1
|
Pronina Y, Filatov A, Shmakov S, Selivanov S, Kryukova M, Spiridonova D, Ponyaev A, Stepakov A, Boitsov V. Highly Efficient Synthesis of Spiro[1-azabicyclo[3.2.0]heptane] Frameworks via [3+2]-Cycloaddition. J Org Chem 2025; 90:4926-4945. [PMID: 40146540 DOI: 10.1021/acs.joc.4c03183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
An efficient one-pot three-component [3 + 2]-cycloaddition reaction of azomethine ylides, generated in situ from isatins and azetidine-2-carboxylic acid, with different maleimides and itaconimides has been investigated. These reactions afford the corresponding spiro and dispiro[1-azabicyclo[3.2.0]heptanes] in moderate to high yields (up to 93%) with moderate to excellent diastereoselectivities and excellent regioselectivities under mild conditions. The method provides a simple route to the stereoselective synthesis of new polyheterocyclic systems such as 3-spiro[1-azabicyclo[3.2.0]heptane]oxindoles spiro-conjugated or fused to a succinimide moiety. The observed diastereo- and regioselectivity of cycloaddition reactions is reasoned by DFT studies. The antiproliferative effect of the synthesized compounds against cancer cell lines was assessed.
Collapse
Affiliation(s)
- Yulia Pronina
- Saint Petersburg State Institute of Technology, Moskovskii pr. 26, St. Petersburg 190013, Russian Federation
| | - Alexander Filatov
- Saint Petersburg State Institute of Technology, Moskovskii pr. 26, St. Petersburg 190013, Russian Federation
| | - Stanislav Shmakov
- Saint Petersburg Academic University, ul. Khlopina 8/3, St. Petersburg 194021, Russian Federation
| | - Stanislav Selivanov
- Saint Petersburg State Institute of Technology, Moskovskii pr. 26, St. Petersburg 190013, Russian Federation
- Laboratory of Biomolecular NMR, Saint Petersburg State University, St. Petersburg 199034, Russian Federation
| | - Mariya Kryukova
- Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, St. Petersburg 198504, Russian Federation
| | - Dar'ya Spiridonova
- Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, St. Petersburg 198504, Russian Federation
| | - Alexander Ponyaev
- Saint Petersburg State Institute of Technology, Moskovskii pr. 26, St. Petersburg 190013, Russian Federation
| | - Alexander Stepakov
- Saint Petersburg State Institute of Technology, Moskovskii pr. 26, St. Petersburg 190013, Russian Federation
- Institute of Chemistry, Saint Petersburg State University, Universitetsky pr. 26, St. Petersburg 198504, Russian Federation
| | - Vitali Boitsov
- Saint Petersburg Academic University, ul. Khlopina 8/3, St. Petersburg 194021, Russian Federation
| |
Collapse
|
2
|
Kumar P, Singampalli A, Bandela R, Srimounika B, Rajyalakshmi SI, Devi A, Nanduri S, Venkata Madhavi Y. Spirocyclic compounds: potential drug leads in the fight against Mycobacterium tuberculosis. Future Med Chem 2025; 17:819-837. [PMID: 40103373 PMCID: PMC12026180 DOI: 10.1080/17568919.2025.2479413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
TB drug discovery needs scientists' attention since drug resistance in TB, including extensively drug-resistant TB (XDR-TB) and multidrug-resistant TB (MDR-TB), is a major healthcare concern. Since millions of fatalities from tuberculosis are recorded each year, there is an urgent need to discover new anti-tubercular medications that will either eradicate or control the disease. Spiro compounds have garnered a lot of attention in medicinal chemistry these days because of various biological activities mainly because of their adaptability and structural resemblance to significant pharmacophores. This article overviews the synthesis and activity of spirocyclic compounds as anti-tubercular agents. Both synthesized and naturally occurring spiro chemicals exhibit antitubercular properties. The promising antitubercular potential shown by some of the spirocyclic compounds has attracted scientists to explore them further to develop molecules with improved pharmacodynamic and pharmacokinetic properties and new mechanisms of action with enhanced safety and efficacy in tuberculosis. The current review covers the exploration of spiro compounds from the year 2004 to 2024 for the combat of Tuberculosis. This review gives the comprehensive advancements in this scaffold which would help the logical design of powerful, less toxic, and more effective spirocyclic anti-TB medicinal molecules.
Collapse
Affiliation(s)
- Pardeep Kumar
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anuradha Singampalli
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rani Bandela
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Bellapukonda Srimounika
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sugali Indravath Rajyalakshmi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ankita Devi
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Yaddanapudi Venkata Madhavi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
3
|
Paramasivam G, Palanichamy B, Paramathevar N. Synthesis of xanthenone fused spiro pyrrolidine oxindoles via multicomponent [3 + 2] cycloaddition reactions. Mol Divers 2025:10.1007/s11030-025-11167-w. [PMID: 40117093 DOI: 10.1007/s11030-025-11167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Xanthenone fused spiro-pyrrolidine oxindoles were conveniently synthesized in good yields with high regio- and diastereoselectivity from a multicomponent synthesis involving tetrahydroxanthenones, α-amino acids, and isatins via an azomethine ylide based [3 + 2] cycloaddition process. We utilized tetrahydroxanthenone as a dipolarophile for the first time in the [3 + 2] cycloaddition of decarboxylated azomethine ylide. The relative configuration of the spirocycloadduct was determined by single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Gurusivam Paramasivam
- Department of Chemistry, College of Engineering, Anna University, Guindy, Chennai, 600025, India
| | | | - Nagaraaj Paramathevar
- Department of Chemistry, College of Engineering, Anna University, Guindy, Chennai, 600025, India.
