1
|
Dorjay Tamang JS, Banerjee S, Baidya SK, Das S, Ghosh B, Jha T, Adhikari N. An overview of matrix metalloproteinase-12 in multiple disease conditions, potential selective inhibitors, and drug designing strategies. Eur J Med Chem 2025; 283:117154. [PMID: 39709794 DOI: 10.1016/j.ejmech.2024.117154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/08/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Matrix metalloproteases (MMPs) are the proteolytic enzymes accountable for extracellular matrix (ECM) modification through their Zn2+-dependent catalytic activity. Among these, MMP-12 is one of the crucial MMPs that contributes to various disease states including different types of cancers and other major pathophysiological conditions including COPD, asthma, emphysema, skin diseases, arthritis, vascular diseases, and neurological disorders. The majority of the MMP-12 inhibitors should have three constitutional pharmacophoric features (i.e., a hydrophobic group to occupy the S1' pocket, a zinc-binding motif for chelating to the catalytic Zn2+ ion present at the catalytic site, and a flexible and hydrogen bond forming linker region between the S1' pocket substituent and the zinc chelating group for interacting with the catalytic and Ω-loop amino acid residues). This review mainly focuses on the various roles of MMP-12 in different diseases along with the structural comparison with other MMPs as well as promising and MMP-12-selective inhibitors and molecular modeling studies performed on MMP-12 inhibitors. Therefore, this review will provide comprehensive information to the researchers for designing effective and MMP-12-selective inhibitors for therapeutic advancement in the future.
Collapse
Affiliation(s)
- Jigme Sangay Dorjay Tamang
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sandip Kumar Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
| |
Collapse
|
2
|
Burgalassi S, Fragai M, Francesconi O, Cerofolini L, Monti D, Leone G, Lamponi S, Greco G, Magnani A, Nativi C. Functionalized Hyaluronic Acid for “ In Situ” Matrix Metalloproteinase Inhibition: A Bioactive Material to Treat the Dry Eye Sydrome. ACS Macro Lett 2022; 11:1190-1194. [PMID: 36103254 PMCID: PMC9583614 DOI: 10.1021/acsmacrolett.2c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Hyaluronic acid (HA)
is a naturally occurring polysaccharide
with
many molecular functions, including maintaining the structure and
physiology of the tissues, tissue remodeling, and inflammation. HA
is found naturally in physiological tear fluid, possesses excellent
mucus-layer-adhesive properties, and is successfully employed in the
treatment of dry eye syndrome (DES). However, HA has as major drawback:
its rapid in vivo degradation by hyaluronidase. We
report on a unique material, namely, HA-3, obtained by
the functionalization of HA with the metalloproteinase inhibitor 3 (MMPI). This material is characterized by an increased resistance
to hyaluronidase degradation, associated with MMP inhibition properties.
The ability of HA-3 to prevent dehydration of human corneal
epithelial cells in vitro and in vivo may accelerate the development of more efficient DES treatment and
broaden the application of HA in human diseases.
