1
|
Sviben I, Glavaš M, Erben A, Bachelart T, Pavlović Saftić D, Piantanida I, Basarić N. Dipeptides Containing Pyrene and Modified Photochemically Reactive Tyrosine: Noncovalent and Covalent Binding to Polynucleotides. Molecules 2023; 28:7533. [PMID: 38005255 PMCID: PMC10672942 DOI: 10.3390/molecules28227533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Dipeptides 1 and 2 were synthesized from unnatural amino acids containing pyrene as a fluorescent label and polynucleotide binding unit, and modified tyrosine as a photochemically reactive unit. Photophysical properties of the peptides were investigated by steady-state and time-resolved fluorescence. Both peptides are fluorescent (Φf = 0.3-0.4) and do not show a tendency to form pyrene excimers in the concentration range < 10-5 M, which is important for their application in the fluorescent labeling of polynucleotides. Furthermore, both peptides are photochemically reactive and undergo deamination delivering quinone methides (QMs) (ΦR = 0.01-0.02), as indicated from the preparative photomethanolysis study of the corresponding N-Boc protected derivatives 7 and 8. Both peptides form stable complexes with polynucleotides (log Ka > 6) by noncovalent interactions and similar affinities, binding to minor grooves, preferably to the AT reach regions. Peptide 2 with a longer spacer between the fluorophore and the photo-activable unit undergoes a more efficient deamination reaction, based on the comparison with the N-Boc protected derivatives. Upon light excitation of the complex 2·oligoAT10, the photo-generation of QM initiates the alkylation, which results in the fluorescent labeling of the oligonucleotide. This study demonstrated, as a proof of principle, that small molecules can combine dual forms of fluorescent labeling of polynucleotides, whereby initial addition of the dye rapidly forms a reversible high-affinity noncovalent complex with ds-DNA/RNA, which can be, upon irradiation by light, converted to the irreversible (covalent) form. Such a dual labeling ability of a dye could have many applications in biomedicinal sciences.
Collapse
Affiliation(s)
| | | | | | | | | | - Ivo Piantanida
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (I.S.); (M.G.); (A.E.); (T.B.); (D.P.S.)
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia; (I.S.); (M.G.); (A.E.); (T.B.); (D.P.S.)
| |
Collapse
|
2
|
Spears RJ, McMahon C, Chudasama V. Cysteine protecting groups: applications in peptide and protein science. Chem Soc Rev 2021; 50:11098-11155. [PMID: 34605832 DOI: 10.1039/d1cs00271f] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protecting group chemistry for the cysteine thiol group has enabled a vast array of peptide and protein chemistry over the last several decades. Increasingly sophisticated strategies for the protection, and subsequent deprotection, of cysteine have been developed, facilitating synthesis of complex disulfide-rich peptides, semisynthesis of proteins, and peptide/protein labelling in vitro and in vivo. In this review, we analyse and discuss the 60+ individual protecting groups reported for cysteine, highlighting their applications in peptide synthesis and protein science.
Collapse
Affiliation(s)
| | - Clíona McMahon
- Department of Chemistry, University College London, London, UK.
| | - Vijay Chudasama
- Department of Chemistry, University College London, London, UK.
| |
Collapse
|
3
|
Erben A, Sviben I, Mihaljević B, Piantanida I, Basarić N. Non-Covalent Binding of Tripeptides-Containing Tryptophan to Polynucleotides and Photochemical Deamination of Modified Tyrosine to Quinone Methide Leading to Covalent Attachment. Molecules 2021; 26:molecules26144315. [PMID: 34299591 PMCID: PMC8306964 DOI: 10.3390/molecules26144315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
A series of tripeptides TrpTrpPhe (1), TrpTrpTyr (2), and TrpTrpTyr[CH2N(CH3)2] (3) were synthesized, and their photophysical properties and non-covalent binding to polynucleotides were investigated. Fluorescent Trp residues (quantum yield in aqueous solvent ΦF = 0.03–0.06), allowed for the fluorometric study of non-covalent binding to DNA and RNA. Moreover, high and similar affinities of 2×HCl and 3×HCl to all studied double stranded (ds)-polynucleotides were found (logKa = 6.0–6.8). However, the fluorescence spectral responses were strongly dependent on base pair composition: the GC-containing polynucleotides efficiently quenched Trp emission, at variance to AT- or AU-polynucleotides, which induced bisignate response. Namely, addition of AT(U) polynucleotides at excess over studied peptide induced the quenching (attributed to aggregation in the grooves of polynucleotides), whereas at excess of DNA/RNA over peptide the fluorescence increase of Trp was observed. The thermal denaturation and circular dichroism (CD) experiments supported peptides binding within the grooves of polynucleotides. The photogenerated quinone methide (QM) reacts with nucleophiles giving adducts, as demonstrated by the photomethanolysis (quantum yield ΦR = 0.11–0.13). Furthermore, we have demonstrated photoalkylation of AT oligonucleotides by QM, at variance to previous reports describing the highest reactivity of QMs with the GC reach regions of polynucleotides. Our investigations show a proof of principle that QM precursor can be imbedded into a peptide and used as a photochemical switch to enable alkylation of polynucleotides, enabling further applications in chemistry and biology.