| |
Collapse
|
4
|
Sutariya TR, Brahmbhatt GC, Atara HD, Parmar NJ, RajniKant, Gupta VK, Lagunes I, Padrón JM, Murumkar PR, Sharma MK, Yadav MR. An efficient one-pot synthesis and docking studies of bioactive new antiproliferative dispiro[oxindole/acenaphthylenone‒benzofuranone] pyrrolidine scaffolds. Mol Divers 2024; 28:3165-3180. [PMID: 37935912 DOI: 10.1007/s11030-023-10741-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/01/2023] [Indexed: 11/09/2023]
Abstract
A new and efficient method has been developed to synthesize dispiro[oxindole/acenaphthylenone-benzofuranone]pyrrolidine compounds. This is done by triggering the 1,3-dipolar cycloaddition reaction of azomethine ylides by reacting isatin/acenaphthoquinone with L-picolinic acid/L-proline/sarcosine/L-thioproline/tetrahydroisoquinolines, in a highly regioselective manner in an ionic liquid [DBU][Ac] with 4'-chloro-auron[2-(4-chlorobenzylidene)benzofuran-3(2H)-one]. Single-crystal X-ray diffraction data support the proposed structures of the new compounds. The heterocycles derived from amino acids such as L-picolinic acid, L-proline, and L-thioproline showed significant inhibitory effects against six human solid tumors, including lung, breast, cervix, colon, and others. These new structures were also tested in the active sites of the MDM2 receptor to further study their antiproliferative effects.
Collapse
Affiliation(s)
- Tushar R Sutariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India
| | - Gaurangkumar C Brahmbhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India
| | - Hiralben D Atara
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India
| | - Narsidas J Parmar
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar Dist. Anand, Gujarat, 388120, India.
| | - RajniKant
- Post-Graduate Department of Physics, University of Jammu, Jammu, Tawi, 180006, India
| | - Vivek K Gupta
- Post-Graduate Department of Physics, University of Jammu, Jammu, Tawi, 180006, India
| | - Irene Lagunes
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Universidad de La Laguna, C/Astrofísico Francisco Sánchez 2, 38206, La Laguna, Spain
| | - Prashant R Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Mayank Kumar Sharma
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, 390 001, India
| |
Collapse
|
5
|
Liu Y, Shen X, Zhu P, Hu JM, Wang X, Ge S. Gold-Catalyzed Cascade Reaction of Yne-Enones with Iminooxindoles, Access to 3,2'-Pyrrolidinyl-Spirooxindole Derivatives. Org Lett 2024. [PMID: 38804575 DOI: 10.1021/acs.orglett.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Herein, a gold-catalyzed cascade reaction of yne-enones with iminooxindoles has been developed through a cascade cycloisomerization/(3 + 2) annulation process. This approach provides a straightforward and efficient route for the synthesis of functionalized 3,2'-pyrrolidinyl-spirooxindoles in high reactivity and broad substrate scope with excellent cis-selectivity. Moreover, the subsequent functionalization of furan units allows for the diverse synthesis of spirooxindole derivatives, which have demonstrated good antitumoral activity.
Collapse
Affiliation(s)
- Yijun Liu
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Puerh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaojiang Shen
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Pengyan Zhu
- College of Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jiang-Miao Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xuanjun Wang
- Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Shulin Ge
- College of Science, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Puerh Tea Science, Ministry of Education, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
6
|
Miankooshki FR, Bayat M, Nasri S, Samet NH. 1,3-Dipolar cycloaddition reactions of isatin-derived azomethine ylides for the synthesis of spirooxindole and indole-derived scaffolds: recent developments. Mol Divers 2023; 27:2365-2397. [PMID: 35925529 DOI: 10.1007/s11030-022-10510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
The unique therapeutic and biological characteristics of spirooxindole have led to the presentation of numerous reactions for the synthesis of spirooxindoles through 1,3-Dipolar cycloaddition of highly reactive isatin-derived azomethine ylides with activated olefins as the main tool for the formation of spirocyclic oxindoles during the last 4 years. Therefore, there is a need to highlight the recent developments in this area, along with the representative synthetic methods and relevant reaction mechanisms from 2018 to 2021. The representative synthetic methodologies were listed in four sections based on the procedure to form the azomethine ylide species including isatins and amino acids, isatin-derived α-(trifluoromethyl)imine, isatins and benzylamines, and from isatin-derived cyclic imine 1,3-dipoles.
Collapse
Affiliation(s)
| | - Mohammad Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Shima Nasri
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Narges Habibi Samet
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| |
Collapse
|
7
|
Azomethine Ylides-Versatile Synthons for Pyrrolidinyl-Heterocyclic Compounds. Molecules 2023; 28:molecules28020668. [PMID: 36677727 PMCID: PMC9866015 DOI: 10.3390/molecules28020668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Azomethine ylides are nitrogen-based three-atom components commonly used in [3+2]-cycloaddition reactions with various unsaturated 2π-electron components. These reactions are highly regio- and stereoselective and have attracted the attention of organic chemists with respect to the construction of diverse heterocycles potentially bearing four new contiguous stereogenic centers. This review article complies the most important [3+2]-cycloaddition reactions of azomethine ylides with various olefinic, unsaturated 2π-electron components (acyclic, alicyclic, heterocyclic, and exocyclic ones) reported over the past two decades.
