1
|
Fu H, Rong J, Chen Z, Zhou J, Collier T, Liang SH. Positron Emission Tomography (PET) Imaging Tracers for Serotonin Receptors. J Med Chem 2022; 65:10755-10808. [PMID: 35939391 DOI: 10.1021/acs.jmedchem.2c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) and 5-HT receptors (5-HTRs) have crucial roles in various neuropsychiatric disorders and neurodegenerative diseases, making them attractive diagnostic and therapeutic targets. Positron emission tomography (PET) is a noninvasive nuclear molecular imaging technique and is an essential tool in clinical diagnosis and drug discovery. In this context, numerous PET ligands have been developed for "visualizing" 5-HTRs in the brain and translated into human use to study disease mechanisms and/or support drug development. Herein, we present a comprehensive repertoire of 5-HTR PET ligands by focusing on their chemotypes and performance in PET imaging studies. Furthermore, this Perspective summarizes recent 5-HTR-focused drug discovery, including biased agonists and allosteric modulators, which would stimulate the development of more potent and subtype-selective 5-HTR PET ligands and thus further our understanding of 5-HTR biology.
Collapse
Affiliation(s)
- Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jingyin Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Thomas Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
2
|
Mangeant R, Dubost E, Cailly T, Collot V. Radiotracers for the Central Serotoninergic System. Pharmaceuticals (Basel) 2022; 15:571. [PMID: 35631397 PMCID: PMC9143978 DOI: 10.3390/ph15050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
This review lists the most important radiotracers described so far for imaging the central serotoninergic system. Single-photon emission computed tomography and positron emission tomography radiotracers are reviewed and critically discussed for each receptor.
Collapse
Affiliation(s)
- Reynald Mangeant
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Emmanuelle Dubost
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| | - Thomas Cailly
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
- UNICAEN, IMOGERE, Normandie Univ., 14000 Caen, France
- CHU Côte de Nacre, Department of Nuclear Medicine, 14000 Caen, France
| | - Valérie Collot
- Centre d’Etudes et de Recherche sur le Médicament de Normandie (CERMN), UNICAEN, Normandie Univ., 14000 Caen, France; (R.M.); (E.D.)
- Institut Blood and Brain @ Caen Normandie (BB@C), Boulevard Henri Becquerel, 14000 Caen, France
| |
Collapse
|
3
|
Importance of Fluorine in Benzazole Compounds. Molecules 2020; 25:molecules25204677. [PMID: 33066333 PMCID: PMC7587361 DOI: 10.3390/molecules25204677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Fluorine-containing heterocycles continue to receive considerable attention due to their unique properties. In medicinal chemistry, the incorporation of fluorine in small molecules imparts a significant enhancement their biological activities compared to non-fluorinated molecules. In this short review, we will highlight the importance of incorporating fluorine as a basic appendage in benzothiazole and benzimidazole skeletons. The chemistry and pharmacological activities of heterocycles containing fluorine during the past years are compiled and discussed.
Collapse
|
4
|
Juza R, Vlcek P, Mezeiova E, Musilek K, Soukup O, Korabecny J. Recent advances with 5-HT 3 modulators for neuropsychiatric and gastrointestinal disorders. Med Res Rev 2020; 40:1593-1678. [PMID: 32115745 DOI: 10.1002/med.21666] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
Serotonin (5-hydroxytryptophan [5-HT]) is a biologically active amine expressed in platelets, in gastrointestinal (GI) cells and, to a lesser extent, in the central nervous system (CNS). This biogenic compound acts through the activation of seven 5-HT receptors (5-HT1-7 Rs). The 5-HT3 R is a ligand-gated ion channel belonging to the Cys-loop receptor family. There is a wide variety of 5-HT3 R modulators, but only receptor antagonists (known as setrons) have been used clinically for chemotherapy-induced nausea and vomiting and irritable bowel syndrome treatment. However, since the discovery of the setrons in the mid-1980s, a large number of studies have been published exploring new potential applications due their potency in the CNS and mild side effects. The results of these studies have revealed new potential applications, including the treatment of neuropsychiatric disorders such as schizophrenia, depression, anxiety, and drug abuse. In this review, we provide information related to therapeutic potential of 5-HT3 R antagonists on GI and neuropsychiatric disorders. The major attention is paid to the structure, function, and pharmacology of novel 5-HT3 R modulators developed over the past 10 years.
