1
|
Liu Y, Tong JB, Gao P, Fan XL, Xiao XC, Xing YC. Combining QSAR techniques, molecular docking, and molecular dynamics simulations to explore anti-tumor inhibitors targeting Focal Adhesion Kinase. J Biomol Struct Dyn 2025; 43:3749-3765. [PMID: 38173145 DOI: 10.1080/07391102.2023.2301055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Focal Adhesion Kinase (FAK) is an important target for tumor therapy and is closely related to tumor cell genesis and progression. In this paper, we selected 46 FAK inhibitors with anticancer activity in the pyrrolo pyrimidine backbone to establish 3D/2D-QSAR models to explore the relationship between inhibitory activity and molecular structure. We have established two ideal models, namely, the Topomer CoMFA model (q 2 = 0.715, r 2 = 0.984) and the Holographic Quantitative Structure-Activity Relationship (HQSAR) model (q 2 = 0.707, r 2 = 0.899). Both models demonstrate excellent external prediction capabilities.Based on the QSAR results, we designed 20 structurally modified novel compounds, which were subjected to molecular docking and molecular dynamics studies, and the results showed that the new compounds formed many robust interactions with residues within the active pocket and could maintain stable binding to the receptor proteins. This study not only provides a powerful screening tool for designing novel FAK inhibitors, but also presents a series of novel FAK inhibitors with high micromolar activity that can be used for further characterization. It provides a reference for addressing the shortcomings of drug metabolism and drug resistance of traditional FAK inhibitors, as well as the development of novel clinically applicable FAK inhibitors.
Collapse
Affiliation(s)
- Yuan Liu
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian-Bo Tong
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Peng Gao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuan-Lu Fan
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Xue-Chun Xiao
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| | - Yi-Chaung Xing
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
2
|
Liu Z, Wong ILK, Sang J, Liu F, Yan CSW, Kan JWY, Chan TH, Chow LMC. Identification of Binding Sites in the Nucleotide-Binding Domain of P-Glycoprotein for a Potent and Nontoxic Modulator, the Amine-Containing Monomeric Flavonoid FM04. J Med Chem 2023; 66:6160-6183. [PMID: 37098275 DOI: 10.1021/acs.jmedchem.2c02005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
We have previously discovered an amine-containing flavonoid monomer FM04 as a potent P-glycoprotein (P-gp) inhibitor (EC50 = 83 nM). Here, a series of photoactive FM04 analogues were synthesized and used together with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the FM04-binding sites on P-gp. Point mutations around the photo-crosslinked sites were made for verification. Together with the results from mutational studies, molecular docking, and molecular dynamics simulations, it was found that FM04 can interact with Q1193 and I1115 in the nucleotide-binding domain 2 (NBD2) of human P-gp. It was proposed that FM04 can inhibit P-gp in 2 novel mechanisms. FM04 can either bind to (1) Q1193, followed by interacting with the functionally critical residues H1195 and T1226 or (2) I1115 (a functionally critical residue itself), disrupting the R262-Q1081-Q1118 interaction pocket and uncoupling ICL2-NBD2 interaction and thereby inhibiting P-gp. Q1118 would subsequently be pushed to the ATP-binding site and stimulate ATPase.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Iris L K Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jingcheng Sang
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Fufeng Liu
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Clare S W Yan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jason W Y Kan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
3
|
Sasidharan S, Saudagar P. An anti-leishmanial compound 4',7-dihydroxyflavone elicits ROS-mediated apoptosis-like death in Leishmania parasite. FEBS J 2023. [PMID: 36871140 DOI: 10.1111/febs.16770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/12/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