Collapse
|
8
|
Development of catalyst-free approach to synthesize novel spiro[indoline-3,1′-pyrazolo[1,2-a]pyrazoles] via 1,3-dipolar cycloaddition. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Maury SK, Kushwaha AK, Kamal A, Singh HK, singh S. Visible light triggered synthesis of spiro[indoline-3,4′-quinoline] via oxidative coupling of indole with enaminone and malononitrile. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Synthesis, molecular docking, anti-cancer activity, and in-silico ADME analysis of novel spiroacenaphthylene pyrrolizidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Saleh SA, Hazra A, Singh MS, Hajra S. Selective C3-Allylation and Formal [3 + 2]-Annulation of Spiro-Aziridine Oxindoles: Synthesis of 5'-Substituted Spiro[pyrrolidine-3,3'-oxindoles] and Coerulescine. J Org Chem 2022; 87:8656-8671. [PMID: 35731944 DOI: 10.1021/acs.joc.2c00863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brønsted acid- and/or Lewis acid-catalyzed selective C3-allylation and formal [3 + 2]-annulation of spiro-aziridine oxindoles with allylsilanes have been demonstrated to deliver direct access to 3-allyl-3-aminomethyl oxindoles and 5-silyl methyl spiro[pyrrolidine-3,3'-oxindoles], respectively. The acid-catalyzed methods do not provide any stereoselectivity when chiral spiroaziridines are used. However, the reaction of nonracemic sprioaziridines with allyl-Grignard reagent under catalyst-free conditions afforded 3-allyl-3-aminomethyl oxindoles with good stereoselectivity (ee up to 80%). The allylation protocol is utilized for the short synthesis of coerulescine and various 5'-substituted spiro[pyrrolidine-3,3'-oxindoles].
Collapse
Affiliation(s)
- Sk Abu Saleh
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.,Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Atanu Hazra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India.,Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Saumen Hajra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
12
|
Pramanik S, Mukhopadhyay C. Tosylhydrazine-promoted self-conjugate reduction–Michael/aldol reaction of 3-phenacylideneoxindoles towards dispirocyclopentanebisoxindole derivatives. Beilstein J Org Chem 2022; 18:469-478. [PMID: 35558650 PMCID: PMC9062653 DOI: 10.3762/bjoc.18.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
An efficient tosylhydrazine-mediated conjugate reduction of 3-phenacylideneoxindole and sequential Michael/intramolecular aldol reaction is reported under base-catalyzed conditions towards the formation of densely substituted dispirocyclopentanebisoxindole derivatives. The reaction proceeded in a diastereoselective manner to afford four chiral stereocenters. The method also has advantages of wide substrate scope, readily available starting materials and operational simplicity through one pot reaction.
Collapse
Affiliation(s)
- Sayan Pramanik
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
13
|
Islam MS, Haukka M, Soliman SM, Al-Majid AM, Rahman AM, Bari A, Barakat A. Regio- and stereoselective synthesis of spiro-heterocycles bearing the pyrazole scaffold via [3+2] cycloaddition reaction. J Mol Struct 2022; 1250:131711. [DOI: 10.1016/j.molstruc.2021.131711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Tian X, Zhang Y, Ren W, Wang Y. Synthesis of functionalized 3,2′-pyrrolidinyl spirooxindoles via domino 1,6-addition/annulation reactions of para-quinone methides and 3-chlorooxindoles. Org Chem Front 2022. [DOI: 10.1039/d1qo01605a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A highly efficient diastereoselective [4 + 1] cycloaddition of ortho-tosylaminophenyl-substituted p-QMs with 3-chlorooxindoles has been developed to afford 3,2′-pyrrolidinyl spirooxindoles.
Collapse
Affiliation(s)
- Xiaochen Tian
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Yongxing Zhang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Yang Wang
- Molecular Synthesis Center & Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
15
|
Abstract
2-Aminopyridine is a simple, low molecular weight and perfectly functionalised moiety known for the synthesis of diverse biological molecules. Many pharmaceutical companies across the globe aim to synthesise low-molecular weight molecules for use as pharmacophores against various biological targets. 2-Aminopyridine can serve as a perfect locomotive in the synthesis and pulling of such molecules towards respective pharmacological goals. The major advantage of this moiety is its simple design, which can be used to produce single products with minimum side reactions. Moreover, the exact weight of synthesised compounds is low, which enables facile identification of toxicity-causing metabolites in drug discovery programmes. This manuscript is a quick review of such pharmacophores derived from 2-aminopyridine.
Collapse
Affiliation(s)
- Ramdas Nishanth Rao
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632014, India.
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
16
|
Montana M, Montero V, Khoumeri O, Vanelle P. Quinoxaline Moiety: A Potential Scaffold against Mycobacterium tuberculosis. Molecules 2021; 26:4742. [PMID: 34443334 PMCID: PMC8398470 DOI: 10.3390/molecules26164742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 11/29/2022] Open
Abstract
Background. The past decades have seen numerous efforts to develop new antitubercular agents. Currently, the available regimens are lengthy, only partially effective, and associated with high rates of adverse events. The challenge is therefore to develop new agents with faster and more efficient action. The versatile quinoxaline ring possesses a broad spectrum of pharmacological activities, ensuring considerable attention to it in the field of medicinal chemistry. Objectives. In continuation of our program on the pharmacological activity of quinoxaline derivatives, this review focuses on potential antimycobacterial activity of recent quinoxaline derivatives and discusses their structure-activity relationship for designing new analogs with improved activity. Methods. The review compiles recent studies published between January 2011 and April 2021. Results. The final total of 23 studies were examined. Conclusions. Data from studies of quinoxaline and quinoxaline 1,4-di-N-oxide derivatives highlight that specific derivatives show encouraging perspectives in the treatment of Mycobacterium tuberculosis and the recent growing interest for these scaffolds. These interesting results warrant further investigation, which may allow identification of novel antitubercular candidates based on this scaffold.
