1
|
Yuan C, Huang X, Guo J, Shen Y, Shang N, Tang Q, Yang J, Huang Y, Zhang H, Tang E. Construction of 5-Amino-1,2-Selenazole Scaffolds through N-Selenocyanation/Cyclization of Enaminones Using KSeCN. Org Lett 2024; 26:4992-4997. [PMID: 38842460 DOI: 10.1021/acs.orglett.4c01655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A metal-free and mild approach for constructing 5-amino-1,2-selenazole skeletons by NBS/KSeCN-mediated N-selenocyanation and nucleophilic cyclization of β-enaminones has been developed. Various isoselenazole compounds and the isoselenazolyl derivatives of anti-inflammatory medicines, including isosepac, oxaprozin, and ibuprofen, have been obtained with good yields. This efficient, "one-pot", and atomic economy strategy may represent an alternative route for the construction of a 1,2-selenazole framework via the "+SeCN" pathway and provide new access to heterocycles containing a Se-N bond.
Collapse
Affiliation(s)
- Caifeng Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Xuankun Huang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Jianhua Guo
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Yiwen Shen
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Na Shang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Qilin Tang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Jing Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Yi Huang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| | - E Tang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province Center for Research & Development of Natural Products; School of Pharmacy, Yunnan University, Kunming, 650500, P. R. China
| |
Collapse
|
2
|
Suraj, Swamy KCK. [Au]-Catalyzed Cyclization of Propargyl-Tethered Ene-Amides: Substrate-Dependent Access to Tetrasubstituted Pyrroles, Aminophenols, and Dihydropyridines. J Org Chem 2024; 89:5518-5535. [PMID: 38598775 DOI: 10.1021/acs.joc.3c02976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
[Au]-catalyzed and substrate-dependent intramolecular cyclization of sulfonyl ene-amides with a pendant propargyl group afford tetrasubstituted pyrroles, o-aminophenols, or 1,6-dihydropyridine carbaldehydes. While the pyrroles and aminophenols are formed when the propargylic alkyne is terminal, dihydropyridines are formed when internal alkyne is present. Internal alkyne substrates with 2-thienyl and 3-thienyl groups give different types of dihydropyridines. The dihydropyridines so obtained can be readily converted to nicotinaldehydes with concomitant sulfonyl migration upon heating in xylene.
Collapse
Affiliation(s)
- Suraj
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, Telangana, India
| |
Collapse
|
3
|
Fei N, Wang Y, Gu Y, Wang Z, Zhu Y, Li Y. Silver-Mediated [2 + 2 + 1] Cyclization of ortho-Propioloylbenzonitriles with Elemental Selenium: Synthesis of 4 H-indeno[1,2- c][1,2]selenazol-4-ones. J Org Chem 2023; 88:13042-13048. [PMID: 37647572 DOI: 10.1021/acs.joc.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
An efficient silver-mediated [2 + 2 + 1] cyclization protocol of ortho-propioloylbenzonitriles with elemental selenium for the synthesis of 4H-indeno[1,2-c][1,2]selenazol-4-ones has been developed. One C-Se bond, one N-Se bond, and one C-C bond were rapidly constructed in one step. The reaction might proceed via the formation of a highly reactive selenoketene intermediate, followed by intramolecular cyclization.