Collapse
Affiliation(s)
- Antonija Erben
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
| | - Igor Sviben
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
| | - Branka Mihaljević
- Department of Material Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia;
| | - Ivo Piantanida
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia; (A.E.); (I.S.); (I.P.)
- Correspondence:
| |
Collapse
|
4
|
Law CSW, Yeong KY. Benzimidazoles in Drug Discovery: A Patent Review. ChemMedChem 2021; 16:1861-1877. [PMID: 33646618 DOI: 10.1002/cmdc.202100004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Indexed: 01/10/2023]
Abstract
Benzimidazole is a heterocyclic ring system that has been widely studied in the pharmaceutical field. For the past decade, numerous benzimidazole derivatives have been synthesized and evaluated for their wide range of pharmacological activities, which are beneficial for drug development. This article presents the biological effects of benzimidazole derivatives in each invention from 2015 to 2020. Two patent databases, Google Patents and Lens, were used to locate relevant granted patent applications. Specifically, this review delineates the role of patented benzimidazoles from a disease-centric perspective and examines the mechanisms of action of these compounds in related diseases. Most of the benzimidazoles have shown good activities against various target proteins. Whilst several of them have progressed into clinical trials, most patents presented novel therapeutic approaches for respective target diseases. Hence, their potential in being developed into clinical drugs are also discussed.
Collapse
Affiliation(s)
- Christine S W Law
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| | - Keng Y Yeong
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia.,Tropical Medicine and Biology (TMB) multidisciplinary platform, Monash University Malaysia, Jalan Lagoon Selatan Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
5
|
Ayipo YO, Mordi MN, Mustapha M, Damodaran T. Neuropharmacological potentials of β-carboline alkaloids for neuropsychiatric disorders. Eur J Pharmacol 2020; 893:173837. [PMID: 33359647 DOI: 10.1016/j.ejphar.2020.173837] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 10/24/2022]
Abstract
Neuropsychiatric disorders are diseases of the central nervous system (CNS) which are characterised by complex pathomechanisms that including homeostatic failure, malfunction, atrophy, pathology remodelling and reactivity anomaly of the neuronal system where treatment options remain challenging. β-Carboline (βC) alkaloids are scaffolds of structurally diverse tricyclic pyrido[3,4-b]indole alkaloid with vast occurrence in nature. Their unique structural features which favour interactions with enzymes and protein receptor targets account for their potent neuropharmacological properties. However, our current understanding of their biological mechanisms for these beneficial effects, especially for neuropsychiatric disorders is sparse. Therefore, we present a comprehensive review of the scientific progress in the last two decades on the prospective pharmacology and physiology of the βC alkaloids in the treatment of some neuropsychiatric conditions such as depression, anxiety, Alzheimer's disease, Parkinson's disease, brain tumour, essential tremor, epilepsy and seizure, licking behaviour, dystonia, agnosia, spasm, positive ingestive response as demonstrated in non-clinical models. The current evidence supports that βC alkaloids offer potential therapeutic agents against most of these disorders and amenable for further drug design.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Chemical, Geological and Physical Sciences, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Wu J, Cui Y, Zhang X, Gui L, Wang Y, Peng S, Zhao M. BCESA: a nano-scaled intercalator capable of targeting tumor tissue and releasing anti-tumoral β-carboline-3-carboxylic acid. Int J Nanomedicine 2019; 14:3027-3041. [PMID: 31118620 PMCID: PMC6508158 DOI: 10.2147/ijn.s187600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background: In the discovery of DNA intercalators, β-carbolines compose one member of the most interesting alkaloid family and are of clinical importance. In the efforts, N-(3-benzyloxycarbonyl-β-carboline-1-yl)ethyl-Ser-Ala-OBzl (BCESA) was designed as a nano-scaled DNA intercalator without Dox-like toxicity. Methods: Based on the structural analysis and CDOCKER energy comparison, BCESA was rationally designed as such a nano-scaled intercalator. The anti-tumor activity, the toxicity and the tumor targeting action of BCESA were evaluated on mouse models. Results: The in vitro proliferation of cancer cells, but not non-cancer cells, was effectively inhibited by BCESA. On S180 mouse model BCESA dose-dependently slowed the tumor growth, and 0.01 μmol/kg/day was found as a minimal effective dose. Both BCESA and its moiety were found in the tumor tissue, but not in the organs and the blood, of S180 mice. Conclusion: BCESA should be a nano-scaled intercalator capable of targeting tumor tissue to release anti-tumoral β-carboline-3-carboxylic acid and its 1-methyl derivative, while Ser-Ala-OBzl is a simple and desirable carrier.