Collapse
Affiliation(s)
- Susi Burgalassi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Marco Fragai
- Department of Chemistry (DICUS), University of Florence, Sesto Fiorentino 50019, Italy
- CeRM, via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Oscar Francesconi
- Department of Chemistry (DICUS), University of Florence, Sesto Fiorentino 50019, Italy
| | - Linda Cerofolini
- CIRMMP, University of Florence, via Sacconi, 6 Sesto Fiorentino 50019, Italy
| | - Daniela Monti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, via A. Moro, 2 53100 Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, via A. Moro, 2 53100 Siena, Italy
| | - Giuseppe Greco
- Rugani Hospital, SR222 Chiantigiana, 53035 Colombaio (Siena), Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, via A. Moro, 2 53100 Siena, Italy
- INSTM, via G. Giusti,
9, 50121 Firenze, Italy
| | - Cristina Nativi
- Department of Chemistry (DICUS), University of Florence, Sesto Fiorentino 50019, Italy
- INSTM, via G. Giusti,
9, 50121 Firenze, Italy
| |
Collapse
|
3
|
Mohamed A. Ouf A, Abdelrasheed Allam H, Kamel M, Ragab FA, Abdel-Aziz SA. Design, synthesis, cytotoxic and enzyme inhibitory activities of 1,3,4-oxadiazole and 1,3,4-thiadiazine hybrids against non-small cell lung cancer. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Leone G, Pepi S, Consumi M, Lamponi S, Fragai M, Martinucci M, Baldoneschi V, Francesconi O, Nativi C, Magnani A. Sodium hyaluronate-g-2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide with enhanced affinity towards MMP12 catalytic domain to be used as visco-supplement with increased degradation resistance. Carbohydr Polym 2021; 271:118452. [PMID: 34364546 DOI: 10.1016/j.carbpol.2021.118452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/16/2023]
Abstract
The present paper describes the functionalization of sodium hyaluronate (NaHA) with a small molecule (2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide) (MMPI) having proven inhibitory activity against membrane metalloproteins involved in inflammatory processes (i.e. MMP12). The obtained derivative (HA-MMPI) demonstrated an increased resistance to the in-vitro degradation by hyaluronidase, viscoelastic properties close to those of healthy human synovial fluid, cytocompatibility towards human chondrocytes and nanomolar affinity towards MMP 12. Thus, HA-MMPI can be considered a good candidate as viscosupplement in the treatment of knee osteoarticular disease.
Collapse
Affiliation(s)
- Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Simone Pepi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Marco Fragai
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; Cerm, University of Florence, via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy
| | - Marco Martinucci
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy
| | - Veronica Baldoneschi
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Oscar Francesconi
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Cristina Nativi
- Department of Chemistry, "Ugo Schiff" - University of Florence - Via della Lastruccia 13, 50019 Sesto Fiorentino, FI, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy; National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy.
| |
Collapse
|
5
|
Ozaki S, Umakoshi A, Yano H, Ohsumi S, Sumida Y, Hayase E, Usa E, Islam A, Choudhury ME, Nishi Y, Yamashita D, Ohtsuka Y, Nishikawa M, Inoue A, Suehiro S, Kuwabara J, Watanabe H, Takada Y, Watanabe Y, Nakano I, Kunieda T, Tanaka J. Chloride intracellular channel protein 2 is secreted and inhibits MMP14 activity, while preventing tumor cell invasion and metastasis. Neoplasia 2021; 23:754-765. [PMID: 34229297 PMCID: PMC8260957 DOI: 10.1016/j.neo.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
CLIC2 is highly expressed in benign, less invasive and less metastatic tumors. Forced expression of CLIC2 prevents metastasis and invasion in animal tumor models. CLIC2 is associated with decreased vascular permeability in tumor masses. CLIC2, a secretable soluble protein, can bind to and inhibit MMP14. Extracellular CLIC2 can suppress malignant cell invasion.
The abilities to invade surrounding tissues and metastasize to distant organs are the most outstanding features that distinguish malignant from benign tumors. However, the mechanisms preventing the invasion and metastasis of benign tumor cells remain unclear. By using our own rat distant metastasis model, gene expression of cells in primary tumors was compared with that in metastasized tumors. Among many distinct gene expressions, we have focused on chloride intracellular channel protein 2 (CLIC2), an ion channel protein of as-yet unknown function, which was predominantly expressed in the primary tumors. We created CLIC2 overexpressing rat glioma cell line and utilized benign human meningioma cells with naturally high CLIC2 expression. CLIC2 was expressed at higher levels in benign human brain tumors than in their malignant counterparts. Moreover, its high expression was associated with prolonged survival in the rat metastasis and brain tumor models as well as with progression-free survival in patients with brain tumors. CLIC2 was also correlated with the decreased blood vessel permeability likely by increased contents of cell adhesion molecules. We found that CLIC2 was secreted extracellularly, and bound to matrix metalloproteinase (MMP) 14. Furthermore, CLIC2 prevented the localization of MMP14 in the plasma membrane, and inhibited its enzymatic activity. Indeed, overexpressing CLIC2 and recombinant CLIC2 protein effectively suppressed malignant cell invasion, whereas CLIC2 knockdown reversed these effects. Thus, CLIC2 suppress invasion and metastasis of benign tumors at least partly by inhibiting MMP14 activity.