Collapse
Affiliation(s)
- Nana Fei
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Ye Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yingge Gu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongkang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yilin Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yanzhong Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
4
|
Selenocoxib-3, a novel anti-inflammatory therapeutic effectively resolves colitis. Mol Cell Biochem 2023; 478:621-636. [PMID: 36001205 DOI: 10.1007/s11010-022-04532-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/30/2022] [Indexed: 10/15/2022]
Abstract
Ulcerative colitis (UC) is an idiopathic, chronic and relapsing colonic inflammatory disease. Despite the involvement of diverse intricate mechanisms, COX mediated inflammatory pathway is crucial in the pathophysiology of colitis. Thus, COX inhibition is imperative for managing colitis-associated inflammation. However, the use of COX inhibitory classical non-steroidal anti-inflammatory drugs (NSAIDs) for inflammation resolution has been linked to sudden increased flare-ups. Therefore, considering the anti-inflammatory and pro-resolution effects of antioxidant and essential trace element Selenium (Se), a Seleno-derivative of Celecoxib called Selenocoxib-3 was characterized and evaluated for its favourable pharmacokinetics, safety margins and anti-inflammatory therapeutic potential in DSS-induced experimental colitis. The serum pharmacokinetic profiling [elimination rate constant (K) and clearance (Cl) and toxicity profiling suggested enhanced efficacy, therapeutic potential and lesser toxicity of Selenocoxib-3 as compared to its parent NSAID Celecoxib. In vivo studies demonstrated that Selenocoxib-3 efficiently resolves the gross morphological signs of DSS-induced colitis such as diarrhoea, bloody stools, weight loss and colon shortening. Further, intestinal damage evaluated by H & E staining and MPO activity suggested of histopathological disruptions, such as neutrophil infiltration, mucodepletion and cryptitis, by Selenocoxib-3. The expression profiles of COX-1/2 demonstrated mitigation of pro-inflammatory mediators thereby promoting anti-inflammatory efficacy of Selenocoxib-3 when compared with Celecoxib. The current study suggests translational applicability of Se-containing novel class of COX inhibitors for efficiently managing inflammatory disorders such as UC.
Collapse
|
5
|
Sarkar A, Saha M, Das AR, Banerjee A, Majumder R, Bandyopadhyay D. Hypervalent iodine mediated Pd(II)‐catalyzed
ortho
‐C(
sp
2
−H) functionalization of azoles deciphering Hantzsch ester and malononitrile as the functional group surrogates. ChemistrySelect 2022. [DOI: 10.1002/slct.202203959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anindita Sarkar
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Moumita Saha
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Asish R. Das
- Department of Chemistry University of Calcutta 92 APC Road Kolkata 700009 India
| | - Adrita Banerjee
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | - Romit Majumder
- Department of Physiology University of Calcutta 92 APC Road Kolkata 700009 India
| | | |
Collapse
|
6
|
Xu Y, Sun J, Ke Z, Li Z, Tang W, Xu Y, Chen Z. Friedel-Crafts alkylation oxidative cyclization catalyzed by co-oxidation of SeO 2 and FeCl 3: a simple synthesis of benzo[ b]furan from acetophenone and anisole. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yuyan Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Jie Sun
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhiwei Ke
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Ziwei Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Wei Tang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Yicheng Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Zhiwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, P.R. China
| |
Collapse
|
7
|
Suraj, Swamy KCK. Ring-Expansion Reactions of Epoxy Amides and Enamides: Functionalized Azetidines, Dihydrofurans, Diazocanes, or Dioxa-3-azabicyclonon-4-enes? J Org Chem 2022; 87:6612-6629. [PMID: 35522603 DOI: 10.1021/acs.joc.2c00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalized azetidines, 2,3-dihydrofurans, or the unorthodox dioxa-3-azabicyclonone-4-ene motifs are the products from transition metal-free reaction between N-oxiranylmethyl benzenesulfonamide and β-chloro-cinnamaldehyde, depending on whether one uses either NaI/K2CO3 or LiBr/K2CO3. These ring expansion reactions involve enamide (X-ray evidence) derived from N-oxiranylmethyl benzenesulfonamide and β-chloro-cinnamaldehyde as an intermediate. The N-oxiranylmethyl benzenesulfonamide itself upon heating gives readily separable and crystalline isomeric diazocanes that can be characterized by X-ray crystallography.