The treatment for leishmaniasis is currently plagued by side effects such as toxicity and the emergence of drug resistance to the available repertoire of drugs, as well as the expense of these drugs. Considering such rising concerns, we report the anti-leishmanial activity and mechanism of a flavone compound 4',7-dihydroxyflavone (TI 4). Four flavanoids were initially screened for anti-leishmanial activity and cytotoxicity. The results showed that the compound TI 4 exhibited higher activity and selectivity index at the same time as maintaining low cytotoxicity. Preliminary microscopic studies and fluorescence-activated cell sorting analysis reported that the parasite underwent apoptosis on TI 4 treatment. Further in-depth studies revealed high reactive oxygen species (ROS) production and thiol levels in the parasites, suggesting ROS-mediated apoptosis in the parasites upon TI 4 treatment. Other apoptotic indicators such as intracellular Ca2+ and mitochondrial membrane potential also indicated the onset of apoptosis in the treated parasites. The mRNA expression levels signified that the redox metabolism genes were upregulated by two-fold along with the apoptotic genes. In summary, the use of TI 4 on Leishmania parasites induces ROS-mediated apoptosis; therefore, the compound has immense potential to be an anti-leishmanial drug. However, in vivo studies would be required to ascertain its safety and efficacy before we can exploit the compound against the growing leishmaniasis crisis.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, India
| |
Collapse
|
4
|
Kan JWY, Yan CSW, Wong ILK, Su X, Liu Z, Chan TH, Chow LMC. Discovery of a Flavonoid FM04 as a Potent Inhibitor to Reverse P-Glycoprotein-Mediated Drug Resistance in Xenografts and Improve Oral Bioavailability of Paclitaxel. Int J Mol Sci 2022; 23:ijms232315299. [PMID: 36499627 PMCID: PMC9739180 DOI: 10.3390/ijms232315299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Biotransformation of flavonoid dimer FD18 resulted in an active metabolite FM04. It was more druggable because of its improved physicochemical properties. FM04 (EC50 = 83 nM) was 1.8-fold more potent than FD18 in reversing P-glycoprotein (P-gp)-mediated paclitaxel (PTX) resistance in vitro. Similar to FD18, FM04 chemosensitized LCC6MDR cells towards multiple anticancer drugs by inhibiting the transport activity of P-gp and restoring intracellular drug levels. It stimulated the P-gp ATPase by 3.3-fold at 100 μM. Different from FD18, FM04 itself was not a transport substrate of P-gp and presumably, it cannot work as a competitive inhibitor. In the human melanoma MDA435/LCC6MDR xenograft, the co-administration of FM04 (28 mg/kg, I.P.) with PTX (12 mg/kg, I.V.) directly modulated P-gp-mediated PTX resistance and caused a 56% (*, p < 0.05) reduction in tumor volume without toxicity or animal death. When FM04 was administered orally at 45 mg/kg as a dual inhibitor of P-gp/CYP2C8 or 3A4 enzymes in the intestine, it increased the intestinal absorption of PTX from 0.2% to 14% in mice and caused about 57- to 66-fold improvement of AUC as compared to a single oral dose of PTX. Oral co-administration of FM04 (45 mg/kg) with PTX (40, 60 or 70 mg/kg) suppressed the human melanoma MDA435/LCC6 tumor growth with at least a 73% (***, p < 0.001) reduction in tumor volume without serious toxicity. Therefore, FM04 can be developed into a novel combination chemotherapy to treat cancer by directly targeting the P-gp overexpressed tumors or potentiating the oral bioavailability of P-gp substrate drugs.
Collapse
Affiliation(s)
- Jason W. Y. Kan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Clare S. W. Yan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Iris L. K. Wong
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaochun Su
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zhen Liu
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tak Hang Chan
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada
- Correspondence: (T.H.C.); (L.M.C.C.); Tel.: +(852)-34008670 (T.H.C.); +(852)-34008662 (L.M.C.C.); Fax: +(852)-23649932 (T.H.C. & L.M.C.C.)
| | - Larry M. C. Chow
- Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China
- Correspondence: (T.H.C.); (L.M.C.C.); Tel.: +(852)-34008670 (T.H.C.); +(852)-34008662 (L.M.C.C.); Fax: +(852)-23649932 (T.H.C. & L.M.C.C.)