Collapse
Affiliation(s)
- Saya Ozaki
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Akihiro Umakoshi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Shota Ohsumi
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Yutaro Sumida
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Erika Hayase
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Eika Usa
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Afsana Islam
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Mohammed E Choudhury
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Yusuke Nishi
- Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Japan
| | - Daisuke Yamashita
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Akihiro Inoue
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Jun Kuwabara
- Department of Gastrointestinal Surgery and Surgical Oncology, Graduate School of Medicine, Ehime University, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Yasutsugu Takada
- Department of Hepato-biliary Pancreatic Surgery and Breast Surgery, Graduate School of Medicine, Ehime University, Japan
| | - Yuji Watanabe
- Department of Gastrointestinal Surgery and Surgical Oncology, Graduate School of Medicine, Ehime University, Japan
| | - Ichiro Nakano
- Research and Development Center for Precision Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan.
| |
Collapse
|
6
|
Santamaria S, Cuffaro D, Nuti E, Ciccone L, Tuccinardi T, Liva F, D'Andrea F, de Groot R, Rossello A, Ahnström J. Exosite inhibition of ADAMTS-5 by a glycoconjugated arylsulfonamide. Sci Rep 2021; 11:949. [PMID: 33441904 PMCID: PMC7806935 DOI: 10.1038/s41598-020-80294-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
ADAMTS-5 is a major protease involved in the turnover of proteoglycans such as aggrecan and versican. Dysregulated aggrecanase activity of ADAMTS-5 has been directly linked to the etiology of osteoarthritis (OA). For this reason, ADAMTS-5 is a pharmaceutical target for the treatment of OA. ADAMTS-5 shares high structural and functional similarities with ADAMTS-4, which makes the design of selective inhibitors particularly challenging. Here we exploited the ADAMTS-5 binding capacity of β-N-acetyl-d-glucosamine to design a new class of sugar-based arylsulfonamides. Our most promising compound, 4b, is a non-zinc binding ADAMTS-5 inhibitor which showed high selectivity over ADAMTS-4. Docking calculations combined with molecular dynamics simulations demonstrated that 4b is a cross-domain inhibitor that targets the interface of the metalloproteinase and disintegrin-like domains. Furthermore, the interaction between 4b and the ADAMTS-5 Dis domain is mediated by hydrogen bonds between the sugar moiety and two lysine residues (K532 and K533). Targeted mutagenesis of these two residues confirmed their importance both for versicanase activity and inhibitor binding. This positively-charged cluster of ADAMTS-5 represents a previously unknown substrate-binding site (exosite) which is critical for substrate recognition and can therefore be targeted for the development of selective ADAMTS-5 inhibitors.
Collapse
Affiliation(s)
- Salvatore Santamaria
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| | - Doretta Cuffaro
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy.
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Francesca Liva
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Felicia D'Andrea
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Rens de Groot
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London, W12 0NN, UK.,Institute of Cardiovascular Science, University College London, 51 Chenies Mews, London, WC1E 6HX, UK
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Josefin Ahnström
- Department of Immunology and Inflammation, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
7
|
Design, synthesis and preliminary bioactivity evaluations of 8-hydroxyquinoline derivatives as matrix metalloproteinase (MMP) inhibitors. Eur J Med Chem 2019; 181:111563. [DOI: 10.1016/j.ejmech.2019.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/23/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022]
|
8
|
Cerofolini L, Fragai M, Luchinat C. Mechanism and Inhibition of Matrix Metalloproteinases. Curr Med Chem 2019; 26:2609-2633. [PMID: 29589527 DOI: 10.2174/0929867325666180326163523] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 01/02/2023]
Abstract
