1
|
Ragshaniya A, Kumar V, Tittal RK, Lal K. Nascent pharmacological advancement in adamantane derivatives. Arch Pharm (Weinheim) 2024; 357:e2300595. [PMID: 38128028 DOI: 10.1002/ardp.202300595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
The adamantane moiety has attracted significant attention since its discovery in 1933 due to its remarkable structural, chemical, and medicinal properties. This molecule has a notable impact in the therapeutic field because of its "add-on" lipophilicity to any pharmacophoric moieties. As in the case of molecular hybridization, in which one pharmacophore is attached to another one(s) with a probability of increasing the biological activity, adding an adamantane unit improves the absorption distribution, metabolism and excretion properties of the resultant hybrid molecule. This review summarizes various reports highlighting the biological activities of adamantane-based synthetic compounds and their structure-activity relationship study. The information presented in this review may open up possible dimensions for adamantane-based drug development and discovery in the pharmaceutical industry after proper structural modifications.
Collapse
Affiliation(s)
- Aman Ragshaniya
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Vijay Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ram Kumar Tittal
- Department of Chemistry, National Institute of Technology, Kurukshetra, Haryana, India
| | - Kashmiri Lal
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|
2
|
Discovery of new chalone adamantyl arotinoids having RXRα-modulating and anticancer activities. Bioorg Chem 2021; 113:104961. [PMID: 34023650 DOI: 10.1016/j.bioorg.2021.104961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
Abstract
In the present study, a new series of chalcone adamantly arotinoids (chalcone AdArs) derived from RAR antagonist MX781, are synthesized, characterized, and evaluated for the biological activities in vitro. The studies of antiproliferative activity and RXRα-binding affinity of target compounds result in the discovery of a lead candidate (WA15), which is a good RXRα binder (Kd = 2.89 × 10-6 M) with potent antiproliferative activity against human cancer cell lines (IC50 ≈ 10 μM) and low toxic to normal LO2 and MRC-5 cells (IC50 > 50 μM). Different from MX781, WA15 eliminates RARα antagonist activity but inhibits 9-cis-RA-induced RXRα transactivation activity in a dose-dependent manner. Compound WA15 is found to be a good apoptosis inducer in various cancer cells and promotes cell apoptosis in an RXRα-independent manner. Besides, WA15 shows the induction of proteasome-dependent RXRα degradation which might enhance the WA15-induced apoptosis. Finally, the immunoblotting indicates that WA15 can inhibit the TNFα-induced IKK activation and IκBα degradation, suggesting that the anticancer activity of WA15 might be related to the inhibition of IKK/NF-κB signal pathway.
Collapse
|
3
|
Ercilla A, Benada J, Amitash S, Zonderland G, Baldi G, Somyajit K, Ochs F, Costanzo V, Lukas J, Toledo L. Physiological Tolerance to ssDNA Enables Strand Uncoupling during DNA Replication. Cell Rep 2021; 30:2416-2429.e7. [PMID: 32075739 DOI: 10.1016/j.celrep.2020.01.067] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/17/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
It has been long assumed that normally leading strand synthesis must proceed coordinated with the lagging strand to prevent strand uncoupling and the pathological accumulation of single-stranded DNA (ssDNA) in the cell, a dogma recently challenged by in vitro studies in prokaryotes. Here, we report that human DNA polymerases can function independently at each strand in vivo and that the resulting strand uncoupling is supported physiologically by a cellular tolerance to ssDNA. Active forks rapidly accumulate ssDNA at the lagging strand when POLA1 is inhibited without triggering a stress response, despite ssDNA formation being considered a hallmark of replication stress. Acute POLA1 inhibition causes a lethal RPA exhaustion, but cells can duplicate their DNA with limited POLA1 activity and exacerbated strand uncoupling as long as RPA molecules suffice to protect the elevated ssDNA. Although robust, this uncoupled mode of DNA replication is also an in-built weakness that can be targeted for cancer treatment.