| |
Collapse
|
5
|
Halogenated Flavonoid Derivatives Display Antiangiogenic Activity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154757. [PMID: 35897938 PMCID: PMC9331694 DOI: 10.3390/molecules27154757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
Antiangiogenic agents attenuate tumours' growth and metastases and are therefore beneficial as an adjuvant or standalone cancer regimen. Drugs with dual antiproliferative and antiangiogenic activities can achieve anticancer efficacy and overcome acquired resistance. In this study, synthetic flavones (5a,b) with reported anticancer activity, and derivatives (4b and 6a), exhibited significant inhibition of endothelial cell tube formation (40-55%, 12 h) at 1 µM, which is comparable to sunitinib (50% inhibition at 1 µM, 48 h). Flavones (4b, 5a,b and 6a) also showed 25-37% reduction in HUVECs migration at 10 µM. In a Western blotting assay, 5a and 5b subdued VEGFR2 phosphorylation by 37% and 57%, respectively, suggesting that VEGFR2 may be their main antiangiogenic target. 5b displayed the best docking fit with VEGFR2 in an in silico study, followed by 5a, emphasizing the importance of the 7-hydroxyl group accompanied by a 4-C=S for activity. Conversely, derivatives with a 4-carbonyl moiety fitted poorly into the target's binding pocket, suggesting that their antiangiogenic activity depends on a different target. This study provides valuable insight into the Structure Activity Relationships (SAR) and modes of action of halogenated flavones with VEGFR2 and highlights their therapeutic potential as antiangiogenic/anticancer lead compounds.
Collapse
|
6
|
Metabolic Profiling of Inga Species with Antitumor Activity. Molecules 2022; 27:molecules27154695. [PMID: 35897874 PMCID: PMC9331837 DOI: 10.3390/molecules27154695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
This work evaluated the metabolic profiling of Inga species with antitumor potential. In addition, we described the antigenotoxicity of polyphenols isolated from I. laurina and a proteomic approach using HepG2 cells after treatment with these metabolites. The in vitro cytotoxic activity against HepG2, HT-29 and T98G cancer cell lines was investigated. The assessment of genotoxic damage was carried out through the comet assay. The ethanolic extract from I. laurina seeds was subjected to bioassay-guided fractionation and the most active fractions were characterized. One bioactive fraction with high cytotoxicity against HT-29 human colon cancer cells (IC50 = 4.0 µg mL−1) was found, and it was characterized as a mixture of p-hydroxybenzoic acid and 4-vinyl-phenol. The I. edulis fruit peel (IC50 = 18.6 µg mL−1) and I. laurina seed (IC50 = 15.2 µg mL−1) extracts had cytotoxic activity against the cell line T98G, and its chemical composition showed a variety of phenolic acids. The chemical composition of this species indicated a wide variety of aromatic acids, flavonoids, tannins, and carotenoids. The high concentration (ranging from 5% to 30%) of these polyphenols in the bioactive extract may be responsible for the antitumor potential. Regarding the proteomic approach, we detected proteins directly related to the elimination of ROS, DNA repair, expression of tumor proteins, and apoptosis.
Collapse
|
7
|
Muema FW, Liu Y, Zhang Y, Chen G, Guo M. Flavonoids from Selaginella doederleinii Hieron and Their Antioxidant and Antiproliferative Activities. Antioxidants (Basel) 2022; 11:antiox11061189. [PMID: 35740086 PMCID: PMC9229023 DOI: 10.3390/antiox11061189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/02/2022] [Accepted: 06/09/2022] [Indexed: 01/13/2023] Open
Abstract
Selaginella doederleinii Hieron. (S. doederleinii) is a traditional herb that is widely used in China to treat several ailments, but mainly cancer. Studies have been carried out to determine the phytochemicals ascribed to its pharmacological activity. However, both phytochemical and pharmacological profiles have not been fully explored as few compounds have been reported. This study evaluated the flavonoid content of the ethanol extract and its four fractions (petroleum ether, dichloromethane, ethyl acetate, and n-butanol) together with their antioxidant activity (DPPH and FRAP assays). Further, the antiproliferative activity was evaluated. Two new secondary metabolites (1 and 3) were isolated from S. doederleinii, which comprised of an apigenin skeleton with a phenyl attached at C-8 of ring A and an acetyl group. Additionally, other known metabolites 2 and 4–16 were isolated, whereby compounds 2, 4, 5, 8, 12, 15, and 16 were reported for the first time in this species. These compounds were evaluated for their antioxidative potentials by both DPPH and FRAP assays, and for their antiproliferative activities by the MTT assay on three human cancer cell lines: colon cancer (HT-29), cervical cancer (HeLa), and lung cancer (A549). Compound 7 exhibited the best activity on the three cancer cell lines (HT-29, HeLa, A549) by inhibiting the rate of growth of the cancer cells in a dose-dependent manner with IC50 values of 27.97, 35.47, and 20.71 µM, respectively. The structure–activity relationship of the pure compounds was highlighted in this study. Hence, the study enriched both the phytochemical and pharmacological profiles of S. doederleinii.