Matrix metalloproteinases hydrolyze proteins and glycoproteins forming the extracellular matrix, cytokines and growth factors released in the extracellular space, and membrane-bound receptors on the outer cell membrane. The pathological relevance of MMPs has prompted the structural and functional characterization of these enzymes and the development of synthetic inhibitors as possible drug candidates. Recent studies have provided a better understanding of the substrate preference of the different members of the family, and structural data on the mechanism by which these enzymes hydrolyze the substrates. Here, we report the recent advancements in the understanding of the mechanism of collagenolysis and elastolysis, and we discuss the perspectives of new therapeutic strategies for targeting MMPs.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Fischer T, Senn N, Riedl R. Design and Structural Evolution of Matrix Metalloproteinase Inhibitors. Chemistry 2019; 25:7960-7980. [DOI: 10.1002/chem.201805361] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/09/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Nicole Senn
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry, and BiotechnologyZurich University of Applied Sciences (ZHAW) Einsiedlerstrasse 31 8820 Wädenswil Switzerland
| |
Collapse
|
10
|
Cuffaro D, Camodeca C, D'Andrea F, Piragine E, Testai L, Calderone V, Orlandini E, Nuti E, Rossello A. Matrix metalloproteinase-12 inhibitors: synthesis, structure-activity relationships and intestinal absorption of novel sugar-based biphenylsulfonamide carboxylates. Bioorg Med Chem 2018; 26:5804-5815. [DOI: 10.1016/j.bmc.2018.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 01/24/2023]
|
11
|
Benito-Alifonso D, Richichi B, Baldoneschi V, Berry M, Fragai M, Salerno G, Galan MC, Nativi C. Quantum Dot-Based Probes for Labeling and Imaging of Cells that Express Matrix Metalloproteinases. ACS OMEGA 2018; 3:9822-9826. [PMID: 30198003 PMCID: PMC6120729 DOI: 10.1021/acsomega.8b00633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/21/2018] [Indexed: 05/16/2023]
Abstract
The practical synthesis of novel multivalent fluorescent quantum-dot-based probes to target cellular matrix metalloproteinases (MMPs) (MT-MMPs) is reported. We show that these probes, which are decorated with a nanomolar water-soluble MMP inhibitor, can be used to label preferentially the surface of cancer cells that are known to express MMPs while no binding was observed on cells that do not.
Collapse
Affiliation(s)
| | - Barbara Richichi
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Veronica Baldoneschi
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - Monica Berry
- School
of Chemistry, University of Bristol, Cantock’s Close, BS8 1TS Bristol, U.K.
| | - Marco Fragai
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
- CeRM, University
of Florence, via L. Sacconi,
6, Sesto Fiorentino, Florence 50019, Italy
| | - Gianluca Salerno
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
| | - M. Carmen Galan
- School
of Chemistry, University of Bristol, Cantock’s Close, BS8 1TS Bristol, U.K.
- E-mail: . Phone: +44(0)1179287654 (M.C.G.)
| | - Cristina Nativi
- Department
of Chemistry, University of Florence, via della Lastruccia, 3-13, Sesto Fiorentino, Florence 50019, Italy
- CeRM, University
of Florence, via L. Sacconi,
6, Sesto Fiorentino, Florence 50019, Italy
- E-mail: . Phone: +39-0554573540 (C.N.)
| |
Collapse
|
12
|
Richardson BG, Jain AD, Potteti HR, Lazzara PR, David BP, Tamatam CR, Choma E, Skowron K, Dye K, Siddiqui Z, Wang YT, Krunic A, Reddy SP, Moore TW. Replacement of a Naphthalene Scaffold in Kelch-like ECH-Associated Protein 1 (KEAP1)/Nuclear Factor (Erythroid-derived 2)-like 2 (NRF2) Inhibitors. J Med Chem 2018; 61:8029-8047. [PMID: 30122040 DOI: 10.1021/acs.jmedchem.8b01133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Activators of nuclear factor-erythroid 2-related factor 2 (NRF2) could lead to promising therapeutics for prevention and treatment of oxidative stress and inflammatory disorders. Ubiquitination and subsequent degradation of the transcription factor NRF2 is mediated by Kelch-like ECH-associated protein-1 (KEAP1). Inhibition of the KEAP1/NRF2 interaction with small molecules leads to NRF2 activation. Previously, we and others described naphthalene-based NRF2 activators, but the 1,4-diaminonaphthalene scaffold may not represent a drug-like scaffold. Paying particular attention to aqueous solubility, metabolic stability, potency, and mutagenicity, we modified a previously known, naphthalene-based nonelectrophilic NRF2 activator to give a series of non-naphthalene and heterocyclic scaffolds. We found that, compared to previously reported naphthalene-based compounds, a 1,4-isoquinoline scaffold provides a better mutagenic profile without sacrificing potency, stability, or solubility.