Collapse
Affiliation(s)
- Suraj
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500 046, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500 046, India
| |
Collapse
|
8
|
Hou W, Dong H, Zhang X, Wang Y, Su L, Xu H. Selenium as an emerging versatile player in heterocycles and natural products modification. Drug Discov Today 2022; 27:2268-2277. [PMID: 35390546 DOI: 10.1016/j.drudis.2022.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/23/2022] [Accepted: 03/30/2022] [Indexed: 12/20/2022]
Abstract
The diverse pharmacological activities of organoselenium compounds are closely correlated to their ability to scavenge and induce reactive oxygen species (ROS), their intrinsic oxidative properties, and their Se(0) release property. The incorporation of selenium into small molecules, and particularly into heterocycles and natural products, has shown great potential in altering the potency and selectivity of these molecules. Therefore, selenium will play an important role in drug discovery in the near future. We summarize how different organoselenium species affect cellular oxidative stress levels, and try to correlate the structural properties of selenium-containing heterocycles and natural product derivatives to their biological activities and therapeutic applications. We also provide some information to guide the rational design of selenium-containing drugs.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Hewei Dong
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China.
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Lin Su
- Hangzhou Minsheng Institutes for Pharma Research, Hangzhou 311121, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
9
|
Hou W, Xu H. Incorporating Selenium into Heterocycles and Natural Products─From Chemical Properties to Pharmacological Activities. J Med Chem 2022; 65:4436-4456. [PMID: 35244394 DOI: 10.1021/acs.jmedchem.1c01859] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Selenium (Se)-containing compounds have emerged as potential therapeutic agents for the treatment of a range of diseases. Through tremendous effort, considerable knowledge has been acquired to understand the complex chemical properties and biological activities of selenium, especially after its incorporation into bioactive molecules. From this perspective, we compiled extensive literature evidence to summarize and critically discuss the relationship between the pharmacological activities and chemical properties of selenium compounds and the strategic incorporation of selenium into organic molecules, especially bioactive heterocycles and natural products. We also provide perspectives regarding the challenges in selenium-based medicinal chemistry and future research directions.
Collapse
Affiliation(s)
- Wei Hou
- College of Pharmaceutical Science and Institute of Drug Development and Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Zhang ZZ, Chen R, Zhang XH, Zhang XG. Synthesis of Isoselenazoles and Isothiazoles from Demethoxylative Cycloaddition of Alkynyl Oxime Ethers. J Org Chem 2021; 86:632-642. [PMID: 33252231 DOI: 10.1021/acs.joc.0c02286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A general method for the synthesis of isoselenazoles and isothiazoles has been developed by the base-promoted demethoxylative cycloaddition of alkynyl oxime ethers using the cheap and inactive Se powder and Na2S as selenium and sulfur sources. This transformation features the direct construction of N-, Se-, and S-containing heterocycles through the formation of N-Se/S and C-Se/S bonds in one-pot reactions with excellent functional group tolerance.
Collapse
Affiliation(s)
- Zhu-Zhu Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rong Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiao-Hong Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.,Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
11
|
Qin Z, Xi Y, Zhang S, Tu G, Yan A. Classification of Cyclooxygenase-2 Inhibitors Using Support Vector Machine and Random Forest Methods. J Chem Inf Model 2019; 59:1988-2008. [PMID: 30762371 DOI: 10.1021/acs.jcim.8b00876] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This work reports the classification study conducted on the biggest COX-2 inhibitor data set so far. Using 2925 diverse COX-2 inhibitors collected from 168 pieces of literature, we applied machine learning methods, support vector machine (SVM) and random forest (RF), to develop 12 classification models. The best SVM and RF models resulted in MCC values of 0.73 and 0.72, respectively. The 2925 COX-2 inhibitors were reduced to a data set of 1630 molecules by removing intermediately active inhibitors, and 12 new classification models were constructed, yielding MCC values above 0.72. The best MCC value of the external test set was predicted to be 0.68 by the RF model using ECFP_4 fingerprints. Moreover, the 2925 COX-2 inhibitors were clustered into eight subsets, and the structural features of each subset were investigated. We identified substructures important for activity including halogen, carboxyl, sulfonamide, and methanesulfonyl groups, as well as the aromatic nitrogen atoms. The models developed in this study could serve as useful tools for compound screening prior to lab tests.