Collapse
Affiliation(s)
- Felix Wambua Muema
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongli Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guilin Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mingquan Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (F.W.M.); (Y.L.); (Y.Z.); (G.C.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-8770-0850
| |
Collapse
|
8
|
Khater M, Greco F, Osborn HMI. Antiangiogenic Activity of Flavonoids: A Systematic Review and Meta-Analysis. Molecules 2020; 25:E4712. [PMID: 33066630 PMCID: PMC7594036 DOI: 10.3390/molecules25204712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022] Open
Abstract
Abstract: An imbalance of angiogenesis contributes to many pathologies such as cancer, arthritis and retinopathy, hence molecules that can modulate angiogenesis are of considerable therapeutic importance. Despite many reports on the promising antiangiogenic properties of naturally occurring flavonoids, no flavonoids have progressed to the clinic for this application. This systematic review and meta-analysis therefore evaluates the antiangiogenic activities of a wide range of flavonoids and is presented in two sections. The first part of the study (Systematic overview) included 402 articles identified by searching articles published before May 2020 using ScienceDirect, PubMed and Web of Science databases. From this initial search, different classes of flavonoids with antiangiogenic activities, related pathologies and use of in vitro and/or in/ex vivo angiogenesis assays were identified. In the second part (Meta-analysis), 25 studies concerning the antiangiogenic evaluation of flavonoids using the in vivo chick chorioallantoic membrane (CAM) assay were included, following a targeted search on articles published prior to June 2020. Meta-analysis of 15 out of the 25 eligible studies showed concentration dependent antiangiogenic activity of six compared subclasses of flavonoids with isoflavones, flavonols and flavones being the most active (64 to 80% reduction of blood vessels at 100 µM). Furthermore, the key structural features required for the antiangiogenic activity of flavonoids were derived from the pooled data in a structure activity relationship (SAR) study. All in all, flavonoids are promising candidates for the development of antiangiogenic agents, however further investigations are needed to determine the key structural features responsible for their activity.
Collapse
Affiliation(s)
- Mai Khater
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
- Therapeutic Chemistry Department, Pharmaceutical & Drug Industries Research Division, National Research Centre, Cairo 12622, Egypt
| | - Francesca Greco
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| | - Helen M. I. Osborn
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; (M.K.); (F.G.)
| |
Collapse
|
9
|
Sasidharan S, Saudagar P. Flavones reversibly inhibit Leishmania donovani tyrosine aminotransferase by binding to the catalytic pocket: An integrated in silico-in vitro approach. Int J Biol Macromol 2020; 164:2987-3004. [PMID: 32798546 DOI: 10.1016/j.ijbiomac.2020.08.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The current drugs for treating Leishmaniasis are toxic, non-economical and with the emergence of drug resistance makes the need for novel therapeutics urgent and necessary. In the current study, we report the identification of compounds TI 1-5 against tyrosine aminotransferase of L. donovani from a curated ZINC15 database containing 183,659 compounds. These flavonoid compounds had binding energies < -8 kcal/mol and interacted with the active site residues S151, K286, C290, and P291. Assessment of physicochemical descriptors and ADMET properties established the drug likeliness of these compounds. The all-atom molecular dynamic simulations of the TAT-TI complexes exhibited stable geometrical properties and further trajectory analysis revealed the high-affinity interactions of TI 1, 3, 4, and 5 with the active site residues. DFT calculations reported the high electrophilic nature of TI 2 while other TI compounds demonstrated good kinetic stability and reactivity. From in vitro studies, TI 3 and TI 4 had the highest inhibition with Ki values of 0.9 ± 0.2 μM and 0.30 ± 0.1 μM, respectively. Taken together, the results from this study indicate the potentiality of TI 1, 3, 4, and 5 as anti-leishmanial leads, and these compounds can be exploited to manage the growing Leishmaniasis crisis in the world.
