1
|
Ramírez-Contreras D, Vázquez-Rodríguez S, García-García A, Noriega L, Mendoza A, Sánchez-Gaytán BL, Meléndez FJ, Castro ME, Cárdenas-García M, González-Vergara E. L-Citrullinato-Bipyridine and L-Citrullinato-Phenanthroline Mixed Copper Complexes: Synthesis, Characterization and Potential Anticancer Activity. Pharmaceutics 2024; 16:747. [PMID: 38931869 PMCID: PMC11207372 DOI: 10.3390/pharmaceutics16060747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Citrulline (C6H13N3O3) is an amino acid found in the body as a zwitterion. This means its carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, citrulline possesses a terminal ureido group on its aliphatic chain, which also appears to coordinate. Here, two new mixed complexes of citrulline were made with 1,10-phenanthroline and 2,2'-bipyridine. These compounds, once dissolved in water, gave aquo-complexes that were subject to DFT studies and in vitro toxicity studies on cancer cell lines (HeLa, MDA-MB-231, HCT 15, and MCF7) showed promising results. Docking studies with DNA were also conducted, indicating potential anticancer properties.
Collapse
Affiliation(s)
- Diego Ramírez-Contreras
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Sergio Vázquez-Rodríguez
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Amalia García-García
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. Fuente Nueva s/n, 18003 Granada, Spain
| | - Lisset Noriega
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex, Mérida 97310, Mexico;
| | - Angel Mendoza
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Brenda L. Sánchez-Gaytán
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Francisco J. Meléndez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico;
| | - María Eugenia Castro
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| | - Maura Cárdenas-García
- Laboratorio de Fisiología Celular, Facultad de Medicina, Benemérita Universidad Autónoma de Puebla, 13 sur 2702, Puebla 72410, Mexico
| | - Enrique González-Vergara
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur y Av. San Claudio, Col. San Manuel, Puebla 72570, Mexico; (D.R.-C.); (S.V.-R.); (A.G.-G.); (A.M.); (B.L.S.-G.); (M.E.C.)
| |
Collapse
|
2
|
Alfadul SM, Matnurov EM, Varakutin AE, Babak MV. Metal-Based Anticancer Complexes and p53: How Much Do We Know? Cancers (Basel) 2023; 15:2834. [PMID: 37345171 DOI: 10.3390/cancers15102834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
P53 plays a key role in protecting the human genome from DNA-related mutations; however, it is one of the most frequently mutated genes in cancer. The P53 family members p63 and p73 were also shown to play important roles in cancer development and progression. Currently, there are various organic molecules from different structural classes of compounds that could reactivate the function of wild-type p53, degrade or inhibit mutant p53, etc. It was shown that: (1) the function of the wild-type p53 protein was dependent on the presence of Zn atoms, and (2) Zn supplementation restored the altered conformation of the mutant p53 protein. This prompted us to question whether the dependence of p53 on Zn and other metals might be used as a cancer vulnerability. This review article focuses on the role of different metals in the structure and function of p53, as well as discusses the effects of metal complexes based on Zn, Cu, Fe, Ru, Au, Ag, Pd, Pt, Ir, V, Mo, Bi and Sn on the p53 protein and p53-associated signaling.
Collapse
Affiliation(s)
- Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Egor M Matnurov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Alexander E Varakutin
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China
| |
Collapse
|
3
|
Malhi R, Singh I, Carmieli R, Savci A, Sharma R. Copper(II) complexes of fused ring selenosemicarbazones: Synthesis, structure elucidation, biological activity and molecular modeling. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Ramos-Inza S, Plano D, Sanmartín C. Metal-based compounds containing selenium: An appealing approach towards novel therapeutic drugs with anticancer and antimicrobial effects. Eur J Med Chem 2022; 244:114834. [PMID: 36215861 DOI: 10.1016/j.ejmech.2022.114834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022]
|
5
|
Malhi R, Jasinski JP, Kaur M, Paul K, Sharma R. Synthesis, characterization and antitubercular activities of heterocyclic selenosemicarbazones. Bioorg Chem 2022; 126:105907. [PMID: 35661528 DOI: 10.1016/j.bioorg.2022.105907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
Abstract
Reaction of cyclohexanoneselenosemicarbazone with aldehydes and ketones containing heterocyclic rings (2-oxindole, 6-cholro-2-oxindole, 3-methyl-2-oxindole, isatin, 1-methyl isatin, furfural, pyrrole-2-carboxldehyde) in ethanol yielded, respective, selenosemicarbazones {2-oxindoleselenosemicarbazone (2-HOxsesc,H1L), 6-chloro-2-oxindole selenosemicarbazone (6-ClHOxsesc, H2L), 3-methyl-2-oxindole selenosemicarbazone (3-MeHOxses, H3L), isatinselenosemicarbazone (HIstsesc, H4L), 1-methyl isatinselenosemicarbazone (1-MeHIstsesc, H5L), 2-thiopheneselenosemicarbazone (2-Hthiosesc, H6L), 2-furfuralselenosemicarbazone (2-Hfursesc, H7L) and 2-pyrrole selenosemicarbazone (2-Hpysesc, H8L)}. However the similar reaction with aldehyde containing single aromatic ring (3-chlorobenzaldehyde and 4-chlorobenzaldehyde) formed 1, 2-bis(3-chlorobenzylidiene) hydrazine (A) and 1, 2-bis(4-chlorobenzylidiene) hydrazine (B) rather than selenosemicarbazone. All the synthesized compounds were characterized using IR and NMR (1H, 13C) spectroscopy. Structure of A and B were confirmed by single crystal X-ray crystallography. The synthesized selenosemicarbazones were tested for their anti-tubercular activities and H1L, H3L, H5L and H6L are found to exhibit excellent anti-TB activity. The experimental data will give an opportunity to examine their anti-tubercular activities and identify the lead molecule.