Collapse
Affiliation(s)
- Marc Montana
- Aix Marseille Univ, CNRS, ICR, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13005 Marseille, France; (M.M.); (V.M.); (O.K.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Oncopharma, 13015 Marseille, France
| | - Vincent Montero
- Aix Marseille Univ, CNRS, ICR, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13005 Marseille, France; (M.M.); (V.M.); (O.K.)
| | - Omar Khoumeri
- Aix Marseille Univ, CNRS, ICR, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13005 Marseille, France; (M.M.); (V.M.); (O.K.)
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 13005 Marseille, France; (M.M.); (V.M.); (O.K.)
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Service Central de la Qualité et de l’Information Pharmaceutiques (SCQIP), 13005 Marseille, France
| |
Collapse
|
17
|
Shen MH, Li C, Xu QS, Guo B, Wang R, Liu X, Xu HD, Xu D. Allylation and alkylation of oxindoleketimines via imine umpolung strategy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Zampieri D, Mamolo MG. Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Curr Top Med Chem 2021; 21:777-788. [PMID: 32814528 DOI: 10.2174/1568026620666200819151342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| | - Maria G Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
19
|
Three-component one-pot synthesis of new spiro[indoline-pyrrolidine] derivatives mediated by 1,3-dipolar reaction and DFT analysis. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Lalitha A, Vinoth N, Vadivel P. Expedient Synthesis and Antibacterial Activity of Tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile Derivatives Using Piperidine as Catalyst. Synlett 2021. [DOI: 10.1055/s-0040-1706682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractA convenient synthesis of 2′-amino-7′,7′-dimethyl-2,5′-dioxo-1′-(phenylamino)-5′,6′,7′,8′-tetrahydro-1′H-spiro[indoline-3,4′-quinoline]-3′-carbonitrile derivatives has been designed using different substituted isatins, various 5,5-dimethyl-3-(2-phenylhydrazinyl)cyclohex-2-enones (arylhydrazones of dimedone) and malononitrile in ethanol with piperidine as catalyst at room temperature. The structures of the synthesized compounds have been elucidated by various spectroscopic techniques. The selected compounds have also been evaluated for their antibacterial activities against human pathogenic bacteria.
Collapse
|
21
|
Zaiter J, Hibot A, Hafid A, Khouili M, Neves CMB, Simões MMQ, Neves MGPMS, Faustino MAF, Dagci T, Saso L, Armagan G. Evaluation of the cellular protection by novel spiropyrazole compounds in dopaminergic cell death. Eur J Med Chem 2021; 213:113140. [PMID: 33454549 DOI: 10.1016/j.ejmech.2020.113140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 01/09/2023]
Abstract
The loss of neurons is strongly correlated with aging and aging-associated disorders. In this study, cell viability assays and mitochondrial function were performed to evaluate the effect of new spiro-pyrazole derivatives, prepared from aldehydes and 3-amino-1-phenyl-2-pyrazolin-5-one, on neuroprotection in an in vitro model of dopaminergic cell death induced by 1-methyl-4-phenylpyridinium (MPP+). The percentages of neuroprotection by derivatives were found between 21.26% and 52.67% at selected concentrations (10-50 μM) with compound 4d exerting the best neuroprotective effect. The results show that the studied spiropyrazolones perform important roles in dopaminergic neuroprotection and can be used for potential new therapies in the treatment of neurodegenerative disorders including Parkinson's disease.
Collapse
Affiliation(s)
- Jamila Zaiter
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Achraf Hibot
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Abderrafia Hafid
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Mostafa Khouili
- Laboratoire de Chimie Organique et Analytique, Faculté des Sciences et Techniques, Université Sultan Moulay Slimane, BP 523, 23000, Beni-Mellal, Morocco
| | - Claudia M B Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mário M Q Simões
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Amparo F Faustino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Taner Dagci
- Department of Physiology, Faculty of Medicine, Ege University, 35100, Bornova, Izmir, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Güliz Armagan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
22
|
Shen J, Zhang L, Meng X. Recent advances in cyclization reactions of isatins or thioisatins via C–N or C–S bond cleavage. Org Chem Front 2021. [DOI: 10.1039/d1qo00868d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes recent developments on cyclization reactions induced by the C–N or C–S bond cleavage of isatins or thioisatins in the last 5 years, which produce fused products instead of spiro compounds.
Collapse
Affiliation(s)
- Jinhui Shen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
23
|
Duffy C, Roe WE, Harkin AM, McNamee R, Knipe PC. Enantioselective organocatalytic formal [3+2]-cycloaddition of isatin-derived ketimines with benzylidenemalononitriles and benzylidineindanones. NEW J CHEM 2021. [DOI: 10.1039/d1nj04002b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Electron-deficient alkenes undergo organocatalysed formal [3+2]-cycloaddition with isatin-derived imines, generating complex spirocyclic products with high yield and stereoselectivity.