Collapse
Affiliation(s)
- Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Yue Cui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Xiaoyi Zhang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Lin Gui
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Yaonan Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, School of Pharmaceutical Sciences, Capital Medical University, Beijing100069, People’s Republic of China
- Beijing Laboratory of Biomedical Materials and Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Viveros-Ceballos JL, Sayago FJ, Cativiela C, Ordóñez M. First Practical and Efficient Synthesis of 3-Phosphorylated β-Carboline Derivatives Using the Pictet-Spengler Reaction. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Katsori AM, Hadjipavlou-Litina D. Coumarin derivatives: an updated patent review (2012-2014). Expert Opin Ther Pat 2014; 24:1323-47. [PMID: 25327901 DOI: 10.1517/13543776.2014.972368] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Coumarins belong to the benzopyrones family. They are naturally plant-derived and synthetically taken polyphenolic substances, presenting a wide variety of biological activities and behaviours, supporting their use as therapeutic agents for multiple diseases. Their structural characteristics correlated to physicochemical properties seem to define the extent of the biological activity. AREAS COVERED Recent patent publications (2012-2014), describing coumarins and their derivatives are analyzed. Synthesis, hybridization techniques and biological evaluation in vitro/in vivo, for example, antimitotic, antiviral, anticancer, cytotoxic, anti-acne and antioxidant coumarin macromolecule polymer agents are included. Furthermore, a wide range of pharmaceutical applications and pharmaceutical compositions are also summarized. EXPERT OPINION Several natural and synthetic coumarins, hybrids and derivatives appear to have promising anticancer-antitumor activities. Their clinical evaluation will be critical to assess therapeutic utility. The compounds for which the mechanism of action is well defined can serve as lead compounds for the design of new more potent molecules.
Collapse
Affiliation(s)
- Anna-Maria Katsori
- Aristotle University of Thessaloniki, School of Pharmacy, Department of Pharmaceutical Chemistry, Faculty of Health Science , Thessaloniki 54124 , Greece
| | | |
Collapse
|
9
|
Li H, Wang X, Xu G, Zeng L, Cheng K, Gao P, Sun Q, Liao W, Zhang J. Synthesis and biological evaluation of a novel class of coumarin derivatives. Bioorg Med Chem Lett 2014; 24:5274-8. [PMID: 25304898 DOI: 10.1016/j.bmcl.2014.09.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Abstract
In this study, several novel coumarin derivatives, 7-hydroxy-2-oxo-2H-chromene-3-carboxyl-Trp-Trp-AA-OBzl compounds, were designed and synthesized as potential anticancer agents. Their in vitro cytotoxic activities were evaluated using methylthiazoltetrazolium (MTT) assay. The anti-tumor activity of the newly coumarin derivatives was determined in a S180 bearing mouse model and some of the compounds demonstrated tumor growth inhibition similar to the positive control, doxorubicin. Compared to doxorubicin, most of the compounds exhibited enhanced immunologic function suggesting a relatively minor toxic effect. The intercalation of the coumarin derivatives synthesized with calf thymus (CT) DNA was also studied.
Collapse
Affiliation(s)
- Hong Li
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiaomin Wang
- Department of Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing 100069, PR China
| | - Guichao Xu
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Li Zeng
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Kai Cheng
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Pengchao Gao
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Qing Sun
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Wei Liao
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China
| | - Jianwei Zhang
- College of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
10
|
Rescifina A, Zagni C, Varrica MG, Pistarà V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem 2014; 74:95-115. [PMID: 24448420 DOI: 10.1016/j.ejmech.2013.11.029] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/26/2013] [Accepted: 11/28/2013] [Indexed: 11/28/2022]
Abstract
The interaction of small molecules with DNA plays an essential role in many biological processes. As DNA is often the target for majority of anticancer and antibiotic drugs, study about the interaction of drug and DNA has a key role in pharmacology. Moreover, understanding the interactions of small molecules with DNA is of prime significance in the rational design of more powerful and selective anticancer agents. Two of the most important and promising targets in cancer chemotherapy include DNA alkylating agents and DNA intercalators. For these last the DNA recognition is a critical step in their anti-tumor action and the intercalation is not only one kind of the interactions in DNA recognition but also a pivotal step of several clinically used anti-tumor drugs such as anthracyclines, acridines and anthraquinones. To push clinical cancer therapy, the discovery of new DNA intercalators has been considered a practical approach and a number of intercalators have been recently reported. The intercalative binding properties of such molecules can also be harnessed as diagnostic probes for DNA structure in addition to DNA-directed therapeutics. Moreover, the problem of intercalation site formation in the undistorted B-DNA of different length and sequence is matter of tremendous importance in molecular modeling studies and, nowadays, three models of DNA intercalation targets have been proposed that account for the binding features of intercalators. Finally, despite DNA being an important target for several drugs, most of the docking programs are validated only for proteins and their ligands. Therefore, a default protocol to identify DNA binding modes which uses a modified canonical DNA as receptor is needed.