Collapse
Affiliation(s)
- Benjamin G Richardson
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | - Atul D Jain
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | | | - Phillip R Lazzara
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | - Brian P David
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | | | - Ewelina Choma
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | - Kornelia Skowron
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | | | - Zamia Siddiqui
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | | | - Aleksej Krunic
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| | | | - Terry W Moore
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy , ‡Department of Pediatrics, College of Medicine , §UICentre for Drug Discovery , ⊥Mass Spectrometry Core at Research Resources Center , #University of Illinois Cancer Center , University of Illinois at Chicago , 833 South Wood Street , Chicago , Illinois 60612 , United States
| |
Collapse
|
13
|
Synthesis and binding monitoring of a new nanomolar PAMAM-based matrix metalloproteinases inhibitor (MMPIs). Bioorg Med Chem 2017; 25:523-527. [DOI: 10.1016/j.bmc.2016.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022]
|
14
|
Baldoneschi V, Cerofolini L, Dragoni E, Storai A, Luchinat C, Fragai M, Richichi B, Nativi C. Active-Site Targeting Paramagnetic Probe for Matrix Metalloproteinases. Chempluschem 2016; 81:1333-1338. [DOI: 10.1002/cplu.201600375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Veronica Baldoneschi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Linda Cerofolini
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Elisa Dragoni
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Andrea Storai
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Claudio Luchinat
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”; University of Florence; Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; Univeristy of Florence; Via Sacconi 6 50019 Sesto Fiorentino Italy
| |
Collapse
|
15
|
Nuti E, Cuffaro D, D'Andrea F, Rosalia L, Tepshi L, Fabbi M, Carbotti G, Ferrini S, Santamaria S, Camodeca C, Ciccone L, Orlandini E, Nencetti S, Stura EA, Dive V, Rossello A. Sugar-Based Arylsulfonamide Carboxylates as Selective and Water-Soluble Matrix Metalloproteinase-12 Inhibitors. ChemMedChem 2016; 11:1626-37. [DOI: 10.1002/cmdc.201600235] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/13/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Elisa Nuti
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Doretta Cuffaro
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Felicia D'Andrea
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Lea Rosalia
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Livia Tepshi
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Marina Fabbi
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Grazia Carbotti
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Silvano Ferrini
- Biotherapy Unit; IRCCS AOU San Martino-IST; Largo R. Benzi 10 16132 Genoa Italy
| | - Salvatore Santamaria
- Kennedy Institute of Rheumatology; University of Oxford; Roosevelt Drive OX3 7FY Oxford UK
| | - Caterina Camodeca
- Division of Immunology, Transplants and Infectious Diseases; San Raffaele Scientific Institute; Via Olgettina 20132 Milan Italy
| | - Lidia Ciccone
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | | | - Susanna Nencetti
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| | - Enrico A. Stura
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Vincent Dive
- CEA-Saclay; Service d'Ingenierie Moleculaire des Proteines; CEA, iBiTec-S; 91191 Gif sur Yvette France
| | - Armando Rossello
- Department of Pharmacy; University of Pisa; via Bonanno 6 56126 Pisa Italy
| |
Collapse
|
16
|
Ponedel'kina IY, Gaskarova AR, Khaybrakhmanova EA, Lukina ES, Odinokov VN. Hyaluronic acid based hydroxamate and conjugates with biologically active amines: In vitro effect on matrix metalloproteinase-2. Carbohydr Polym 2016; 144:17-24. [PMID: 27083788 DOI: 10.1016/j.carbpol.2016.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 10/22/2022]
Abstract
In this study, water soluble hyaluronic acid (HA) based hydroxamate and conjugates with biologically active amines and hydrazides such as p- and o-aminophenols, anthranilic, 4- and 5-aminosalicylic acids, nicotinic, N-benzylnicotinic and isonicotinic hydrazides, p-aminobenzenesulfonamide (Streptocide), p-aminobenzoic acid diethylaminoethyl ester (Procaine), and 4-amino-2,3-dimethyl-1-phenyl-3-pyrazolin-5-one (4-aminoantipyrene) were examined as matrix metalloproteinase-2 inhibitors (MMPIs). In a dose of 0.27-270μM, the most efficient MMPIs were HA conjugates with o-aminophenol=4-aminoantipyrine>4-aminosalicylic acid>5-aminosalicylic acid. Conjugates with Streptocide, Procaine and HA hydroxamate showed 40-50% inhibitory effect at all used concentrations. Conjugates with anthranilic acid and isonicotinic hydrazide (Isoniazid) in a dose of 0.27μM inhibited enzyme activity by ∼70%, but with the concentration increase their inhibitory effect was decreased.