Collapse
Affiliation(s)
- Conor Duffy
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| | - William E. Roe
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| | - Aislinn M. Harkin
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| | - Ryan McNamee
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter C. Knipe
- School of Chemistry and Chemical Engineering, Queen's University, Belfast David Keir Building, Belfast, BT9 5AG, UK
| |
Collapse
|
24
|
Zhang C, Wu YC, Cui BD, Li L, Han WY, Wan NW, Chen YZ. Palladium-catalyzed asymmetric allylic alkylation of 3-aminooxindoles to access chiral homoallylic aminooxindoles. Org Biomol Chem 2021; 19:4720-4725. [PMID: 33969846 DOI: 10.1039/d1ob00550b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An organometal catalytic conversion of 3-aminooxindoles for the diastereo- and enantioselective synthesis of homoallylic aminooxindoles has been described. The asymmetric allylic alkylation of 3-aminooxindoles with allyl carboxylates proceeded smoothly to afford a series of chiral 3-allyl-3-aminooxindoles. This work offers an alternative route to build these scaffolds. The application of this protocol is also highlighted by a significant conversion of products to the potential applicable spiro[indoline-3,2'-pyrrolidin]-2-one derivatives.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - You-Cai Wu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Lian Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
25
|
Pavithra D, Ethiraj KR, Nawaz Khan F. Cu‐TEMPO Catalyzed Dehydrogenative Friedlander Annulation/sp
3
C–H Functionalization/Spiroannulation towards Spiro[indoline‐3,3'‐pyrrolizin]‐2'‐yl)‐4‐phenylquinoline‐3‐Carboxylates. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dalavai Pavithra
- Organic and Medicinal Chemistry Research Laboratory School of Advanced Sciences Vellore Institute of Technology 632014 Vellore Tamil Nadu India
| | - Kannat Radhakrishnan Ethiraj
- Organic and Medicinal Chemistry Research Laboratory School of Advanced Sciences Vellore Institute of Technology 632014 Vellore Tamil Nadu India
| | - Fazlur‐Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory School of Advanced Sciences Vellore Institute of Technology 632014 Vellore Tamil Nadu India
| |
Collapse
|
26
|
Regio-, diastereo- and enantioselectivity in the synthesis of CF3-containing spiro[pyrrolidin-3,2′-oxindole] through the organocatalytic [3 + 2] cycloaddition reaction: A molecular electron density theory study. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Anti-tubercular activity of novel class of spiropyrrolidine tethered indenoquinoxaline heterocyclic hybrids. Bioorg Chem 2020; 99:103799. [DOI: 10.1016/j.bioorg.2020.103799] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 11/18/2022]
|
28
|
Teja C, Babu SN, Noor A, Daniel JA, Devi SA, Nawaz Khan FR. Cu/TEMPO catalyzed dehydrogenative 1,3-dipolar cycloaddition in the synthesis of spirooxindoles as potential antidiabetic agents. RSC Adv 2020; 10:12262-12271. [PMID: 35497611 PMCID: PMC9050786 DOI: 10.1039/d0ra01553a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/15/2020] [Indexed: 12/17/2022] Open
Abstract
A series of spiro-[indoline-3,3'-pyrrolizin/pyrrolidin]-2-ones, 4, 5 and 6 were synthesized in a sequential manner from Cu-TEMPO catalyzed dehydrogenation of alkylated ketones, 1 followed by 1,3-dipolar cycloaddition of azomethine ylides via decarboxylative condensation of isatin, 2 and l-proline/sarcosine, 3 in high regioselectivities and yields. The detailed mechanistic studies were performed to identify the reaction intermediates, which revealed that the reaction proceeds via dehydrogenative cycloaddition. Additionally, the regio and stereochemistry of the synthesized derivatives were affirmed by 2D NMR spectroscopic studies. The synthesized derivatives were explored further with molecular docking, in vitro antioxidant, and anti-diabetic activities.