Collapse
Affiliation(s)
- Radomir Juza
- National Institute of Mental Health, Klecany, Czech Republic
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Premysl Vlcek
- National Institute of Mental Health, Klecany, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, University of Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- National Institute of Mental Health, Klecany, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Dutta PK, Sen S, Saha D, Dhar B. Solid Supported Nano Structured Cu-Catalyst for Solvent/Ligand Free C2Amination of Azoles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pratip Kumar Dutta
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University; Chithera 201314 Dadri, Gautam Buddha Nagar Uttar Pradesh India
| | - Subhabrata Sen
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University; Chithera 201314 Dadri, Gautam Buddha Nagar Uttar Pradesh India
| | - Debasree Saha
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University; Chithera 201314 Dadri, Gautam Buddha Nagar Uttar Pradesh India
- Department of Chemistry; Raidighi College; South 24 743383 Parganas West Bengal India
| | - Basabbijayi Dhar
- Department of Chemistry; School of Natural Sciences; Shiv Nadar University; Chithera 201314 Dadri, Gautam Buddha Nagar Uttar Pradesh India
| |
Collapse
|
7
|
Zhou Y, Liu Z, Yuan T, Huang J, Liu C. The Synthesis of 2-Aminobenzoxazoles Using Reusable Ionic Liquid as a Green Catalyst under Mild Conditions. MOLECULES (BASEL, SWITZERLAND) 2017; 22:molecules22040576. [PMID: 28368328 PMCID: PMC6154564 DOI: 10.3390/molecules22040576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/23/2022]
Abstract
A facile, green, and efficient method for the direct oxidative amination of benzoxazoles using heterocyclic ionic liquid as catalyst has been developed. The reaction proceeded smoothly at room temperature and gave the desirable 2-aminobenzoxazoles with good to excellent yields (up to 97%). The catalyst 1-butylpyridinium iodide can be easily recycled and reused with similar efficacies for at least four cycles.
Collapse
Affiliation(s)
- Ya Zhou
- School of Chemistry and Chemical Engineering, Xinjiang University and Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Urumqi 830046, China.
| | - Zhiqing Liu
- School of Chemistry and Chemical Engineering, Xinjiang University and Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Urumqi 830046, China.
| | - Tingting Yuan
- School of Chemistry and Chemical Engineering, Xinjiang University and Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Urumqi 830046, China.
| | - Jianbin Huang
- School of Chemistry and Chemical Engineering, Xinjiang University and Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Urumqi 830046, China.
| | - Chenjiang Liu
- School of Chemistry and Chemical Engineering, Xinjiang University and Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education, Urumqi 830046, China.
- Physics and Chemistry Detecting Center, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
8
|
Schmidt AC, Hermsen M, Rominger F, Dehn R, Teles JH, Schäfer A, Trapp O, Schaub T. Synthesis of Mono- and Dinuclear Vanadium Complexes and Their Reactivity toward Dehydroperoxidation of Alkyl Hydroperoxides. Inorg Chem 2017; 56:1319-1332. [PMID: 28117985 DOI: 10.1021/acs.inorgchem.6b02322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Several vanadium(V) complexes with either dipic-based or Schiff base ligands were synthesized. The complexes were fully characterized by elemental analysis, IR, 1H, 13C, and 51V NMR spectroscopy, as well as mass spectrometry and X-ray diffraction. Furthermore, they were tested toward their catalytic deperoxidation behavior and a significant difference between 4-heptyl hydroperoxide and cyclohexyl hydroperoxide was observed. In the case of 4-heptyl hydroperoxide, the selectivity toward the corresponding ketone was higher than with cyclohexyl hydroperoxide. DFT calculations performed on the vanadium complex showed that selective decomposition of secondary hydroperoxides with vanadium(V) to yield the corresponding ketone and water is indeed energetically feasible. The computed catalytic path, involving cleavage of the O-O bond, hydrogen transfer, release of ketone/water, and finally addition of hydroperoxide, can proceed without the generation of radical species.