Collapse
Affiliation(s)
- Irina Yu Ponedel'kina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation.
| | - Aigul R Gaskarova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Elvira A Khaybrakhmanova
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Elena S Lukina
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| | - Victor N Odinokov
- Institute of Petrochemistry and Catalysis, Russian Academy of Sciences, Ufa 450075, Russian Federation
| |
Collapse
|
17
|
Richichi B, Baldoneschi V, Burgalassi S, Fragai M, Vullo D, Akdemir A, Dragoni E, Louka A, Mamusa M, Monti D, Berti D, Novellino E, Rosa GD, Supuran CT, Nativi C. A Divalent PAMAM-Based Matrix Metalloproteinase/Carbonic Anhydrase Inhibitor for the Treatment of Dry Eye Syndrome. Chemistry 2015; 22:1714-21. [DOI: 10.1002/chem.201504355] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Indexed: 01/09/2023]
Affiliation(s)
- B. Richichi
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - V. Baldoneschi
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - S. Burgalassi
- Department of Pharmacy; University of Pisa; via Bonanno 33 56126 Pisa Italy
| | - M. Fragai
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; University of Florence; via Sacconi 6 50019 Sesto Fiorentino Italy
| | - D. Vullo
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - A. Akdemir
- Department of Pharmacy; Faculty of Pharmacy; Bezmialem Vakif University; Vatan Caddesi 34093 Fatih, Istanbul Turkey
| | - E. Dragoni
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - A. Louka
- CERM; University of Florence; via Sacconi 6 50019 Sesto Fiorentino Italy
| | - M. Mamusa
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - D. Monti
- Department of Pharmacy; University of Pisa; via Bonanno 33 56126 Pisa Italy
| | - D. Berti
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - E. Novellino
- Department of Pharmacy; University of Napoli “Federico II” via Montesano 49; 80131 Napoli Italy
| | - G. De Rosa
- Department of Pharmacy; University of Napoli “Federico II” via Montesano 49; 80131 Napoli Italy
| | - C. T. Supuran
- NEUROFARBA Department; University of Florence; via U. Schiff 6 Sesto Fiorentino Italy
| | - C. Nativi
- Department of Chemistry “Ugo Schiff”; University of Florence; via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
- CERM; University of Florence; via Sacconi 6 50019 Sesto Fiorentino Italy
| |
Collapse
|
18
|
Bai F, Liao S, Gu J, Jiang H, Wang X, Li H. An Accurate Metalloprotein-Specific Scoring Function and Molecular Docking Program Devised by a Dynamic Sampling and Iteration Optimization Strategy. J Chem Inf Model 2015; 55:833-47. [DOI: 10.1021/ci500647f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Fang Bai
- Department
of Engineering Mechanics, State Key Laboratory of Structural Analysis
for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116023, China
- Center
for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Sha Liao
- State
Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Junfeng Gu
- Department
of Engineering Mechanics, State Key Laboratory of Structural Analysis
for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Hualiang Jiang
- Drug
Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xicheng Wang
- Department
of Engineering Mechanics, State Key Laboratory of Structural Analysis
for Industrial Equipment, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Honglin Li
- State
Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory
of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Hitaoka S, Chuman H, Yoshizawa K. A QSAR study on the inhibition mechanism of matrix metalloproteinase-12 by arylsulfone analogs based on molecular orbital calculations. Org Biomol Chem 2015; 13:793-806. [DOI: 10.1039/c4ob01843e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inhibition mechanism of matrix metalloproteinase-12 by arylsulfone analogs is revealed using a comprehensive computational approach including docking simulations, molecular orbital calculations, and QSAR.