Collapse
Affiliation(s)
- Rinku Malhi
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jerry P Jasinski
- Department of Chemistry, Keene State College, 229 Main Street, Keene NH0343502001, USA
| | - Manpreet Kaur
- Department of Chemistry, Keene State College, 229 Main Street, Keene NH0343502001, USA
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Rekha Sharma
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
6
|
Wang ZF, Nong QX, Yu HL, Qin QP, Pan FH, Tan MX, Liang H, Zhang SH. Complexes of Zn(II) with a mixed tryptanthrin derivative and curcumin chelating ligands as new promising anticancer agents. Dalton Trans 2022; 51:5024-5033. [PMID: 35274641 DOI: 10.1039/d1dt04095b] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this study, two novel curcumin (H-Cur)-tryptanthrin metal compounds-[Zn(TA)Cl2], i.e., Zn(TA), and [Zn(TA)(Cur)]Cl, i.e., Zn(TAC)-were synthesized and investigated using 5-(bis-pyridin-2-ylmethyl-amino)-pentanoic acid (6,12-dioxo-6,12-dihydro-indolo[2,1-b]quinazolin-8-yl)-amide (TA) and H-Cur as the targeting and high-activity anticancer chemotherapeutic moieties, respectively. They were then compared with the di-(2-picolyl)amine (PA) Zn(II) complex [Zn(PA)Cl2], i.e., Zn(PA). When compared with Zn(PA) and cisplatin, the IC50 values of Zn(TA) and Zn(TAC) indicated that the compounds had high cytotoxicity against A549/DDP cancer cells, implying that the H-Cur-tryptanthrin Zn(II) compounds have the potential for use as anticancer drugs. We propose the use of synthesized theragnostic H-Cur-tryptanthrin Zn(II) complexes with nuclear-targeting and DNA-damaging capabilities as a simple therapeutic strategy against tumors. The Zn(TA) and Zn(TAC) complexes could be traced via red fluorescence and were found to accumulate in the cell nuclei and induce DNA damage, cell cycle arrest, mitochondrial dysfunction, and cell apoptosis both in vitro and in vivo. In addition, Zn(TAC) exhibited a higher antiproliferative effect on A549/DDP than Zn(TA) and Zn(PA), which was undoubtedly associated with the key roles of the novel tryptanthrin derivative TA and H-Cur in the Zn(TAC) complex.
Collapse
Affiliation(s)
- Zhen-Feng Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| | - Qun-Xue Nong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hua-Lian Yu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China. .,State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Feng-Hua Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China
| | - Shu-Hua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China. .,College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China.
| |
Collapse
|
7
|
Molter A, Kuchar J, Mohr F. Acylselenoureas, selenosemicarbazones and selenocarbamate esters: Versatile ligands in coordination chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj00026a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Acylselenoureas, selenosemicarbazones and selenocarbamate esters from complexes with various transition- and main-group-metals, adopting several coordination modes.
Collapse
Affiliation(s)
- Anja Molter
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Julia Kuchar
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Fabian Mohr
- Anorganische Chemie, Fakultät für Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| |
Collapse
|
8
|
Wang J, Deng W, Zou T, Bai B, Chang AK, Ying X. Cadmium-induced oxidative stress in Meretrix meretrix gills leads to mitochondria-mediated apoptosis. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2011-2023. [PMID: 34529205 DOI: 10.1007/s10646-021-02465-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most important marine environmental pollutants that can cause oxidative damage and apoptosis in living organisms, and mitochondria are the key cell organelles affected by Cd toxicity. In this study, we investigated the effect of Cd on the mitochondria in the gill cells of the clam Meretrix meretrix and the underlying mechanism of mitochondria-mediated apoptosis following exposure to the metal. Exposure of the clams to artificial seawater containing 1.5, 3, 6 and 12 mg L-1 Cd2+ led to swollen mitochondria compared with the untreated clams. The mitochondria also became vacuolated at the higher Cd2+ concentrations. Biochemical assays showed that monoamine oxidase (MAO) activity and mitochondrial membrane potential (Δψm) increased at 1.5 mg L-1 Cd2+, but decreased at higher Cd2+ concentrations, while the activities of malate dehydrogenase (MDH) and cytochrome oxidase (CCO) and the scavenging capacities of anti-superoxide anion (ASA) and anti-hydroxy radical (AHR) all decreased with increasing Cd2+ concentrations. Significant increases in the levels of malondialdehyde (MDA) and H2O2 as well as in the activity levels of caspase-3, -8, and -9 were also observed in the Cd2+-treated clams. The results implied that Cd might induce apoptosis in M. meretrix via the mitochondrial caspase-dependent pathway.