Collapse
Affiliation(s)
- Anna-Corina Schmidt
- Catalysis Research Laboratory (CaRLa) , Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Marko Hermsen
- Catalysis Research Laboratory (CaRLa) , Im Neuenheimer Feld 584, 69120 Heidelberg, Germany.,BASF SE , Quantum Chemistry & Molecular Simulation Catalysis, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Richard Dehn
- BASF SE , Synthesis & Homogeneous Catalysis, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Joaquim Henrique Teles
- BASF SE , Synthesis & Homogeneous Catalysis, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Ansgar Schäfer
- BASF SE , Quantum Chemistry & Molecular Simulation Catalysis, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| | - Oliver Trapp
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg , Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa) , Im Neuenheimer Feld 584, 69120 Heidelberg, Germany.,BASF SE , Synthesis & Homogeneous Catalysis, Carl-Bosch-Straße 38, 67056 Ludwigshafen, Germany
| |
Collapse
|
9
|
Mu L, Müller Herde A, Rüefli PM, Sladojevich F, Milicevic Sephton S, Krämer SD, Thompson AJ, Schibli R, Ametamey SM, Lochner M. Synthesis and Pharmacological Evaluation of [ 11C]Granisetron and [ 18F]Fluoropalonosetron as PET Probes for 5-HT 3 Receptor Imaging. ACS Chem Neurosci 2016; 7:1552-1564. [PMID: 27571447 DOI: 10.1021/acschemneuro.6b00192] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Serotonin-gated ionotropic 5-HT3 receptors are the major pharmacological targets for antiemetic compounds. Furthermore, they have become a focus for the treatment of irritable bowel syndrome (IBS) and there is some evidence that pharmacological modulation of 5-HT3 receptors might alleviate symptoms of other neurological disorders. Highly selective, high-affinity antagonists, such as granisetron (Kytril) and palonosetron (Aloxi), belong to a family of drugs (the "setrons") that are well established for clinical use. To enable us to better understand the actions of these drugs in vivo, we report the synthesis of 8-fluoropalonosetron (15) that has a binding affinity (Ki = 0.26 ± 0.05 nM) similar to the parent drug (Ki = 0.21 ± 0.03 nM). We radiolabeled 15 by nucleophilic 18F-fluorination of an unsymmetrical diaryliodonium palonosetron precursor and achieved the radiosynthesis of 1-(methyl-11C)-N-granisetron ([11C]2) through N-alkylation with [11C]CH3I, respectively. Both compounds [18F]15 (chemical and radiochemical purity >95%, specific activity 41 GBq/μmol) and [11C]2 (chemical and radiochemical purity ≥99%, specific activity 170 GBq/μmol) were evaluated for their utility as positron emission tomography (PET) probes. Using mouse and rat brain slices, in vitro autoradiography with both [18F]15 and [11C]2 revealed a heterogeneous and displaceable binding in cortical and hippocampal regions that are known to express 5-HT3 receptors at significant levels. Subsequent PET experiments suggested that [18F]15 and [11C]2 are of limited utility for the PET imaging of brain 5-HT3 receptors in vivo.
Collapse
Affiliation(s)
- Linjing Mu
- Department
of Nuclear Medicine, University Hospital Zürich, Rämistrasse
100, 8091 Zürich, Switzerland
| | - Adrienne Müller Herde
- Center for Radiopharmaceutical
Sciences of ETH, PSI and USZ, Vladimir-Prelog-Weg
4, 8093 Zürich, Switzerland
| | - Pascal M. Rüefli
- Department
of Chemistry and Biochemistry, University of Bern, Freiestrasse
3, 3012 Bern, Switzerland
| | - Filippo Sladojevich
- Center for Radiopharmaceutical
Sciences of ETH, PSI and USZ, Vladimir-Prelog-Weg
4, 8093 Zürich, Switzerland
| | - Selena Milicevic Sephton
- Center for Radiopharmaceutical
Sciences of ETH, PSI and USZ, Vladimir-Prelog-Weg
4, 8093 Zürich, Switzerland
| | - Stefanie D. Krämer
- Center for Radiopharmaceutical
Sciences of ETH, PSI and USZ, Vladimir-Prelog-Weg
4, 8093 Zürich, Switzerland
| | - Andrew J. Thompson
- Department
of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom
| | - Roger Schibli
- Center for Radiopharmaceutical
Sciences of ETH, PSI and USZ, Vladimir-Prelog-Weg
4, 8093 Zürich, Switzerland
| | - Simon M. Ametamey
- Center for Radiopharmaceutical
Sciences of ETH, PSI and USZ, Vladimir-Prelog-Weg
4, 8093 Zürich, Switzerland
| | - Martin Lochner
- Department