Collapse
Affiliation(s)
- Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, 506004, Telangana, India.
| |
Collapse
|
10
|
Cheriet T, Ben-Bachir B, Thamri O, Seghiri R, Mancini I. Isolation and Biological Properties of the Natural Flavonoids Pectolinarin and Pectolinarigenin-A Review. Antibiotics (Basel) 2020; 9:E417. [PMID: 32708783 PMCID: PMC7400350 DOI: 10.3390/antibiotics9070417] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are metabolites widely distributed in plants and commonly present in foods, such as fruits and vegetables. Pectolinarin, which belongs to the flavone subclass, has attracted considerable attention due to its presence in many medicinal plants. It has turned out to be a good biological agent especially due to its antioxidant, anti-inflammatory, antidiabetic, and antitumor activities, evaluated both in vitro and in vivo. Its aglycone, the metabolite pectolinarigenin, is also known for a series of biological properties including anti-inflammatory and antidiabetic effects. In the first overview on the two metabolites here presented, their collection, isolation and the results of their biological evaluation are reported.
Collapse
Affiliation(s)
- Thamere Cheriet
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, 25000 Constantine, Algeria;
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Balkeis Ben-Bachir
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Oumelkhir Thamri
- Département de Chimie, Faculté des Sciences, Université Mohamed Boudiaf-M’sila, 28000 M’sila, Algeria; (B.B.-B.); (O.T.)
| | - Ramdane Seghiri
- Unité de Valorisation des Ressources Naturelles, Molécules Bioactives et Analyse Physicochimiques et Biologiques (VARENBIOMOL), Université des Frères Mentouri, 25000 Constantine, Algeria;
| | - Ines Mancini
- Laboratorio di Chimica Bioorganica, Dipartimento di Fisica, Universita’ di Trento, I-38123 Povo-Trento, Italy
| |
Collapse
|
11
|
Cui J, Liu X, Chow LMC. Flavonoids as P-gp Inhibitors: A Systematic Review of SARs. Curr Med Chem 2019; 26:4799-4831. [PMID: 30277144 DOI: 10.2174/0929867325666181001115225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 09/28/2017] [Accepted: 11/23/2017] [Indexed: 11/22/2022]
Abstract
P-glycoprotein, also known as ABCB1 in the ABC transporter family, confers the simultaneous resistance of metastatic cancer cells towards various anticancer drugs with different targets and diverse chemical structures. The exploration of safe and specific inhibitors of this pump has always been the pursuit of scientists for the past four decades. Naturally occurring flavonoids as benzopyrone derivatives were recognized as a class of nontoxic inhibitors of P-gp. The recent advent of synthetic flavonoid dimer FD18, as a potent P-gp modulator in reversing multidrug resistance both in vitro and in vivo, specifically targeted the pseudodimeric structure of the drug transporter and represented a new generation of inhibitors with high transporter binding affinity and low toxicity. This review concerned the recent updates on the structure-activity relationships of flavonoids as P-gp inhibitors, the molecular mechanisms of their action and their ability to overcome P-gp-mediated MDR in preclinical studies. It had crucial implications on the discovery of new drug candidates that modulated the efflux of ABC transporters and also provided some clues for the future development in this promising area.
Collapse
Affiliation(s)
- Jiahua Cui
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaoyang Liu
- The Fu Foundation School of Engineering and Applied Sciences, Columbia University in the City of New York, New York, United States
| | - Larry M C Chow
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
12
|
Vilar S, Sobarzo-Sánchez E, Uriarte E. In Silico Prediction of P-glycoprotein Binding: Insights from Molecular Docking Studies. Curr Med Chem 2019; 26:1746-1760. [DOI: 10.2174/0929867325666171129121924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/10/2017] [Accepted: 11/21/2017] [Indexed: 12/21/2022]
Abstract
The P-glycoprotein is an efflux transporter that expels substances out of the
cells and has an important impact on the pharmacokinetic and pharmacodynamic properties
of drugs. The study of the interactions between ligands and the P-glycoprotein has
implications in the design of Central Nervous System drugs and their transport across the
blood-brain barrier. Moreover, since the P-glycoprotein is overexpressed in some types of
cancers, the protein is responsible for expelling the drug therapies from the cells, and
hence, for drug resistance. In this review, we describe different P-glycoprotein binding
sites reported for substrates, inhibitors and modulators, and focus on molecular docking
studies that provide useful information about drugs and P-glycoprotein interactions.