Collapse
Affiliation(s)
- Jinhua Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanfei Deng
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Ting Zou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Binbin Bai
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Xueping Ying
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Sun Y, Lu Y, Bian M, Yang Z, Ma X, Liu W. Pt(II) and Au(III) complexes containing Schiff-base ligands: A promising source for antitumor treatment. Eur J Med Chem 2020; 211:113098. [PMID: 33348237 DOI: 10.1016/j.ejmech.2020.113098] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
The effective application of cisplatin in the clinic as an antitumor treatment has stimulated widespread interest in inorganic metal drugs. In particular, complexes containing the transition metals platinum and gold have attracted considerable attention due to their antitumor effects. The Pt(II) and Au(III) Schiff-base complexes are potential antitumor agents because of their remarkable biological activities and good stability, lipophilicity, and electroluminescent properties. These complexes act via various antitumor mechanisms that are unlike those of the classic platinum drugs, providing a feasible solution for improving the serious side effects caused by metal chemotherapy. In this review, promising antitumor agents based on Pt(II) and Au(III) complexes containing Schiff-base ligands, and their biological targets, including G-quadruplex DNA and thioredoxin reductase, are comprehensively summarized.
Collapse
Affiliation(s)
- Ying Sun
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yunlong Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mianli Bian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhibin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiaoyan Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wukun Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Thiosemicarbazone Complexes of Transition Metals as Catalysts for Cross-Coupling Reactions. Catalysts 2020. [DOI: 10.3390/catal10101107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Catalysis of cross-coupling reactions under phosphane-free conditions represents an important ongoing challenge. Although transition metal complexes based on the thiosemicarbazone unit have been known for a very long time, their use in homogeneous catalysis has been studied only relatively recently. In particular, reports of cross-coupling catalytic reactions with such complexes have appeared only in the last 15 years. This review provides a survey of the research in this area and a discussion of the prospects for future developments.
Collapse
|
11
|
Qin QP, Zou BQ, Hu FL, Huang GB, Wang SL, Gu YQ, Tan MX. Platinum(ii) complexes with rutaecarpine and tryptanthrin derivatives induce apoptosis by inhibiting telomerase activity and disrupting mitochondrial function. MEDCHEMCOMM 2018; 9:1639-1648. [PMID: 30429969 PMCID: PMC6195000 DOI: 10.1039/c8md00247a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Four new platinum(ii) complexes, [Pt(Rut)(DMSO)Cl2] (Rut-Pt), [Pt(Try)(DMSO)Cl2] (Try-Pt), [Pt(ITry)(DMSO)Cl2] (ITry-Pt) and [Pt(BrTry)(DMSO)Cl2] (BrTry-Pt), with rutaecarpine (Rut), tryptanthrin (Try), 8-iodine-tryptanthrin (ITry) and 8-bromo-tryptanthrin (BrTry) as ligands were synthesized and fully characterized. In these complexes, the platinum(ii) adopts a four-coordinated square planar geometry. The inhibitory activity evaluated by the MTT assay showed that BrTry-Pt (IC50 = of 0.21 ± 0.25 μM) could inhibit the growth of T-24 tumor cells (human bladder cancer cell line) more so than the other three complexes. In addition, all of these Pt complexes exhibited low toxicity against non-cancerous HL-7702 cells. BrTry-Pt induced cell cycle arrest in the S phase, leading to the down-regulation of cyclin A and CDK2 proteins. BrTry-Pt acts as a telomerase inhibitor targeting the c-myc promoter. In addition, BrTry-Pt also caused mitochondrial dysfunction. Importantly, the in vitro anticancer activity of BrTry-Pt was higher than those of Rut-Pt, Try-Pt and ITry-Pt, and it was more selective for T-24 cells than for non-cancerous HL-7702 cells.
Collapse
Affiliation(s)
- Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Bi-Qun Zou
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- Department of Chemistry , Guilin Normal College , 21 Xinyi Road , Gulin 541001 , PR China
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Fei-Long Hu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products , Guangxi University for Nationalities , Nanning , 530006 , P. R. China
| | - Guo-Bao Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| | - Shu-Long Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Yun-Qiong Gu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmacy , Guangxi Normal University , 15 Yucai Road , Guilin 541004 , PR China
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology , School of Chemistry and Food Science , Yulin Normal University , 1303 Jiaoyudong Road , Yulin 537000 , PR China . ; ; Tel: +86 775 2623650
| |
Collapse
|
12
|
Zhang H, Guo L, Tian Z, Tian M, Zhang S, Xu Z, Gong P, Zheng X, Zhao J, Liu Z. Significant effects of counteranions on the anticancer activity of iridium(iii) complexes. Chem Commun (Camb) 2018; 54:4421-4424. [DOI: 10.1039/c8cc01326h] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rational design of the ligands around transition metals has achieved success in the development of anticancer complexes.