Collapse
Affiliation(s)
- Amaia Ercilla
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Jan Benada
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Sampath Amitash
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Gijs Zonderland
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Giorgio Baldi
- DNA Metabolism Laboratory, FIRC Institute for Molecular Oncology (IFOM), Milan 20139, Italy
| | - Kumar Somyajit
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Fena Ochs
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, FIRC Institute for Molecular Oncology (IFOM), Milan 20139, Italy
| | - Jiri Lukas
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Luis Toledo
- Center for Chromosome Stability, Institute for Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2200, Denmark.
| |
Collapse
|
4
|
García-Rodríguez J, Pérez-Rodríguez S, Ortiz MA, Pereira R, de Lera AR, Piedrafita FJ. Inhibition of IκB kinase-β and IκB kinase-α by heterocyclic adamantyl arotinoids. Bioorg Med Chem 2014; 22:1285-302. [PMID: 24457093 DOI: 10.1016/j.bmc.2014.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/26/2013] [Accepted: 01/03/2014] [Indexed: 12/18/2022]
Abstract
We recently reported on a series of retinoid-related molecules containing an adamantyl group, a.k.a. adamantyl arotinoids (AdArs), that showed significant cancer cell growth inhibitory activity and activated RXRα (NR2B1) in transient transfection assays while devoid of RAR transactivation capacity. We have now explored whether these AdArs could also bind and inhibit IKKβ, a known target that mediates the induction of apoptosis and cancer cell growth inhibition by related AdArs containing a chalcone functional group. In addition, we have prepared and evaluated novel AdArs that incorporate a central heterocyclic ring connecting the adamantyl-phenol and the carboxylic acid at the polar termini. Our results indicate that the majority of the RXRα activating compounds lacked IKKβ inhibitory activity. In contrast, the novel heterocyclic AdArs containing a thiazole or pyrazine ring linked to a benzoic acid motif were potent inhibitors of both IKKα and IKKβ, which in most cases paralleled significant growth inhibitory and apoptosis inducing activities.
Collapse
Affiliation(s)
- José García-Rodríguez
- Departamento de Química Orgánica, CINBIO and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Santiago Pérez-Rodríguez
- Departamento de Química Orgánica, CINBIO and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - María A Ortiz
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Ct, San Diego, CA 92121, USA
| | - Raquel Pereira
- Departamento de Química Orgánica, CINBIO and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Angel R de Lera
- Departamento de Química Orgánica, CINBIO and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain.
| | - F Javier Piedrafita
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Ct, San Diego, CA 92121, USA.
| |
Collapse
|
5
|
New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: The role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome. Eur J Cancer 2013; 49:1491-500. [DOI: 10.1016/j.ejca.2012.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/09/2012] [Accepted: 11/14/2012] [Indexed: 01/14/2023]
|
6
|
Abstract
INTRODUCTION Retinoid X receptors (subtypes RXRα or NR2B1, RXRβ or NR2B2 and RXRγ or NR2B3, which originate from three distinct genes) are promiscuous partners with heterodimeric associations to other members of the Nuclear Receptor (NR) superfamily. Some of the heterodimers are "permissive" and transcriptionally active in the presence of either an RXR ligand ("rexinoid") or a NR partner ligand, whereas others are "non-permissive" and unresponsive to rexinoids alone. In rodent models, rexinoids and partner agonists (mainly PPARγ, LXR, FXR) produce beneficial effects on insulin sensitization, diabetes and obesity, but secondary effects have also been noted, such as a raise in tryglyceride levels, supression of the thyroid hormone axis and induction of hepatomegaly. AREAS COVERED The authors review recent advances in rexinoid design, including further optimization of known scaffolds, and the discovery of novel RXR modulators by virtual ligand screening or from bioactive natural products. The understanding of rexinoid functions in permissive and non-permissive heterodimers is firmly based on structural knowledge. By strenghtening or disrupting the interaction surface with coregulators rexinoids exert agonist or (partial) antagonist activities. The activity state of the heterodimer can also be fine-tuned by the cellular context and the nature of coregulators. EXPERT OPINION The synthetic chemistry toolbox has provided a panel of agonists, partial (ant)agonists and/or heterodimer-selective rexinoids starting from existing, naturally occurring or serendipitously discovered scaffolds. These compounds have an unexplored therapeutic potential that might overcome some of the current limitations of rexinoids in therapy, such as hypertriglyceridemia.