Collapse
Affiliation(s)
- Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Chiara Zagni
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maria Giulia Varrica
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Venerando Pistarà
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Antonino Corsaro
- Dipartimento di Scienze del Farmaco, Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
11
|
Du F, Zhang X, Li S, Wang Y, Zheng M, Wang Y, Zhao S, Wu J, Gui L, Zhao M, Peng S. Mechanism of forming trimer, self-assembling nano-particle and inhibiting tumor growth of small molecule CIPPCT. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00158c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The mechanism whereby CIPPCT forms nanoparticles capable of delivery in circulation and adhering on cancer cells is presented.
Collapse
Affiliation(s)
- Fengxiang Du
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Xiaoyi Zhang
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Shan Li
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Yaonan Wang
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Meiqing Zheng
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Yuji Wang
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Shurui Zhao
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Jianhui Wu
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Lin Gui
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| | - Ming Zhao
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
- Department of Biomedical Science and Environmental Biology
- Kaohsiung Medical University
| | - Shiqi Peng
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, P.R. China
| |
Collapse
|
12
|
Chen H, Gao P, Zhang M, Liao W, Zhang J. Synthesis and biological evaluation of a novel class of β-carboline derivatives. NEW J CHEM 2014. [DOI: 10.1039/c4nj00262h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Carboline was modified with amino acids and several novel β-carboline analogues were obtained.
Collapse
Affiliation(s)
- Hao Chen
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, People's Republic of China
| | - Pengchao Gao
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, People's Republic of China
| | - Meng Zhang
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, People's Republic of China
| | - Wei Liao
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, People's Republic of China
| | - Jianwei Zhang
- College of Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069, People's Republic of China
| |
Collapse
|
13
|
Savariz FC, Foglio MA, de Carvalho JE, Ruiz ALTG, Duarte MCT, da Rosa MF, Meyer E, Sarragiotto MH. Synthesis and evaluation of new β-carboline-3-(4-benzylidene)-4H-oxazol-5-one derivatives as antitumor agents. Molecules 2012; 17:6100-13. [PMID: 22614863 PMCID: PMC6268609 DOI: 10.3390/molecules17056100] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 11/30/2022] Open
Abstract
In the present work, we report the synthesis and in vitro anticancer and antimicrobial activity evaluation of a new series of 1-substituted-β-carboline derivatives bearing a 4-benzylidene-4H-oxazol-5-one unity at C-3. The compound 2-[1-(4-methoxyphenyl)-9H-β-carbolin-3-yl]-4-(benzylidene)-4H-oxazol-5-one (11) was the most active derivative, exhibiting a potent cytotoxic activity against glioma (U251), prostate (PC-3) and ovarian (OVCAR-03) cancer cell lines with IC50 values of 0.48, 1.50 and 1.07 µM, respectively. An in silico study of the ADME properties of the novel synthesized β-carboline derivatives was also performed.
Collapse
Affiliation(s)
- Franciele Cristina Savariz
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, 87020-900 PR, Brazil
| | - Mary Ann Foglio
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 6171, Campinas, 13083-970 SP, Brazil
| | - João Ernesto de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 6171, Campinas, 13083-970 SP, Brazil
| | - Ana Lúcia T. G. Ruiz
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 6171, Campinas, 13083-970 SP, Brazil
| | - Marta C. T. Duarte
- Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas, 6171, Campinas, 13083-970 SP, Brazil
| | - Mauricio Ferreira da Rosa
- Centro de Engenharias e Ciências Exatas, Universidade Estadual do Oeste do Paraná, Rua da Faculdade, 645, Toledo, 85903-000 PR, Brazil
| | - Emerson Meyer
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, 87020-900 PR, Brazil
| | - Maria Helena Sarragiotto
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, 87020-900 PR, Brazil
- Author to whom correspondence should be addressed; ; Tel.: +55-44-3261-3657; Fax: +55-44-3011-4125
| |
Collapse
|
14
|
Barbosa VA, Formagio ASN, Savariz FC, Foglio MA, Spindola HM, de Carvalho JE, Meyer E, Sarragiotto MH. Synthesis and antitumor activity of β-carboline 3-(substituted-carbohydrazide) derivatives. Bioorg Med Chem 2011; 19:6400-8. [DOI: 10.1016/j.bmc.2011.08.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/19/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
|