Collapse
|
13
|
Guo L, Zhang H, Tian M, Tian Z, Xu Y, Yang Y, Peng H, Liu P, Liu Z. Electronic effects on reactivity and anticancer activity by half-sandwich N,N-chelated iridium(iii) complexes. NEW J CHEM 2018. [DOI: 10.1039/c8nj03360a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrated how the chemical reactivity and anticancer activity as well as the selectivity of these half-sandwich N,N-chelated iridium(iii) complexes can be controlled and fine-tuned by the modification of the ligand electronic perturbations.
Collapse
Affiliation(s)
- Lihua Guo
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Hairong Zhang
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Meng Tian
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Zhenzhen Tian
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Yanjian Xu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Yuliang Yang
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Hongwei Peng
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Peng Liu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| | - Zhe Liu
- The Key laboratory of Life-Organic Analysis and key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University
- Qufu 273165
- China
| |
Collapse
|
14
|
Zayed EM, Zayed MA, Fahim AM, El-Samahy FA. Synthesis of novel macrocyclic Schiff's-base and its complexes having N2
O2
group of donor atoms. Characterization and anticancer screening are studied. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3694] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ehab M. Zayed
- Green Chemistry Department; Research Centre; 33 EL Bohouthst (former EL Tahrirst), Dokki 12622 Giza Egypt
| | - Mohamed A. Zayed
- Chemistry Department, Faculty of Science; Cairo University; 12613 Giza Egypt
| | - Asmaa M. Fahim
- Green Chemistry Department; Research Centre; 33 EL Bohouthst (former EL Tahrirst), Dokki 12622 Giza Egypt
| | - Fatma A. El-Samahy
- Green Chemistry Department; Research Centre; 33 EL Bohouthst (former EL Tahrirst), Dokki 12622 Giza Egypt
| |
Collapse
|
15
|
Synthesis, structures and reactivity of some mono- and dinuclear palladium(II) and platinum(II) complexes containing 2-pyridyl functionalised selenosemicarbazones. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Todorović TR, Vukašinović J, Portalone G, Suleiman S, Gligorijević N, Bjelogrlić S, Jovanović K, Radulović S, Anđelković K, Cassar A, Filipović NR, Schembri-Wismayer P. (Chalcogen)semicarbazones and their cobalt complexes differentiate HL-60 myeloid leukaemia cells and are cytotoxic towards tumor cell lines. MEDCHEMCOMM 2016; 8:103-111. [PMID: 30108695 DOI: 10.1039/c6md00501b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Cobalt complexes with semi- and thiosemicarbazones of 8-quinolinecarboxaldehyde have been synthesized and characterized by X-ray diffraction analysis. These novel complexes and a previously synthesized cobalt complex with a selenium-based selenosemicarbazone ligand showed myeloid differentiation activity on all trans retinoic acid resistant HL-60 acute myeloid leukaemia cells. They also showed varying levels of cytotoxicity on five human tumor cell lines: cervix carcinoma cells (HeLa), lung adenocarcinoma cells (A549), colorectal adenocarcinoma cells (LS-174), breast carcinoma cells (MDA-MB-361), and chronic myeloid leukaemia (K562) as well as one normal human cell line: fetal lung fibroblast cells (MRC-5). Leukaemia differentiation was most strongly induced by a metal-free oxygen ligand and the selenium ligand, whilst the latter and the cobalt(ii) complex with an oxygen ligand showed the strongest dose-dependent cytotoxic activity. In four out of five investigated tumor cell lines, it was of the same order of magnitude as cisplatin. These best compounds, however, had lower toxicity on non-transformed MRC-5 cells than cisplatin.
Collapse
Affiliation(s)
- Tamara R Todorović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Jelena Vukašinović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Gustavo Portalone
- Department of Chemistry , Sapienza University of Rome , P.le Aldo Moro 5 , 00185 Rome , Italy
| | - Sherif Suleiman
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Snezana Bjelogrlić
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Jovanović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia , Pasterova 14 , 11000 Belgrade , Serbia
| | - Katarina Anđelković
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , 11000 Belgrade , Serbia
| | - Analisse Cassar
- Anatomy Department , Faculty of Medicine and Surgery , University of Malta , Malta .
| | - Nenad R Filipović
- Faculty of Agriculture , University of Belgrade , Nemanjina 6 , 11081 Belgrade , Serbia .
| | | |
Collapse
|
17
|
Bostancioğlu RB, Kaya M, Koparal AT, Benkli K. Gold(III) compounds-mediated inhibition of lung cancer cell proliferation. Anticancer Drugs 2016; 27:225-34. [DOI: 10.1097/cad.0000000000000327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Filipović NR, Bjelogrlić S, Portalone G, Pelliccia S, Silvestri R, Klisurić O, Senćanski M, Stanković D, Todorović TR, Muller CD. Pro-apoptotic and pro-differentiation induction by 8-quinolinecarboxaldehyde selenosemicarbazone and its Co(iii) complex in human cancer cell lines. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00199h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ligand initiated reprogramming of cancer stem cells phenotype in AsPC-1 cells. The complex digested plasmid DNA which might be the cause of its cytotoxic activity.