Collapse
Affiliation(s)
- Chitrala Teja
- Organic and Medicinal Chemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91-944-423-4609
| | - Spoorthy N Babu
- Centre for Bio Separation Technology, Vellore Institute of Technology Vellore-632014 India
| | - Ayesha Noor
- Centre for Bio Separation Technology, Vellore Institute of Technology Vellore-632014 India
| | - J Arul Daniel
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology Vellore-632014 India
| | - S Asha Devi
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology Vellore-632014 India
| | - Fazlur Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology Vellore-632014 Tamil Nadu India +91-944-423-4609
| |
Collapse
|
29
|
Shahrestani N, Tovfighmadar K, Eskandari M, Jadidi K, Notash B, Mirzaei P. Synthesis of Highly Enantioenriched Bis‐spirooxindole Pyrrolizidine/Pyrrolidines through Asymmetric [3+2] Cycloaddition Reaction. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Naeimeh Shahrestani
- Faculty of Chemistry and Petroleum SciencesDepartment of ChemistryShahid Beheshti University G.C. Tehran 1983963113 Iran
| | - Kolsoum Tovfighmadar
- Faculty of Chemistry and Petroleum SciencesDepartment of ChemistryShahid Beheshti University G.C. Tehran 1983963113 Iran
| | - Mehdi Eskandari
- Faculty of Chemistry and Petroleum SciencesDepartment of ChemistryShahid Beheshti University G.C. Tehran 1983963113 Iran
| | - Khosrow Jadidi
- Faculty of Chemistry and Petroleum SciencesDepartment of ChemistryShahid Beheshti University G.C. Tehran 1983963113 Iran
| | - Behrouz Notash
- Faculty of Chemistry and Petroleum SciencesDepartment of ChemistryShahid Beheshti University G.C. Tehran 1983963113 Iran
| | - Peiman Mirzaei
- Faculty of Chemistry and Petroleum SciencesDepartment of ChemistryShahid Beheshti University G.C. Tehran 1983963113 Iran
| |
Collapse
|
30
|
Prabhakaran P, Rajakumar P. Regio- and stereoselective synthesis of spiropyrrolidine-oxindole and bis-spiropyrrolizidine-oxindole grafted macrocycles through [3 + 2] cycloaddition of azomethine ylides. RSC Adv 2020; 10:10263-10276. [PMID: 35498613 PMCID: PMC9050375 DOI: 10.1039/c9ra10463a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
A convenient and efficient method for the regioselective macrocyclization of triazole bridged spiropyrrolidine-oxindole, and bis-spiropyrrolizidine-oxindole derivatives was accomplished through intra and self-intermolecular [3 + 2] cycloaddition of azomethine ylides. The chalcone isatin precursors 9a-i required for the click reaction were obtained from the reaction of N-alkylazidoisatin 4 and propargyloxy chalcone 8a-i which in turn were obtained by the aldol condensation of propargyloxy salicylaldehyde 6 and substituted methyl ketones 7a-i. The regio- and stereochemical outcome of the cycloadducts were assigned based on 2D NMR and confirmed by single crystal XRD analysis. High efficiency, mild reaction conditions, high regio- and stereoselectivity, atom economy and operational simplicity are the exemplary advantages of the employed macrocyclization procedure.
Collapse
Affiliation(s)
- Perumal Prabhakaran
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras Guindy Campus Chennai-600 025 Tamil Nadu India
| |
Collapse
|
31
|
Gandhi D, Sethiya A, Agarwal DK, Prajapat P, Agarwal S. Design, Synthesis and Antimicrobial Study of Novel 1-(1,3-benzothiazol-2- yl)-3-chloro-4H-spiro[azetidine-2,3'-indole]-2',4(1'H)-diones Through Ketene– imine Cycloaddition Reaction. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190705153224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
:
The present study deals with the synthesis of novel 1-(1,3-benzothiazol-2-yl)-3-chloro-4Hspiro[
azetidine-2,3'-indole]-2',4(1'H)-dione derivatives from the reaction of 3-(1,3-benzothiazol-2-
ylimino)-1,3-dihydro-2H-indol-2-one derivatives with chloroacetyl chloride in the presence of triethylamine
(TEA). The mechanism involved simple acid or base catalysed reaction through the formation of
Schiff base followed by cyclisation via ketene–imine cycloaddition reaction. All synthesized compounds
were characterized by FT-IR, 1H-NMR, 13C-NMR, and elemental analysis. The antimicrobial
activities of the synthesized derivatives 5a-5g were examined via Micro Broth Dilution method against
bacterial strains Bacillius subtilis, Staphylcoccus aureus, E. coli, P. aeruginosa, and fungal strain Candida
albicans for determining MIC values. Ampicillin, chloramphenicol, and griseofulvin were used as
standard drugs.
:
The MIC values for antimicrobial activity of synthesized compounds were examined using Micro
Broth Dilution method. Compounds 5a, 5b, and 5c were found effective against E. coli (MTCC 442)
and P.aeruginosa (MTCC 441) and all compounds showed moderate to excellent activity against
Streptococcus aureus (MTCC 96) and Bacillius subtilis (MTCC 441). Regarding the antifungal screening,
compounds 5a, 5b, and 5c exhibited excellent activity against Candida albicans MTCC 227.
1-(1,3-benzothiazol-2-yl)-3-chloro-4H-spiro[azetidine-2,3'-indole]-2',4(1'H)-dione derivatives may be
used as potential lead molecules as effective antimicrobial agents.
Collapse
Affiliation(s)
- Divyani Gandhi
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, India
| | - Ayushi Sethiya
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, India
| | | | - Prakash Prajapat
- Department of Chemistry, Ganpat University, Mehsana, Gujarat, India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU, Udaipur, Rajasthan, India
| |
Collapse
|
32
|
Singh R, Saini MR, Bhardwaj D, Singh A. An expedient synthesis of new imino-thiazolidinone grafted dispiro-pyrrolidine-oxindole/indeno hybrids via a multicomponent [3+2] cycloaddition reaction in a deep eutectic solvent. NEW J CHEM 2020. [DOI: 10.1039/d0nj00801j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A facile and selective synthesis of novel factionalized dispiro-pyrrolidines via a three component [3+2] cycloaddition reaction using a deep eutectic solvent.
