1
|
Moreira DA, Santos SD, Leiro V, Pêgo AP. Dendrimers and Derivatives as Multifunctional Nanotherapeutics for Alzheimer's Disease. Pharmaceutics 2023; 15:pharmaceutics15041054. [PMID: 37111540 PMCID: PMC10140951 DOI: 10.3390/pharmaceutics15041054] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia. It affects more than 30 million people worldwide and costs over US$ 1.3 trillion annually. AD is characterized by the brain accumulation of amyloid β peptide in fibrillar structures and the accumulation of hyperphosphorylated tau aggregates in neurons, both leading to toxicity and neuronal death. At present, there are only seven drugs approved for the treatment of AD, of which only two can slow down cognitive decline. Moreover, their use is only recommended for the early stages of AD, meaning that the major portion of AD patients still have no disease-modifying treatment options. Therefore, there is an urgent need to develop efficient therapies for AD. In this context, nanobiomaterials, and dendrimers in particular, offer the possibility of developing multifunctional and multitargeted therapies. Due to their intrinsic characteristics, dendrimers are first-in-class macromolecules for drug delivery. They have a globular, well-defined, and hyperbranched structure, controllable nanosize and multivalency, which allows them to act as efficient and versatile nanocarriers of different therapeutic molecules. In addition, different types of dendrimers display antioxidant, anti-inflammatory, anti-bacterial, anti-viral, anti-prion, and most importantly for the AD field, anti-amyloidogenic properties. Therefore, dendrimers can not only be excellent nanocarriers, but also be used as drugs per se. Here, the outstanding properties of dendrimers and derivatives that make them excellent AD nanotherapeutics are reviewed and critically discussed. The biological properties of several dendritic structures (dendrimers, derivatives, and dendrimer-like polymers) that enable them to be used as drugs for AD treatment will be pointed out and the chemical and structural characteristics behind those properties will be analysed. The reported use of these nanomaterials as nanocarriers in AD preclinical research is also presented. Finally, future perspectives and challenges that need to be overcome to make their use in the clinic a reality are discussed.
Collapse
Affiliation(s)
- Débora A Moreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- FEUP-Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia D Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P Pêgo
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Synthesis and Activity of Ionic Antioxidant-Functionalized PAMAMs and PPIs Dendrimers. Polymers (Basel) 2022; 14:polym14173513. [PMID: 36080588 PMCID: PMC9459880 DOI: 10.3390/polym14173513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
For this study, new dendrimers were prepared from poly(propylene imine) (PPI) and polyamidoamine (PAMAM) dendrimers using an efficient acid-base reaction with various phenolic acids. The syntheses were also optimized in both microwave and microfluidic reactors. These ionic and hydrophilic dendrimers were fully characterized and showed excellent antioxidant properties. Their cytotoxic properties have been also determined in the case of fibroblast dermal cells.
Collapse
|
3
|
Sirin S, Duyar H, Aslım B, Seferoğlu Z. Synthesis and biological activity of pyrrolidine/piperidine substituted 3-amido-9-ethylcarbazole derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Bakhshi R, Zeynizadeh B, Mousavi H. Green, rapid, and highly efficient syntheses of
α
,
α′
‐bis[(aryl or allyl)idene]cycloalkanones and 2‐[(aryl or allyl)idene]‐1‐indanones as potentially biologic compounds via solvent‐free microwave‐assisted Claisen–Schmidt condensation catalyzed by MoCl
5. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201900081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Reza Bakhshi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| | - Hossein Mousavi
- Department of Organic Chemistry, Faculty of ChemistryUrmia University Urmia Iran
| |
Collapse
|
5
|
Poellmann MJ, Bu J, Hong S. Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke? Nanomedicine (Lond) 2018; 13:2327-2340. [DOI: 10.2217/nnm-2018-0084] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide and is in urgent need of new treatment options. The only approved treatment for stroke restores blood flow to the brain, but much of the tissue damage occurs during the subsequent reperfusion. Antioxidant therapies that directly address ischemia-reperfusion injury have shown promise in preclinical results. In this review, we discuss that reformulating antioxidant therapies as nanomedicine can potentially overcome the barriers that have kept these therapies from succeeding in the clinic. We begin by reviewing the pathophysiology of ischemic stroke with a focus on the effects of reperfusion injury. Next, we review nanotherapeutic systems designed to treat the disease with a focus on those addressing reperfusion injury. Mechanisms of passive and active transport required to traverse a blood–brain barrier are discussed. Finally, we conclude by outlining design parameters for potentially successful nanomedicines as front-line therapeutics for ischemic stroke.
Collapse
Affiliation(s)
- Michael J Poellmann
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Jiyoon Bu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
| | - Seungpyo Hong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53792, USA
- Yonsei Frontier Lab & Department of Pharmacy, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
6
|
Rajavelu K, Subaraja M, Rajakumar P. Synthesis, optical properties, and antioxidant and anticancer activity of benzoheterazole dendrimers with triazole bridging unit. NEW J CHEM 2018. [DOI: 10.1039/c7nj04060a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzoheterazole dendrimers with triazole bridges and bisphenol A/benzophenone core units have been successfully synthesized by click chemistry. Higher generation dendrimers exhibit better antioxidant and anticancer activities than the lower generation dendrimers.