Collapse
Affiliation(s)
| | | | | | - Sveva Pelliccia
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Universita di Roma
- I-00185 Roma
- Italy
| | - Romano Silvestri
- Dipartimento di Chimica e Tecnologie del Farmaco
- Sapienza Universita di Roma
- I-00185 Roma
- Italy
| | - Olivera Klisurić
- Department of Physics, Faculty of Sciences
- University of Novi Sad
- Novi Sad
- Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research
- Institute of Nuclear Sciences “Vinča”
- University of Belgrade
- Belgrade
- Serbia
| | - Dalibor Stanković
- Innovation Center of the Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
| | | | - Christian D. Muller
- Institut Pluridisciplinaire Hubert Curien
- UMR 7178 CNRS Université de Strasbourg
- 67401 Illkirch
- France
| |
Collapse
|
19
|
Mohamed GG, Zayed EM, Hindy AMM. Coordination behavior of new bis Schiff base ligand derived from 2-furan carboxaldehyde and propane-1,3-diamine. Spectroscopic, thermal, anticancer and antibacterial activity studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 145:76-84. [PMID: 25767990 DOI: 10.1016/j.saa.2015.01.129] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 01/18/2015] [Accepted: 01/29/2015] [Indexed: 06/04/2023]
Abstract
Novel bis Schiff base ligand, [N1,N3-bis(furan-2-ylmethylene)propane-1,3-diamine], was prepared by the condensation of furan-2-carboxaldehyde with propane-1,3-diamine. Its conformational changes on complexation with transition metal ions [Co(II), Ni(II), Cu(II), Mn(II), Cd(II), Zn(II) and Fe(III)] have been studied on the basis of elemental analysis, conductivity measurements, spectral (infrared, (1)H NMR, electronic), magnetic and thermogravimetric studies. The conductance data of the complexes revealed their electrolytic nature suggesting them as 1:2 (for bivalent metal ions) and 1:3 (for Fe(III) ion) electrolytes. The complexes were found to have octahedral geometry based on magnetic moment and solid reflectance measurements. Thermal analysis data revealed the decomposition of the complexes in successive steps with the removal of anions, coordinated water and bis Schiff base ligand. The thermodynamic parameters were calculated using Coats-Redfern equation. The Anticancer screening studies were performed on human colorectal cancer (HCT), hepatic cancer (HepG2) and breast cancer (MCF-7) cell lines. The antimicrobial activity of all the compounds was studied against Gram negative (Escherichia coli and Proteus vulgaris) and Gram positive (Bacillus vulgaris and Staphylococcus pyogones) bacteria. It was observed that the coordination of metal ion has a pronounced effect on the microbial activities of the bis Schiff base ligand. All the metal complexes have shown higher antimicrobial effect than the free bis Schiff base ligand.
Collapse
Affiliation(s)
- Gehad G Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Ehab M Zayed
- Green Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed M M Hindy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
20
|
Filipović NR, Bjelogrlić S, Marinković A, Verbić TŽ, Cvijetić IN, Senćanski M, Rodić M, Vujčić M, Sladić D, Striković Z, Todorović TR, Muller CD. Zn(ii) complex with 2-quinolinecarboxaldehyde selenosemicarbazone: synthesis, structure, interaction studies with DNA/HSA, molecular docking and caspase-8 and -9 independent apoptose induction. RSC Adv 2015. [DOI: 10.1039/c5ra19849f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A new Zn(ii)-based complex shows a concentration-dependent apoptotic response in highly resistant pancreatic adenocarcinoma cells with extensive activation of caspase-8 and -9.