Collapse
Affiliation(s)
- Zijian Qin
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Yao Xi
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Shengde Zhang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Guiping Tu
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , P.O. Box 53, 15 BeiSanHuan East Road , Beijing 100029 , P. R. China
| |
Collapse
|
12
|
Safer anti-inflammatory therapy through dual COX-2/5-LOX inhibitors: A structure-based approach. Eur J Pharm Sci 2018; 121:356-381. [PMID: 29883727 DOI: 10.1016/j.ejps.2018.06.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
Inflammatory mediators of the arachidonic acid cascade from cyclooxygenase (COX) and lipoxygenase (LOX) pathways are primarily responsible for many diseases in human beings. Chronic inflammation is associated with the pathogenesis and progression of cancer, arthritis, autoimmune, cardiovascular and neurological diseases. Traditional non-steroidal anti-inflammatory agents (tNSAIDs) inhibit cyclooxygenase pathway non-selectively and produce gastric mucosal damage due to COX-1 inhibition and allergic reactions and bronchospasm resulting from increased leukotriene levels. 'Coxibs' which are selective COX-2 inhibitors cause adverse cardiovascular events. Inhibition of any of these biosynthetic pathways could switch the metabolism to the other, which can lead to fatal side effects. Hence, there is undoubtedly an urgent need for new anti-inflammatory agents having dual mechanism that prevent release of both prostaglandins and leukotrienes. Though several molecules have been synthesized with this objective, their unfavourable toxicity profile prevented them from being used in clinics. Here, this integrative review attempts to identify the promising pharmacophore that serves as dual inhibitors of COX-2/5-LOX enzymes with improved safety profile. A better acquaintance of structural features that balance safety and efficacy of dual inhibitors would be a different approach to the process of understanding and interpreting the designing of novel anti-inflammatory agents.
Collapse
|
13
|
Pereira-Leite C, Nunes C, Jamal SK, Cuccovia IM, Reis S. Nonsteroidal Anti-Inflammatory Therapy: A Journey Toward Safety. Med Res Rev 2016; 37:802-859. [PMID: 28005273 DOI: 10.1002/med.21424] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/27/2016] [Accepted: 10/05/2016] [Indexed: 01/01/2023]
Abstract
The efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) against inflammation, pain, and fever has been supporting their worldwide use in the treatment of painful conditions and chronic inflammatory diseases until today. However, the long-term therapy with NSAIDs was soon associated with high incidences of adverse events in the gastrointestinal tract. Therefore, the search for novel drugs with improved safety has begun with COX-2 selective inhibitors (coxibs) being straightaway developed and commercialized. Nevertheless, the excitement has fast turned to disappointment when diverse coxibs were withdrawn from the market due to cardiovascular toxicity. Such events have once again triggered the emergence of different strategies to overcome NSAIDs toxicity. Here, an integrative review is provided to address the breakthroughs of two main approaches: (i) the association of NSAIDs with protective mediators and (ii) the design of novel compounds to target downstream and/or multiple enzymes of the arachidonic acid cascade. To date, just one phosphatidylcholine-associated NSAID has already been approved for commercialization. Nevertheless, the preclinical and clinical data obtained so far indicate that both strategies may improve the safety of nonsteroidal anti-inflammatory therapy.