Collapse
Affiliation(s)
- Ruby Singh
- Department of Chemistry
- School of Basic Sciences
- Jaipur National University
- Jaipur
- India
| | - Munna Ram Saini
- Department of Chemistry
- School of Basic Sciences
- Jaipur National University
- Jaipur
- India
| | - Diksha Bhardwaj
- Department of Chemistry
- School of Basic Sciences
- Jaipur National University
- Jaipur
- India
| | - Aakash Singh
- Department of Chemistry
- School of Basic Sciences
- Jaipur National University
- Jaipur
- India
| |
Collapse
|
33
|
Wagh YB, Padvi SA, Mahulikar PP, Dalal DS. CsF promoted rapid synthesis of spirooxindole‐pyran annulated heterocycles at room temperature in ethanol. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yogesh B. Wagh
- School of Chemical SciencesKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon India
| | | | - Pramod P. Mahulikar
- School of Chemical SciencesKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon India
| | - Dipak S. Dalal
- School of Chemical SciencesKavayitri Bahinabai Chaudhari North Maharashtra University Jalgaon India
| |
Collapse
|
34
|
Ren W, Zhao Q, Yu M, Guo L, Chang H, Jiang X, Luo Y, Huang W, He G. Design and synthesis of novel spirooxindole–indenoquinoxaline derivatives as novel tryptophanyl-tRNA synthetase inhibitors. Mol Divers 2019; 24:1043-1063. [DOI: 10.1007/s11030-019-10011-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
|
35
|
Song J, Li Z, Wang G, Zhang N, Chen C, Chen J, Ren H, Pan W. Controllable Synthesis of Polyheterocyclic Spirooxindoles and 3,3‐Bistryptophol Oxindoles via Fe(ClO
4
)
3
⋅ 6H
2
O‐Promoted Hetero‐Pictet‐Spengler Reaction. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun‐Rong Song
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Zhi‐Yao Li
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| | - Guang‐Di Wang
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| | - Ni Zhang
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Chao Chen
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Juan Chen
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Hai Ren
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
| | - Weidong Pan
- State key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University Guiyang 550014 People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences / Guizhou Provincial Engineering Research Center for Natural Drugs Guiyang 550014 People's Republic of China
- Guizhou University Huaxi Avenue South Guiyang 550025 People's Republic of China
| |
Collapse
|
36
|
Gadow H, Farghaly TA, Eldesoky A. Experimental and theoretical investigations for some spiropyrazoles derivatives as corrosion inhibitors for copper in 2 M HNO3 solutions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Preparation and characterization of new inorganic–organic hybrid catalyst H
3
PMo
12
O
40
/Hyd‐SBA‐15 and its application in the domino multi‐component reaction. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Nishtala VB, Gandamalla D, Yellu NR, Basavoju S. Synthesis of spirooxindoles promoted by the deep eutectic solvent, ZnCl 2+urea via the pseudo four-component reaction: anticancer, antioxidant, and molecular docking studies. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1639193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Durgaiah Gandamalla
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Narsimha Reddy Yellu
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Srinivas Basavoju
- Department of Chemistry, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
39
|
Hajra S, Hazra A, Abu Saleh SK. One-Pot Synthesis of Enantiopure Spiro[3,4-dihydrobenzo[ b][1,4]oxazine-2,3'-oxindole] via Regio- and Stereoselective Tandem Ring Opening/Cyclization of Spiroaziridine Oxindoles with Bromophenols. J Org Chem 2019; 84:10412-10421. [PMID: 31309826 DOI: 10.1021/acs.joc.9b01611] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly efficient regio- and stereoselective spiroaziridine ring opening with 2-bromophenols and a subsequent tandem cyclization reaction was developed for the one-pot synthesis of enantiopure 3,4-dihydrospiro[benzo[b][1,4]oxazine-2,3'-oxindole] with excellent enantiopurity (ee up to >99%). It is further extended to asymmetric synthesis of NH-free 3,4-dihydrospiro[benzo[b][1,4]oxazine-2,3'-xindole] retaining the optical activity.
Collapse
Affiliation(s)
- Saumen Hajra
- Centre of Biomedical Research , Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus , Raebareli Road , Lucknow 226014 , India
| | - Atanu Hazra
- Centre of Biomedical Research , Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus , Raebareli Road , Lucknow 226014 , India
| | - S K Abu Saleh
- Centre of Biomedical Research , Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus , Raebareli Road , Lucknow 226014 , India
| |
Collapse
|
40
|
Hajra S, Abu Saleh SK, Hazra A, Singh MS. Organocatalytic Domino Reaction of Spiroaziridine Oxindoles and Malononitrile for the Enantiopure Synthesis of Spiro[dihydropyrrole-3,3′-oxindoles]. J Org Chem 2019; 84:8194-8201. [DOI: 10.1021/acs.joc.9b01226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saumen Hajra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
| | - SK Abu Saleh
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Atanu Hazra
- Centre of Biomedical Research, Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, India
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
41
|
Angyal A, Demjén A, Harmat V, Wölfling J, Puskás LG, Kanizsai I. 1,3-Dipolar Cycloaddition of Isatin-Derived Azomethine Ylides with 2H-Azirines: Stereoselective Synthesis of 1,3-Diazaspiro[bicyclo[3.1.0]hexane]oxindoles. J Org Chem 2019; 84:4273-4281. [DOI: 10.1021/acs.joc.9b00242] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anikó Angyal
- AVIDIN Ltd., Alsó kikötő
sor 11/D, Szeged H-6726, Hungary
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - András Demjén
- AVIDIN Ltd., Alsó kikötő
sor 11/D, Szeged H-6726, Hungary