Collapse
Affiliation(s)
| | | | | | | | - Ilija N. Cvijetić
- Innovation Center of the Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
| | - Milan Senćanski
- Center for Multidisciplinary Research
- Institute of Nuclear Sciences “Vinča”
- University of Belgrade
- Belgrade
- Serbia
| | - Marko Rodić
- Department of Chemistry
- Faculty of Sciences
- University of Novi Sad
- Novi Sad
- Serbia
| | - Miroslava Vujčić
- Institute of Chemistry, Technology and Metallurgy
- University of Belgrade
- Belgrade
- Serbia
| | - Dušan Sladić
- Faculty of Chemistry
- University of Belgrade
- Belgrade
- Serbia
| | | | | | - Christian D. Muller
- Laboratoire d’Innovation Thérapeutique
- UMR 7200
- Faculté de Pharmacie
- Université de Strasbourg
- 67401 Illkirch
| |
Collapse
|
21
|
Zhang HR, Liu YC, Meng T, Qin QP, Tang SF, Chen ZF, Zou BQ, Liu YN, Liang H. Cytotoxicity, DNA binding and cell apoptosis induction of a zinc(ii) complex of HBrQ. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00406c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc(ii) complex of HBrQ showed higher in vitro antitumor activity. It induced cell apoptosis in BEL-7404 cells via G2 phase arrest, led to mitochondria dysfunction and activation of caspase cascade. The central zinc(ii) should play a key role to enhance the antitumor effect
Collapse
Affiliation(s)
- Hai-Rong Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
| | - Yan-Cheng Liu
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Ting Meng
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Qi-Pin Qin
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Shang-Feng Tang
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Zhen-Feng Chen
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - Bi-Qun Zou
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry & Pharmaceutical Sciences
- Guangxi Normal University
- Guilin
- PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
| | - Hong Liang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- PR China
- State Key Laboratory Cultivation Base for the Chemistry and Molecular Engineering of Medicinal Resources
| |
Collapse
|
22
|
Liu Z, Romero-Canelón I, Habtemariam A, Clarkson GJ, Sadler PJ. Potent Half-Sandwich Iridium(III) Anticancer Complexes Containing C ∧N-Chelated and Pyridine Ligands. Organometallics 2014; 33:5324-5333. [PMID: 25328266 PMCID: PMC4195516 DOI: 10.1021/om500644f] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 12/17/2022]
Abstract
We report the synthesis and characterization of eight half-sandwich cyclopentadienyl IrIII pyridine complexes of the type [(η5-Cpxph)Ir(phpy)Z]PF6, in which Cpxph = C5Me4C6H5 (tetramethyl(phenyl)cyclopentadienyl), phpy = 2-phenylpyridine as C∧N-chelating ligand, and Z = pyridine (py) or a pyridine derivative. Three X-ray crystal structures have been determined. The monodentate py ligands blocked hydrolysis; however, antiproliferative studies showed that all the Ir compounds are highly active toward A2780, A549, and MCF-7 human cancer cells. In general the introduction of an electron-donating group (e.g., Me, NMe2) at specific positions on the pyridine ring resulted in increased antiproliferative activity, whereas electron-withdrawing groups (e.g., COMe, COOMe, CONEt2) decreased anticancer activity. Complex 5 displayed the highest anticancer activity, exhibiting submicromolar potency toward a range of cancer cell lines in the National Cancer Institute NCI-60 screen, ca. 5 times more potent than the clinical platinum(II) drug cisplatin. DNA binding appears not to be the major mechanism of action. Although complexes [(η5-Cpxph)Ir(phpy)(py)]+ (1) and [(η5-Cpxph)Ir(phpy)(4-NMe2-py)]+ (5) did not cause cell apoptosis or cell cycle arrest after 24 h drug exposure in A2780 human ovarian cancer cells at IC50 concentrations, they increased the level of reactive oxygen species (ROS) dramatically and led to a loss of mitochondrial membrane potential (ΔΨm), which appears to contribute to the anticancer activity. This class of organometallic Ir complexes has unusual features worthy of further exploration in the design of novel anticancer drugs.
Collapse
Affiliation(s)
| | - Isolda Romero-Canelón
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Abraha Habtemariam
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Guy J. Clarkson
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| | - Peter J. Sadler
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, U.K.
| |
Collapse
|
23
|
Shen H, Zhu H, Song M, Tian Y, Huang Y, Zheng H, Cao R, Lin J, Bi Z, Zhong W. A selenosemicarbazone complex with copper efficiently down-regulates the 90-kDa heat shock protein HSP90AA1 and its client proteins in cancer cells. BMC Cancer 2014; 14:629. [PMID: 25167922 PMCID: PMC4168210 DOI: 10.1186/1471-2407-14-629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023] Open
Abstract