of Chemistry and Biochemistry, University of Bern, Freiestrasse
3, 3012 Bern, Switzerland
| |
Collapse
|
10
|
Wagh YS, Tiwari NJ, Bhanage BM. Metal-free synthesis of 2-aminobenzoxazoles using hypervalent iodine reagent. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.12.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Wagh YS, Bhanage BM. Cu(acac)2 catalyzed oxidative C–H bond amination of azoles with amines under base-free conditions. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.09.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
|
13
|
Gao M, Wang M, Zheng QH. Facile synthesis of carbon-11-labeled arylpiperazinylthioalkyl derivatives as new PET radioligands for imaging of 5-HT1AR. Appl Radiat Isot 2012; 70:498-504. [DOI: 10.1016/j.apradiso.2011.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/26/2011] [Accepted: 11/14/2011] [Indexed: 11/15/2022]
|
14
|
Saulin A, Savli M, Lanzenberger R. Serotonin and molecular neuroimaging in humans using PET. Amino Acids 2011; 42:2039-57. [PMID: 21947614 DOI: 10.1007/s00726-011-1078-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023]
Abstract
The serotonergic system is one of the most important modulatory neurotransmitter systems in the human brain. It plays a central role in major physiological processes and is implicated in a number of psychiatric disorders. Along with the dopaminergic system, it is also one of the phylogenetically oldest human neurotransmitter systems and one of the most diverse, with 14 different receptors identified up to this day, many of whose function remains to be understood. The system's functioning is even more diverse than the number of its receptors, since each is implicated in a number of different processes. This review aims at illustrating the distribution and summarizing the main functions of the serotonin (5-hydroxytryptamin, 5-HT) receptors as well as the serotonin transporter (SERT, 5-HTT), the vesicular monoamine transporter 2, monoamine oxidase type A and 5-HT synthesis in the human brain. Recent advances in in vivo quantification of these different receptors and enzymes that are part of the serotonergic system using positron emission tomography are described.
Collapse
Affiliation(s)
- Anne Saulin
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | |
Collapse
|
15
|
Lamani M, Prabhu KR. Iodine-Catalyzed Amination of Benzoxazoles: A Metal-Free Route to 2-Aminobenzoxazoles under Mild Conditions. J Org Chem 2011; 76:7938-44. [DOI: 10.1021/jo201402a] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manjunath Lamani
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Kandikere Ramaiah Prabhu
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
16
|
Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM. 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev 2011; 33:54-111. [PMID: 21674551 DOI: 10.1002/med.20245] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT(1A), 5-HT(1B), 5-HT(2A), and 5-HT(4) receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.
Collapse
Affiliation(s)
- Louise M Paterson
- Neuropsychopharmacology Unit, Division of Experimental Medicine, Imperial College London, Burlington Danes Building, Du Cane Road, London, United Kingdom
| | | | | | | | | |
Collapse
|
17
|
Cioffi CL, Lansing JJ, Yüksel H. Synthesis of 2-Aminobenzoxazoles Using Tetramethyl Orthocarbonate or 1,1-Dichlorodiphenoxymethane. J Org Chem 2010; 75:7942-5. [DOI: 10.1021/jo1017052] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Christopher L. Cioffi
- Department of Discovery Research and Development, Chemistry, AMRI, 30 Corporate Circle, Albany, New York 12203-5098, United States
| | - John J. Lansing
- Department of Discovery Research and Development, Chemistry, AMRI, 30 Corporate Circle, Albany, New York 12203-5098, United States
| | - Hamza Yüksel
- Department of Discovery Research and Development, Chemistry, AMRI, 30 Corporate Circle, Albany, New York 12203-5098, United States
| |
Collapse
|
18
|
Gao M, Wang M, Miller KD, Hutchins GD, Zheng QH. Synthesis of carbon-11 labeled celecoxib derivatives as new candidate PET radioligands for imaging of inflammation. Appl Radiat Isot 2009; 67:2019-24. [DOI: 10.1016/j.apradiso.2009.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 07/15/2009] [Indexed: 11/16/2022]
|