantitative Structure-Activity Relationship (QSAR) modeling has been carried out for lipid peroxidation (LPO)-inhibition potential of a set of 27 flavonoids, using structural and topological parameters. For the development of models, three methods were used: (1) stepwise regression, (2) factor analysis followed by multiple linear regressions (FA-MLR) and (3) partial least squares (PLS) analysis. The best equation was obtained from stepwise regression analysis (Q2 = 0.626) considering the leave-oneout prediction statistics.
Collapse
|
35
|
QSAR modeling of antiradical and antioxidant activities of flavonoids using electrotopological state (E-State) atom parameters. OPEN CHEM 2007. [DOI: 10.2478/s11532-007-0047-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIn the present paper QSAR modeling using electrotopological state atom (E-state) parameters has been attempted to determine the antiradical and the antioxidant activities of flavonoids in two model systems reported by Burda et al. (2001). The antiradical property of a methanolic solution of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and the antioxidant activity of flavonoids in a β-carotenelinoleic acid were the two model systems studied. Different statistical tools used in this communication are stepwise regression analysis, multiple linear regressions with factor analysis as the preprocessing step for variable selection (FA-MLR) and partial least squares analysis (PLS). In both the activities the best equation is obtained from stepwise regression analysis, considering, both equation statistics and predictive ability (antiradical activity: R 2 = 0.927, Q2 = 0.871 and antioxidant activity: R 2 = 0.901, Q2 = 0.841).
Collapse
|