Background The 90-kDa heat shock protein HSP90AA1 is critical for the stability of several proteins that are important for tumor progression and thus, is a promising target for cancer therapy. Selenosemicarbazone metal complexes have been shown to possess anticancer activity through an unknown molecular mechanism. Methods The MTT assay, fluorescence-activated cell sorting, and fluorescent microscopy were used to analyze the mechanism of the anti-cancer activity of the selenosemicarbazone metal complexes. Additionally, RNA-seq was applied to identify transcriptional gene changes, and in turn, the signaling pathways involved in the process of 2-24a/Cu-induced cell death. Last, the expression of HSP90AA1, HSPA1A, PIM1, and AKT proteins in 2-24a/Cu-treated cells were investigated by western blot analysis. Results A novel selenosemicarbazone copper complex (2-24a/Cu) efficiently induced G2/M arrest and was cytotoxic in cancer cells. 2-24a/Cu significantly induced oxidative stress in cancer cells. Interestingly, although RNA-seq revealed that the transcription of HSP90AA1 was increased in 2-24a/Cu-treated cells, western blotting showed that the expression of HSP90AA1 protein was significantly decreased in these cells. Furthermore, down-regulation of HSP90AA1 led to the degradation of its client proteins (PIM1 and AKT1), which are also cancer therapy targets. Conclusion Our results showed that 2-24a/Cu efficiently generates oxidative stress and down-regulates HSP90AA1 and its client proteins (PIM1, AKT1) in U2os and HeLa cells. These results demonstrate the potential application of this novel copper complex in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenggang Bi
- The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | |
Collapse
|
24
|
A novel manganese complex LMnAc selectively kills cancer cells by induction of ROS-triggered and mitochondrial-mediated cell death. SCIENCE CHINA-LIFE SCIENCES 2014; 57:998-1010. [PMID: 24935782 DOI: 10.1007/s11427-014-4682-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
We previously identified a novel synthesized metal compound, LMnAc ([L2Mn2(Ac)(H2O)2](Ac) (L=bis(2-pyridylmethyl) amino-2-propionic acid)). This compound exhibited significant inhibition on cancer cell proliferation and was more selective against cancer cells than was the popular chemotherapeutic reagent cisplatin. In this study, we further investigated the underlying molecular mechanisms of LMnAc-induced cancer cell death. We found that LMnAc achieved its selectivity against cancer cells through the transferrin-transferrin receptor system, which is highly expressed in tumor cells. LMnAc triggered cancer cells to commit autophagy and apoptosis, which was mediated by the mitochondrial pathway. Moreover, LMnAc disrupted mitochondrial function, resulting in mitochondrial membrane potential collapse and ATP reduction. In addition, LMnAc induced intracellular Ca(2+) overload and reactive oxygen species generation. Interestingly, its anticancer effect was significantly reduced following pretreatment with the antioxidant N-acetyl cysteine, indicating that reactive oxygen species triggered cell death. Altogether, our data suggest that LMnAc appears to be a selectively promising anticancer drug candidate.
Collapse
|
25
|
Bostancıoğlu RB, Koparal AT, Benkli K. Investigation of the pharmacological profiles of dinuclear metal complexes as novel, potent and selective cytotoxic agents against ras-transformed cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:897-906. [PMID: 24694919 DOI: 10.1016/j.etap.2014.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Around the world scientists try to design successful cures against still incurable diseases, especially cancers. New targets for prevention and new agents for therapy need to be identified. We synthesized novel metal complexes [Au(L1)(L2)Pt]Cl2 and [Ru(L1)2(L2)Pt]Cl2 for determining their cytotoxic and apoptotic effects. The complexes are synthesized by using 1,8-diaminonaphthalene (L1), and bis-1,4-di[([1,10]phenanthroline-5-il)aminomethyl]cyclohexane (L2) as ligands. This is the first study to examine these metals and these molecules in cancer treatment. We elucidated the effects of test compounds with embryonic rat fibroblast-like cells (F2408) and H-ras oncogene activated embryonic rat fibroblast-like cancer cells (5RP7). Results showed that our complexes are more effective than cisplatin to kill ras-transformed cells. Although the [Au(L1)(L2)Pt]Cl2 compound showed a cytotoxic potency higher than [Ru(L1)2(L2)Pt]Cl2 against cancer cells, it proved to be almost five times less effective in decreasing cell viability over healthy cells. Au(III) compound selectively targets the cancer cells but not the healthy cells.
Collapse
Affiliation(s)
- R Beklem Bostancıoğlu
- Anadolu University, Faculty of Sciences, Department of Biology, 26470 Eskişehir, Turkey.
| | - A Tansu Koparal
- Anadolu University, Faculty of Sciences, Department of Biology, 26470 Eskişehir, Turkey.
| | - Kadriye Benkli
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskisehir, Turkey.
| |
Collapse
|
26
|
Biological activity of two isomeric N-heteroaromatic selenosemicarbazones and their metal complexes. MONATSHEFTE FUR CHEMIE 2014. [DOI: 10.1007/s00706-014-1197-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY, Sim KS, Tan KW. Copper complexes with phosphonium containing hydrazone ligand: Topoisomerase inhibition and cytotoxicity study. Eur J Med Chem 2014; 76:397-407. [DOI: 10.1016/j.ejmech.2014.02.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/17/2014] [Accepted: 02/18/2014] [Indexed: 12/22/2022]
|
28
|
Guan QL, Liu Z, Wei WJ, Xing YH, Liu J, Zhang R, Hou YN, Wang X, Bai FY. Synthesis, structure, spectroscopy of four novel supramolecular complexes and cytotoxicity study by application of multiple parallel perfused microbioreactors. NEW J CHEM 2014. [DOI: 10.1039/c3nj01646c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis of four supramolecular complexes and study of their cytotoxicity using multiple parallel perfused microbioreactors.