Collapse
Affiliation(s)
- Catarina Pereira-Leite
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Sarah K Jamal
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Iolanda M Cuccovia
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Salette Reis
- UCIBIO, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
14
|
Bardasov IN, Mikhailov DL, Alekseeva AU, Ershov OV, Tafeenko VA. A new heterocycle: furo[3,2-c]isoselenazole. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Lourenço AL, Saito MS, Dorneles LEG, Viana GM, Sathler PC, Aguiar LCDS, de Pádula M, Domingos TFS, Fraga AGM, Rodrigues CR, de Sousa VP, Castro HC, Cabral LM. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies. Molecules 2015; 20:7174-200. [PMID: 25903367 PMCID: PMC6272548 DOI: 10.3390/molecules20047174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/08/2015] [Accepted: 04/13/2015] [Indexed: 12/31/2022] Open
Abstract
The incidence of hematological disorders has increased steadily in Western countries despite the advances in drug development. The high expression of the multi-resistance protein 4 in patients with transitory aspirin resistance, points to the importance of finding new molecules, including those that are not affected by these proteins. In this work, we describe the synthesis and biological evaluation of a series of N,N'-disubstituted thioureas derivatives using in vitro and in silico approaches. New designed compounds inhibit the arachidonic acid pathway in human platelets. The most active thioureas (compounds 3d, 3i, 3m and 3p) displayed IC50 values ranging from 29 to 84 µM with direct influence over in vitro PGE2 and TXA2 formation. In silico evaluation of these compounds suggests that direct blockage of the tyrosyl-radical at the COX-1 active site is achieved by strong hydrophobic contacts as well as electrostatic interactions. A low toxicity profile of this series was observed through hemolytic, genotoxic and mutagenic assays. The most active thioureas were able to reduce both PGE2 and TXB2 production in human platelets, suggesting a direct inhibition of COX-1. These results reinforce their promising profile as lead antiplatelet agents for further in vivo experimental investigations.
Collapse
Affiliation(s)
- André Luiz Lourenço
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Max Seidy Saito
- Programa de Pós-graduação em Patologia, Departamento de Patologia, Hospital Universitário Antônio Pedro (HUAP), Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Luís Eduardo Gomes Dorneles
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Gil Mendes Viana
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Plínio Cunha Sathler
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | | | - Marcelo de Pádula
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | | | - Aline Guerra Manssour Fraga
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Carlos Rangel Rodrigues
- ModMolQSAR, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Valeria Pereira de Sousa
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| | - Helena Carla Castro
- LABiEMOL, Departamento de Biologia Celular e Molecular, Universidade Federal Fluminense (UFF), Niterói CEP 24033-900, RJ, Brazil.
| | - Lucio Mendes Cabral
- LabTIF, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro CEP 21941-902, RJ, Brazil.
| |
Collapse
|
16
|
Selenium-Functionalized Molecules (SeFMs) as Potential Drugs and Nutritional Supplements. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_87] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
17
|
Kang KH, Liou HH, Hour MJ, Liou HC, Fu WM. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology 2013; 73:380-7. [PMID: 23800665 DOI: 10.1016/j.neuropharm.2013.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/29/2013] [Accepted: 06/10/2013] [Indexed: 02/06/2023]
Abstract
Neuroinflammation and oxidative stress are important factors that induce neurodegeneration in age-related neurological disorders. 5-Lipoxygenase (5-LOX) is the enzyme responsible for catalysing the synthesis of leukotriene or 5-HETE from arachidonic acid. 5-LOX is expressed in the central nervous system and may cause neurodegenerative disease. In this study, we investigated the effect of the pharmacological inhibition of 5-lipoxygenase on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/MPP(+)-induced dopaminergic neuronal death in midbrain neuron-glia co-cultures and in mice. It was found that 5-LOX was over-expressed in astrocytes after the injection of MPTP into C57BL6 mice. MK-886, a specific inhibitor of 5-LOX activating protein (FLAP), significantly increased [(3)H]-dopamine uptake, a functional indicator of the integrity of dopaminergic neurons, in midbrain cultures or the SH-SY5Y human dopaminergic cell line following MPP(+) treatment. In addition, LTB₄, one of 5-LOX's downstream products, was increased in the striatum and substantia nigra following MPTP injection in mice. LTB₄ but not LTD₄ and 5-HETE enhanced MPP(+)-induced neurotoxicity in primary midbrain cultures. MK-886 administration increased the number of tyrosine hydroxylase-positive neurons in the substantia nigra and the dopamine content in the striatum in MPTP-induced parkinsonian mice. Furthermore, the MPTP-induced upregulation of LTB₄ in the striatum and substantia nigra was antagonised by MK-886. These results suggest that 5-LOX inhibitors may be developed as novel neuroprotective agents and LTB₄ may play an important pathological role in Parkinson's disease.