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, and MTA-ELTE Protein Modeling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány P. sétány 1/A, H-1117 Budapest, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | | | - Iván Kanizsai
- AVIDIN Ltd., Alsó kikötő
sor 11/D, Szeged H-6726, Hungary
| |
Collapse
|
42
|
Balaboina R, Thirukovela N, Kankala S, Balasubramanian S, Bathula SR, Vadde R, Jonnalagadda SB, Vasam CS. Synergistic Catalysis of Ag(I) and Organo‐
N
‐heterocyclic Carbenes: One‐Pot Synthesis of New Anticancer Spirooxindole‐1,4‐dihydropyridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201803507] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ramesh Balaboina
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | | | - Shravankumar Kankala
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | - Sridhar Balasubramanian
- X-ray Crystallography DivisionCSIR–Indian Institute of Chemical Technology Hyderabad- 500007, Telangana State India
| | - Surendar Reddy Bathula
- Division of Natural Product ChemistryCSIR-Indian Institute of Chemical Technology Hyderabad- 500007, Telangana State India
| | - Ravinder Vadde
- Department of ChemistryKakatiya University Warangal- 506009, Telangana State India
| | - Sreekantha B Jonnalagadda
- School of Chemistry and PhysicsUniversity of Kwazulu-NatalWestville Campus, Chiltern Hills, Durban- 4000, South Africa
| | - Chandra Sekhar Vasam
- Department of Pharmaceutical ChemistryTelangana University Nizamabad- 503322, Telangana State India
| |
Collapse
|
43
|
Lohar T, Kumbhar A, Patil A, Kamat S, Salunkhe R. Synthesis and characterization of new quaternary ammonium surfactant [C18-Dabco][Br] and its catalytic application in the synthesis of spirocarbocycles under ultrasonic condition. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-018-3690-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
44
|
Abstract
Polycyclic structures fused at a central carbon are of great interest due to their appealing conformational features and their structural implications in biological systems. Although progress in the development of synthetic methodologies towards such structures has been impressive, the stereoselective construction of such quaternary stereocentres remains a significant challenge in the total synthesis of natural products. This review summarises a series of studies on the reactions of 1H-pyrrole-2,3- diones with nucleophiles and highlights the progress in the formation of new polyheterocyclic compounds with concomitant formation of the quaternary spiro centre.
Collapse
Affiliation(s)
- Valeriya V. Konovalova
- Institute of Technical Chemistry, Ural Branch of Russian Academy of Sciences, Academician Korolev Street 3, Perm 614013, Russian Federation
| | - Andrey N. Maslivets
- Perm State National Research University, Bukirev Street 15, Perm 614990, Russian Federation
| |
Collapse
|
45
|
Alizadeh A, Roosta A, Halvagar M. Four-Component Regio- and Diastereoselective Synthesis of Pyrrolizidines Incorporating Spiro-Oxindole/Indanedione via 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylides. ChemistrySelect 2019. [DOI: 10.1002/slct.201803418] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Abdolali Alizadeh
- Department of Chemistry; Tarbiat Modares University, P.O. Box; 14115-175 Tehran Iran
| | - Atefeh Roosta
- Department of Chemistry; Tarbiat Modares University, P.O. Box; 14115-175 Tehran Iran
| | - Mohammadreza Halvagar
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), Pajohesh Blvd, 17th Km of Tehran-Karaj Highway; 1496813151 Tehran Iran
| |
Collapse
|
46
|
Vasudevan Sumesh R, Shylaja A, Ranjith Kumar R, Almansour AI, Suresh Kumar R. Synthesis of spiro-linked quinolinone-pyrrolidine/pyrrolo[1,2-c]thiazole-oxindole/acenaphthalene hybrids via multi-component [3 + 2] cycloaddition. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Warghude PK, Dharpure PD, Bhat RG. Cycloaddition of isatin-derived MBH carbonates and 3-methyleneoxindoles to construct diastereoselective cyclopentenyl bis-spirooxindoles and cyclopropyl spirooxindoles: Catalyst controlled [3 + 2] and [2 + 1] annulations. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
48
|
Ren Y, Meng LG, Peng T, Zhu L, Wang L. 4-Dimethylaminopyridine-Catalyzed Regioselective [3+2] Cycloaddition of Isatin-Derived Morita−Baylis−Hillman Adducts with Azo Esters: A Simple Protocol to Access 3-Spiropyrazole-2-oxindoles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Ren
- Department of Chemistry; Huaibei Normal University; Huaibei Anhui 235000 People's Republic of China
| | - Ling-Guo Meng
- Department of Chemistry; Huaibei Normal University; Huaibei Anhui 235000 People's Republic of China
| | - Tao Peng
- Department of Chemistry; Huaibei Normal University; Huaibei Anhui 235000 People's Republic of China
| | - Lijuan Zhu
- Department of Chemistry; Huaibei Normal University; Huaibei Anhui 235000 People's Republic of China
| | - Lei Wang
- Department of Chemistry; Huaibei Normal University; Huaibei Anhui 235000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Shanghai 200032 People's Republic of China
| |
Collapse
|
49
|
Saravana Mani K, Murugesapandian B, Kaminsky W, Rajendran SP. Enantioselective approach towards the synthesis of spiro-indeno [1,2-b] quinoxaline pyrrolothiazoles as antioxidant and antiproliferative. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Yadav A, Banerjee J, Arupula SK, Mobin SM, Samanta S. Lewis-Base-Catalyzed Domino Reaction of Morita-Baylis-Hillman Carbonates of Isatins with Enolizable Cyclic Carbonyl Compounds: Stereoselective Access to Spirooxindole-Pyrans. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800240] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anubha Yadav
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Joyanta Banerjee
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sanjeeva K. Arupula
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Shaikh M. Mobin
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| | - Sampak Samanta
- Discipline of Chemistry; Indian Institute of Technology Indore; Simrol 453552 Indore India
| |
Collapse
|