Collapse
Affiliation(s)
- Seiji Hitaoka
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Hiroshi Chuman
- Institute of Health Biosciences
- The University of Tokushima Graduate School
- Tokushima 770-8505
- Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering and International Research Center for Molecular System
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
20
|
Mori M, Massaro A, Calderone V, Fragai M, Luchinat C, Mordini A. Discovery of a New Class of Potent MMP Inhibitors by Structure-Based Optimization of the Arylsulfonamide Scaffold. ACS Med Chem Lett 2013; 4:565-9. [PMID: 24900710 DOI: 10.1021/ml300446a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/13/2013] [Indexed: 01/29/2023] Open
Abstract
A new class of potent matrix metalloproteinase (MMP) inhibitors designed by structure-based optimization of the well-known arylsulfonamide scaffold is presented. Molecules show an ethylene linker connecting the sulfonamide group with the P1' aromatic portion and a d-proline residue bearing the zinc-binding group. The affinity improvement provided by these modifications led us to discover a nanomolar MMP inhibitor bearing a carboxylate moiety as zinc-binding group, which might be a promising lead molecule. Notably, a significant selectivity for MMP-8, MMP-12, and MMP-13 was observed with respect to MMP-1 and MMP-7.
Collapse
Affiliation(s)
- Mattia Mori
- ProtEra Srl, Scientific Campus, University of Florence, viale delle idee 22, I-50019
Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, I-50019 Sesto
Fiorentino, Italy
| | - Assunta Massaro
- ProtEra Srl, Scientific Campus, University of Florence, viale delle idee 22, I-50019
Sesto Fiorentino, Italy
| | - Vito Calderone
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, I-50019 Sesto
Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, I-50019 Sesto
Fiorentino, Italy
- Department
of Chemistry “Ugo
Shiff”, University of Florence,
via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, I-50019 Sesto
Fiorentino, Italy
- Department
of Chemistry “Ugo
Shiff”, University of Florence,
via della Lastruccia 3, I-50019 Sesto Fiorentino, Italy
| | - Alessandro Mordini
- ICCOM-CNR, Dipartimento
di Chimica “U. Schiff”, via della Lastruccia
13, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Bartoloni M, Domínguez BE, Dragoni E, Richichi B, Fragai M, André S, Gabius HJ, Ardá A, Luchinat C, Jiménez-Barbero J, Nativi C. Targeting Matrix Metalloproteinases: Design of a Bifunctional Inhibitor for Presentation by Tumour-Associated Galectins. Chemistry 2012; 19:1896-902. [DOI: 10.1002/chem.201203794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Indexed: 12/18/2022]
|
22
|
Jain P, Saravanan C, Singh SK. Sulphonamides: Deserving class as MMP inhibitors? Eur J Med Chem 2012; 60:89-100. [PMID: 23287054 DOI: 10.1016/j.ejmech.2012.10.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/26/2012] [Accepted: 10/02/2012] [Indexed: 12/14/2022]
Abstract
The importance of sulphonamide moiety in medicinal chemistry cannot be ignored as it constitutes an important class of extensively used drugs. Recently, sulphonamides have also been reported for their matrix metalloproteinase (MMP) inhibitory activity. MMPs are calcium- and zinc-dependent endopeptidases, involved in both inter- and intra-cellular activity. This review documents the emergence of sulphonamides as matrix metalloproteinase inhibitors (MMPIs) from the first generation to the recent third generation MMPIs, their mode of action - how sulphonamides act on MMPs? as well as the structure activity relationship along with their therapeutic uses in chronic obstructive pulmonary disease (COPD), ulcer, asthma, arthritis and cancer. From this review, readers can get answer for the question- is sulphonamides a potential class of MMPIs?