Collapse
Affiliation(s)
- Kai-Hsiang Kang
- Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Chou VP, Holman TR, Manning-Bog AB. Differential contribution of lipoxygenase isozymes to nigrostriatal vulnerability. Neuroscience 2012; 228:73-82. [PMID: 23079635 DOI: 10.1016/j.neuroscience.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 02/05/2023]
Abstract
The 5- and 12/15-lipoxygenase (LOX) isozymes have been implicated to contribute to disease development in CNS disorders such as Alzheimer's disease. These LOX isozymes are distinct in function, with differential effects on neuroinflammation, and the impact of the distinct isozymes in the pathogenesis of Parkinson's disease has not as yet been evaluated. To determine whether the isozymes contribute differently to nigrostriatal vulnerability, the effects of 5- and 12/15-LOX deficiency on dopaminergic tone under naïve and toxicant-challenged conditions were tested. In naïve mice deficient in 5-LOX expression, a modest but significant reduction (18.0% reduction vs. wildtype (WT)) in striatal dopamine (DA) was detected (n=6-8 per genotype). A concomitant decline in striatal tyrosine hydroxylase (TH) enzyme was also revealed in null 5-LOX vs. WT mice (26.2%); however, no changes in levels of DA or TH immunoreactivity were observed in null 12/15-LOX vs. WT mice. When challenged with the selective dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), WT mice showed a marked reduction in DA (31.9%) and robust astrocytic and microglial activation as compared to saline-treated animals. In contrast, null 5-LOX littermates demonstrated no significant striatal DA depletion or astrogliosis (as noted by Western blot analyses for glial acidic fibrillary protein (GFAP) immunoreactivity). In naïve null 12/15-LOX mice, no significant change in striatal DA values was observed compared to WT, and following MPTP treatment, the transgenics revealed striatal DA reduction similar to the challenged WT mice. Taken together, these data provide the first evidence that: (i) LOX isozymes are involved in the maintenance of normal dopaminergic function in the striatum and (ii) the 5- and 12/15-LOX isozymes contribute differentially to striatal vulnerability in response to neurotoxicant challenge.
Collapse
Affiliation(s)
- V P Chou
- Center for Health Sciences, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| | | | | |
Collapse
|
19
|
Xie Y, Yang P, Chen X. One-Pot Synthesis of 5-Arylamino-1,3,4-Selenadiazol-2(3H)-Ones from Arylisoselenocyanates. JOURNAL OF CHEMICAL RESEARCH 2012. [DOI: 10.3184/174751912x13377840596361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A one-pot reaction of arylisoselenocyanates, hydrazine and bis(trichloromethyl) carbonate, in the presence of a base provides an efficient route for the synthesis of 5-arylamino-1,3,4-selenadiazol-2(3H)-ones in good to excellent yields. A plausible mechanism is proposed for the reaction.