Collapse
Affiliation(s)
- Kannan Rajavelu
- Department of Organic Chemistry, University of Madras
- Chennai 600 025
- India
| | - Mamangam Subaraja
- Department of Biochemistry, University of Madras
- Chennai 600 025
- India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras
- Chennai 600 025
- India
| |
Collapse
|
7
|
Savithri JS, Rajakumar P. Synthesis, Photophysical, and Antioxidant Properties of Rhodamine B Decorated Novel Dendrimers. Aust J Chem 2018. [DOI: 10.1071/ch17652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Novel triazole bridged dendrimers with rhodamine B derivative as surface groups have been achieved using click chemistry by both divergent and convergent approaches. Rhodamine B decorated dendrimers 1, 2, and 3 were synthesised up to the second generation with spirolactam grafted at the terminal. The UV and fluorescence intensity increases with the increase in the dendritic generation. The synthesised rhodamine B decorated dendrimers show significant antioxidant behaviour compared with the standards butylated hydroxy toluene (BHT) and gallic acid when tested by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging assay and hydroxyl radical scavenging assay methods, respectively. Rhodamine B decorated higher generation dendrimers exhibit better antioxidant activity than the lower generation dendrimers due to the presence of a greater number of triazole branching units and rhodamine B derivative surface units.
Collapse
|
8
|
Mignani S, Bryszewska M, Zablocka M, Klajnert-Maculewicz B, Cladera J, Shcharbin D, Majoral JP. Can dendrimer based nanoparticles fight neurodegenerative diseases? Current situation versus other established approaches. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2016.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Kannan A, Saravanan V, Rajakumar P. Synthesis, Photophysical, Electrochemical Studies, and Antioxidant Properties of Fluorescein-Linked Glycodendrimers. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayyavoo Kannan
- Department of Organic Chemistry; University of Madras; Guindy Campus Chennai 600 025 India
| | - Velautham Saravanan
- Department of Organic Chemistry; University of Madras; Guindy Campus Chennai 600 025 India
| | - Perumal Rajakumar
- Department of Organic Chemistry; University of Madras; Guindy Campus Chennai 600 025 India
| |
Collapse
|
10
|
Synthesis and antioxidant studies of novel bi-, tri-, and tetrapodal 9-aryl-1,8-dioxo-octahydroxanthenes. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Rajakumar P, Venkatesan N, Sekar K, Nagaraj S, Rengasamy R. Synthesis, Optical, and Antioxidant Studies of Anthraquinone-core-based Dendrimers with N-Phenylcarbazole as Surface Group. Aust J Chem 2014. [DOI: 10.1071/ch13521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthesis of hyperbranched dendrimers up to third generation with N-phenylcarbazole as surface group and anthraquinone as the core unit has been achieved. The fluorescence decay studies of the dendrimers indicate that generation growth alters the relaxation time. The highly branched third-generation dendrimer has a longer relaxation time than the zero-, first-, and second-generation dendrimers. Similarly, higher-generation dendrimers show better antioxidant behaviour with 1,1-diphenyl-2-picryl hydrazyl than the lower-generation dendrimers.
Collapse
|
12
|
Rajakumar P, Venkatesan N, Mohanraj G. Synthesis, antibacterial and antioxidant properties of novel ethylenoindolophanes – a new class of cyclophanes. RSC Adv 2014. [DOI: 10.1039/c4ra00303a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Mignani S, Kazzouli SE, Bousmina M, Majoral JP. Dendrimer space concept for innovative nanomedicine: A futuristic vision for medicinal chemistry. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2013.03.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Yu T, Chai H, Zhao Y, Zhang C, Liu P, Fan D. Synthesis, crystal structure and photoluminescence of phosphorescent copper (I) complexes containing hole-transporting carbazoly moiety. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 109:179-185. [PMID: 23524386 DOI: 10.1016/j.saa.2012.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 11/01/2012] [Accepted: 11/05/2012] [Indexed: 06/02/2023]
Abstract
Two new mononuclear Cu(I) complexes based on 2-(2'-pyridyl)benzimidazolyl derivative ligand containing hole-transporting carbazole (L), [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4), where L=(4-(9H-carbazol-9-yl)phenyl)methyl-2-(2'-pyridyl)benzimidazole; DPEphos=bis[2-(diphenylphosphino)phenyl]ether and PPh3=triphenylphosphine, have been synthesized and characterized on the basis of elemental analysis, (1)H NMR and FT-IR spectra. The structures of the ligand L and the Cu(I) complexes were characterized by single crystal X-ray diffraction. The results reveal that in the Cu(I) complexes the central Cu(I) ions assume the irregular distorted tetrahedral geometry and are tetra-coordinated by the two nitrogen atoms from L ligand and two phosphorus atoms from ancillary ligands. The photophysical properties of the complexes were examined by using UV-vis, photoluminescence spectroscopic analysis. The complexes exhibit weak MLCT absorption bands ranging from 360 to 480 nm, and display strong orange phosphorescence in the solid states at room temperature, which is completely quenched in solutions.
Collapse
Affiliation(s)
- Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control, Ministry of Education, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | | | | | | | | | | |
Collapse
|
15
|
Mignani S, Majoral JP. Dendrimers as macromolecular tools to tackle from colon to brain tumor types: a concise overview. NEW J CHEM 2013. [DOI: 10.1039/c3nj00300k] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Pajuste K, Hyvönen Z, Petrichenko O, Kaldre D, Rucins M, Cekavicus B, Ose V, Skrivele B, Gosteva M, Morin-Picardat E, Plotniece M, Sobolev A, Duburs G, Ruponen M, Plotniece A. Gene delivery agents possessing antiradical activity: self-assembling cationic amphiphilic 1,4-dihydropyridine derivatives. NEW J CHEM 2013. [DOI: 10.1039/c3nj00272a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|