Collapse
Affiliation(s)
- Pranjali Jain
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | | | | |
Collapse
|
23
|
Bell JA, Ho KL, Farid R. Significant reduction in errors associated with nonbonded contacts in protein crystal structures: automated all-atom refinement with PrimeX. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:935-52. [PMID: 22868759 PMCID: PMC3413210 DOI: 10.1107/s0907444912017453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/19/2012] [Indexed: 11/12/2022]
Abstract
All-atom models are essential for many applications in molecular modeling and computational chemistry. Nonbonded atomic contacts much closer than the sum of the van der Waals radii of the two atoms (clashes) are commonly observed in such models derived from protein crystal structures. A set of 94 recently deposited protein structures in the resolution range 1.5-2.8 Å were analyzed for clashes by the addition of all H atoms to the models followed by optimization and energy minimization of the positions of just these H atoms. The results were compared with the same set of structures after automated all-atom refinement with PrimeX and with nonbonded contacts in protein crystal structures at a resolution equal to or better than 0.9 Å. The additional PrimeX refinement produced structures with reasonable summary geometric statistics and similar R(free) values to the original structures. The frequency of clashes at less than 0.8 times the sum of van der Waals radii was reduced over fourfold compared with that found in the original structures, to a level approaching that found in the ultrahigh-resolution structures. Moreover, severe clashes at less than or equal to 0.7 times the sum of atomic radii were reduced 15-fold. All-atom refinement with PrimeX produced improved crystal structure models with respect to nonbonded contacts and yielded changes in structural details that dramatically impacted on the interpretation of some protein-ligand interactions.
Collapse
Affiliation(s)
- Jeffrey A. Bell
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Kenneth L. Ho
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Ramy Farid
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| |
Collapse
|
24
|
Mori M, De Lorenzo E, Torre E, Fragai M, Nativi C, Luchinat C, Arcangeli A. A Highly Soluble Matrix Metalloproteinase-9 Inhibitor for Potential Treatment of Dry Eye Syndrome. Basic Clin Pharmacol Toxicol 2012; 111:289-95. [DOI: 10.1111/j.1742-7843.2012.00896.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/07/2012] [Indexed: 12/13/2022]
Affiliation(s)
- Mattia Mori
- ProtEra Srl; Scientific Campus of the University of Florence; Florence; Italy
| | - Emanuele De Lorenzo
- ProtEra Srl; Scientific Campus of the University of Florence; Florence; Italy
| | - Eugenio Torre
- Department of Experimental Pathology and Oncology; University of Florence; Florence; Italy
| | - Marco Fragai
- Magnetic Resonance Centre and Department of Chemistry; University of Florence; Florence; Italy
| | | | | | - Annarosa Arcangeli
- Department of Experimental Pathology and Oncology; University of Florence; Florence; Italy
| |
Collapse
|
25
|
Kawai K, Nagata N. Metal-ligand interactions: an analysis of zinc binding groups using the Protein Data Bank. Eur J Med Chem 2012; 51:271-6. [PMID: 22405284 DOI: 10.1016/j.ejmech.2012.02.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 02/13/2012] [Accepted: 02/14/2012] [Indexed: 01/11/2023]
Abstract
In the present study, we investigated zinc binding groups (ZBGs) using the coordinates of protein-ligand complex structures obtained from the Protein Data Bank. The distance from the zinc to the nearest ligand atom was measured to determine whether the atom was part of the ZBG. The most frequently found ZBG was carboxylate, followed by sulfonamide, hydroxamate, and phosphonate/phosphate. Because it was found that few heteroatoms, such as nitrogen, oxygen, and sulfur atoms, interacted with zinc, ideal distances between the zinc and these heteroatoms were identified. Whereas carboxylates bound to the zinc via both monodentate and bidentate interactions, the hydroxamates bound dominantly in a bidentate manner. These results will aid in the design of new inhibitors with the potential to interact with zinc in the target protein.
Collapse
Affiliation(s)
- Kentaro Kawai
- Central Research Laboratories, Kaken Pharmaceutical Co., Ltd, 14, Shinomiya Minamikawara-cho, Yamashina, Kyoto 607-8042, Japan
| | | |
Collapse
|
26
|
Hydroxamic Acids as Matrix Metalloproteinase Inhibitors. MATRIX METALLOPROTEINASE INHIBITORS 2012; 103:137-76. [DOI: 10.1007/978-3-0348-0364-9_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|