Collapse
Affiliation(s)
- Yuanyuan Xie
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ping Yang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaodong Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
20
|
Amirhamzeh A, Vosoughi M, Shafiee A, Amini M. Synthesis and docking study of diaryl-isothiazole and 1,2,3-thiadiazole derivatives as potential neuroprotective agents. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0124-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Ninomiya M, Garud DR, Koketsu M. Biologically significant selenium-containing heterocycles. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2011.07.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Eleftheriou P, Geronikaki A, Hadjipavlou-Litina D, Vicini P, Filz O, Filimonov D, Poroikov V, Chaudhaery SS, Roy KK, Saxena AK. Fragment-based design, docking, synthesis, biological evaluation and structure-activity relationships of 2-benzo/benzisothiazolimino-5-aryliden-4-thiazolidinones as cycloxygenase/lipoxygenase inhibitors. Eur J Med Chem 2011; 47:111-24. [PMID: 22119153 DOI: 10.1016/j.ejmech.2011.10.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 10/11/2011] [Accepted: 10/13/2011] [Indexed: 11/16/2022]
Abstract
Balanced modulation of several targets is one of the current strategies for the treatment of multi-factorial diseases. Based on the knowledge of inflammation mechanisms, it was inferred that the balanced inhibition of cyclooxygenase-1/cyclooxygenase-2/lipoxygenase might be a promising approach for treatment of such a multifactorial disease state as inflammation. Detection of fragments responsible for interaction with enzyme's binding site provides the basis for designing new molecules with increased affinity and selectivity. A new chemoinformatics approach was proposed and applied to create a fragment library that was used to design novel inhibitors of cycloxygenase-1/cycloxygenase-2/lipoxygenase enzymes. Potential binding sites were elucidated by docking. Synthesis of novel compounds, and the in vitro/in vivo biological testing confirmed the results of computational studies. The benzothiazolyl moiety was proved to be of great significance for developing more potent inhibitors.
Collapse
Affiliation(s)
- Phaedra Eleftheriou
- Department of Medical Laboratory Studies, School of Health and Medical Care, Alexander Technological Education Institute of Thessaloniki, Thessaloniki 57400, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Design and synthesis of new 1,2-diaryl-4,5,6,7-tetrahydro-1H-benzo[d] imidazoles as selective cyclooxygenase (COX-2) inhibitors. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9709-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Selective synthesis of novel 2-imino-1,3-selenazolidin-4-ones and 2-amino-1,3,4-selenadiazin-5-ones from isoselenocyanates. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Design and synthesis of new 2-aryl, 3-benzyl-(1,3-oxazolidine or 1,3-thiazolidine)-4-ones as selective cyclooxygenase (COX-2) inhibitors. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9230-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Current World Literature. Curr Opin Support Palliat Care 2009; 3:144-51. [DOI: 10.1097/spc.0b013e32832c6adb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
|
28
|
Scholz M, Ulbrich HK, Soehnlein O, Lindbom L, Mattern A, Dannhardt G. Diaryl-dithiolanes and -isothiazoles: COX-1/COX-2 and 5-LOX-inhibitory, *OH scavenging and anti-adhesive activities. Bioorg Med Chem 2008; 17:558-68. [PMID: 19097798 DOI: 10.1016/j.bmc.2008.11.074] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/21/2008] [Accepted: 11/28/2008] [Indexed: 01/08/2023]
Abstract
Three series of non-steroidal anti-inflammatory drugs (NSAIDs) inhibiting the cyclooxygenase/5-lipoxygenase (COX/5-LOX) pathways as such as formation of hydroxyl radicals and adhesion were prepared: 4,5-diaryl isothiazoles, 4,5-diaryl 3H-1,2-dithiole-3-thiones and 4,5-diaryl 3H-1,2-dithiole-3-ones. The aim of the present study was to develop substances which can intervene into the inflammatory processes via different mechanisms of action as multiple target non-steroidal anti-inflammatory drugs (MTNSAIDs) with increased anti-inflammatory potential. The current lead 11a was evaluated in COX-1/2, 5-LOX and (*)OH scavenging in vitro assays and in a static adhesion assay where it proved to inhibit adhesion. Moreover, 11a treatment attenuated expression of macrophage adhesion molecule-1 (Mac-1) on extravasated polymorphonuclear leukocytes (PMNs) which indicates that the activation was reduced. The assays used are predictive for the in vivo efficacy of test compounds as shown for 11a in a peritonitis model of acute inflammation in mice. Thus, the novel 5-LOX/COX and (*)OH inhibitor 11a possesses anti-inflammatory activity that, in addition to COX/5-LOX inhibition, implicates effects on leukocyte-endothelial interactions.
Collapse
Affiliation(s)
- Michael Scholz
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Johannes Gutenberg-University, Staudingerweg 5, DE-55128 Mainz, Germany
| | | | | | | | | | | |
Collapse
|