Collapse
Affiliation(s)
- Qing-Lin Guan
- Regenerative Medicine Centre
- First Affiliated Hospital of Dalian Medical University
- Dalian, PR China
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
| | - Zhi Liu
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian, PR China
| | - Wen-Juan Wei
- Regenerative Medicine Centre
- First Affiliated Hospital of Dalian Medical University
- Dalian, PR China
| | - Yong-Heng Xing
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian, PR China
| | - Jing Liu
- Regenerative Medicine Centre
- First Affiliated Hospital of Dalian Medical University
- Dalian, PR China
| | - Rui Zhang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian, PR China
| | - Ya-Nan Hou
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian, PR China
| | - Xuan Wang
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian, PR China
| | - Feng-Ying Bai
- College of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian, PR China
| |
Collapse
|
29
|
Filipović NR, Marković I, Mitić D, Polović N, Milčić M, Dulović M, Jovanović M, Savić M, Nikšić M, Anđelković K, Todorović T. A Comparative Study of In Vitro Cytotoxic, Antioxidant, and Antimicrobial Activity of Pt(II), Zn(II), Cu(II), and Co(III) Complexes withN-heteroaromatic Schiff Base (E)-2-[N′-(1-pyridin-2-yl-ethylidene)hydrazino]acetate. J Biochem Mol Toxicol 2013; 28:99-110. [DOI: 10.1002/jbt.21541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/21/2013] [Accepted: 11/01/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Nenad R. Filipović
- Department of Chemistry and Biochemistry; Faculty of Agriculture; University of Belgrade; Belgrade Serbia
| | - Ivanka Marković
- Institute of Medical and Clinical Biochemistry; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - Dragana Mitić
- Faculty of Chemistry; University of Belgrade; Belgrade Serbia
| | | | - Miloš Milčić
- Faculty of Chemistry; University of Belgrade; Belgrade Serbia
| | - Marija Dulović
- Institute of Medical and Clinical Biochemistry; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - Maja Jovanović
- Institute of Medical and Clinical Biochemistry; Faculty of Medicine; University of Belgrade; Belgrade Serbia
| | - Milena Savić
- Department of Chemistry and Biochemistry; Faculty of Agriculture; University of Belgrade; Belgrade Serbia
| | - Miomir Nikšić
- Department of Chemistry and Biochemistry; Faculty of Agriculture; University of Belgrade; Belgrade Serbia
| | | | | |
Collapse
|
30
|
Li H, Zhang X, Qiu Q, An Z, Qi Y, Huang D, Zhang Y. 2,4-dichlorophenol induces apoptosis in primary hepatocytes of grass carp (Ctenopharyngodon idella) through mitochondrial pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:117-122. [PMID: 23774520 DOI: 10.1016/j.aquatox.2013.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 06/02/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP), a major type of chlorophenols, has been widely used to produce some herbicides and pharmaceuticals, yet due to its incomplete degradation and bioaccumulation characteristics, it is toxic to aquatic organisms. Apoptosis is one of the most severe outcomes of cell poisoning and injury. So far, the potential molecular mechanism of 2,4-DCP-induced apoptosis has not been reported. This study showed that 2,4-DCP significantly induced apoptosis in primary hepatocytes of grass carp (Ctenopharyngodon idella). 2,4-DCP exposure upregulated mRNA of caspase-3, reduced the mitochondrial membrane potential (Δψm), increased intracellular reactive oxygen species (ROS) and the Bax/Bcl-2 ratio, while protection of mitochondria with acetyl-l-carnitine hydrochloride (ALC) rescued 2,4-DCP-induced apoptosis, restored the Δψm and reduced the Bax/Bcl-2 ratio. Taken together, this is the first study that has identified that 2,4-DCP exposure induced apoptosis through the mitochondria-dependent pathway in primary hepatocytes of grass carp.
Collapse
Affiliation(s)
- Hui Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Sanmartín C, Plano D, Sharma AK, Palop JA. Selenium compounds, apoptosis and other types of cell death: an overview for cancer therapy. Int J Mol Sci 2012; 13:9649-9672. [PMID: 22949823 PMCID: PMC3431821 DOI: 10.3390/ijms13089649] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
Selenium (Se) is an essential trace element involved in different physiological functions of the human body and plays a role in cancer prevention and treatment. Induction of apoptosis is considered an important cellular event that can account for the cancer preventive effects of Se. The mechanisms of Se-induced apoptosis are associated with the chemical forms of Se and their metabolism as well as the type of cancer studied. So, some selenocompounds, such as SeO2 involve the activation of caspase-3 while sodium selenite induces apoptosis in the absence of the activation of caspases. Modulation of mitochondrial functions has been reported to play a key role in the regulation of apoptosis and also to be one of the targets of Se compounds. Other mechanisms for apoptosis induction are the modulation of glutathione and reactive oxygen species levels, which may function as intracellular messengers to regulate signaling pathways, or the regulation of kinase, among others. Emerging evidence indicates the overlaps between the apoptosis and other types of cell death such as autophagy. In this review we report different processes of cell death induced by Se compounds in cancer treatment and prevention.
Collapse
Affiliation(s)
- Carmen Sanmartín
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-948-425-600; Fax: +34-948-425-649
| | - Daniel Plano
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Hershey Cancer Institute, Penn State Hershey College of Medicine, CH72, 500 University Drive, Hershey, PA 17033, USA; E-Mail:
| | - Juan Antonio Palop
- Department of Organic and Pharmaceutical Chemistry, University of Navarra, Irunlarrea 1, Pamplona E-31008, Spain; E-Mails: (D.P.); (J.A.P.)
| |
Collapse
|