Collapse
Affiliation(s)
- Belén Vaz
- Departamento de Química Orgánica, Facultad de Química and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | | |
Collapse
|
7
|
Wang N, Wang R, Shi X, Zou G. Ion-exchange-resin-catalyzed adamantylation of phenol derivatives with adamantanols: Developing a clean process for synthesis of 2-(1-adamantyl)-4-bromophenol, a key intermediate of adapalene. Beilstein J Org Chem 2012; 8:227-33. [PMID: 22423289 PMCID: PMC3302083 DOI: 10.3762/bjoc.8.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/26/2012] [Indexed: 12/18/2022] Open
Abstract
A clean process has been developed for the synthesis of 2-adamantylphenol derivatives through adamantylation of substituted phenols with adamantanols catalyzed by commercially available and recyclable ion-exchange sulfonic acid resin in acetic acid. The sole byproduct of the adamantylation reaction, namely water, could be converted into the solvent acetic acid by addition of a slight excess of acetic anhydride during the work-up procedure, making the process waste-free except for regeneration of the ion-exchange resin, and facilitating the recycling of the resin catalyst. The ion-exchange sulfonic acid resin catalyst could be readily recycled by filtration and directly reused at least ten times without a significant loss of activity. The key intermediate of adapalene, 2-(1-adamantyl)-4-bromophenol, could be produced by means of this waste-free process.
Collapse
Affiliation(s)
- Nan Wang
- Department of Fine Chemicals, East China University of Science & Technology, Meilong Rd. 130, Shanghai, 200237, China. Fax: 86-21-64253881; Tel: 86-21-64252390
| | - Ronghua Wang
- Department of Fine Chemicals, East China University of Science & Technology, Meilong Rd. 130, Shanghai, 200237, China. Fax: 86-21-64253881; Tel: 86-21-64252390
| | - Xia Shi
- Department of Fine Chemicals, East China University of Science & Technology, Meilong Rd. 130, Shanghai, 200237, China. Fax: 86-21-64253881; Tel: 86-21-64252390
| | - Gang Zou
- Department of Fine Chemicals, East China University of Science & Technology, Meilong Rd. 130, Shanghai, 200237, China. Fax: 86-21-64253881; Tel: 86-21-64252390
| |
Collapse
|
8
|
Dawson MI, Xia Z. The retinoid X receptors and their ligands. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:21-56. [PMID: 22020178 DOI: 10.1016/j.bbalip.2011.09.014] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 12/12/2022]
Abstract
This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1-3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand-bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Marcia I Dawson
- Cancer Center, Sanford-Burn Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 93207, USA.
| | | |
Collapse
|
9
|
Bushue N, Wan YJY. Retinoid pathway and cancer therapeutics. Adv Drug Deliv Rev 2010; 62:1285-98. [PMID: 20654663 DOI: 10.1016/j.addr.2010.07.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 07/08/2010] [Accepted: 07/14/2010] [Indexed: 12/18/2022]
Abstract
The retinoids are a class of compounds that are structurally related to vitamin A. Retinoic acid, which is the active metabolite of retinol, regulates a wide range of biological processes including development, differentiation, proliferation, and apoptosis. Retinoids exert their effects through a variety of binding proteins including cellular retinol-binding protein (CRBP), retinol-binding proteins (RBP), cellular retinoic acid-binding protein (CRABP), and nuclear receptors i.e. retinoic acid receptor (RAR) and retinoid x receptor (RXR). Because of the pleiotropic effects of retinoids, understanding the function of these binding proteins and nuclear receptors assists us in developing compounds that have specific effects. This review summarizes our current understanding of how retinoids are processed and act with an emphasis on the application of retinoids in cancer treatment and prevention.
Collapse
Affiliation(s)
- Nathan Bushue
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | |
Collapse
|