Docking in crystallized structures and homology models showed potential in the detection
of the binding site and key residues responsible for ligand recognition. Moreover, virtual
screening through molecular docking discriminates P-glycoprotein ligands from decoys.
We also discuss challenges and limitations of molecular docking simulations applied to
this particular protein. Computational structure-based approaches are very helpful in the
study of novel ligands that interact with the P-glycoprotein and provide insights to understand
the P-glycoprotein molecular mechanism of action.
Collapse
Affiliation(s)
- Santiago Vilar
- Departamento de Quimica Organica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eduardo Sobarzo-Sánchez
- Departamento de Quimica Organica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Quimica Organica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
13
|
Alvarado-Sansininea JJ, Sánchez-Sánchez L, López-Muñoz H, Escobar ML, Flores-Guzmán F, Tavera-Hernández R, Jiménez-Estrada M. Quercetagetin and Patuletin: Antiproliferative, Necrotic and Apoptotic Activity in Tumor Cell Lines. Molecules 2018; 23:E2579. [PMID: 30304821 PMCID: PMC6222523 DOI: 10.3390/molecules23102579] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/18/2022] Open
Abstract
Quercetagetin and patuletin were extracted by the same method from two different Tagetes species that have multiple uses in folk medicine in Mexico and around the globe, one of which is as an anticancer agent. Their biological activity (IC50 and necrotic, apoptotic and selective activities of these flavonols) was evaluated and compared to that of quercetin, examining specifically the effects of C6 substitution among quercetin, quercetagetin and patuletin. We find that the presence of a methoxyl group in C6 enhances their potency.
Collapse
Affiliation(s)
- Jesús J Alvarado-Sansininea
- Laboratorio 2-10, Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Luis Sánchez-Sánchez
- Laboratorio 6, 2do piso, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Ciudad de México, Mexico.
| | - Hugo López-Muñoz
- Laboratorio 6, 2do piso, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Ciudad de México, Mexico.
| | - María L Escobar
- Laboratorio de Microscopía Electrónica, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Fernando Flores-Guzmán
- Laboratorio 6, 2do piso, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230 Ciudad de México, Mexico.
| | - Rosario Tavera-Hernández
- Laboratorio 2-10, Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| | - Manuel Jiménez-Estrada
- Laboratorio 2-10, Departamento de Productos Naturales, Instituto de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico.
| |
Collapse
|
14
|
|
15
|
Gupta N, Vyas VK, Patel BD, Ghate M. Design of 2-Nitroimidazooxazine Derivatives as Deazaflavin-Dependent Nitroreductase (Ddn) Activators as Anti-Mycobacterial Agents Based on 3D QSAR, HQSAR, and Docking Study with In Silico Prediction of Activity and Toxicity. Interdiscip Sci 2017; 11:191-205. [PMID: 28895050 DOI: 10.1007/s12539-017-0256-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 07/29/2017] [Accepted: 08/01/2017] [Indexed: 10/18/2022]
Abstract
Deazaflavin-dependent nitroreductase (Ddn) is an emerging target in the field of anti-tuberculosis agents. In the present study, 2-nitroimidazooxazine derivatives as Ddn activators were aligned for CoMFA, CoMSIA and HQSAR analysis. The best CoMFA and CoMSIA model were generated with leave-one-out correlation coefficients (q2) of 0.585 and 0.571, respectively. Both the CoMFA and CoMSIA models were also validated by a test set of 11 compounds with satisfactory [Formula: see text] value of 0.701 and 0.667, respectively. Results of 3D QSAR and HQSAR study were used for the designing of novel and potent nitroimidazooxazine derivatives as Ddn activators. 21 novel compounds were designed, and docked into the Ddn enzyme. In docking study compound ng11 showed interaction with key amino acid residues such as Tyr65 and Tyr133, and also showed better ADMET compatibility. The ADMET prediction, docking study and the predicted activity of novel designed compounds revealed that compound ng11 showed good potential as Ddn activators for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Nirzari Gupta
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Bhumika D Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India
| | - Manjunath Ghate
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, 382 481, Gujarat, India.
| |
Collapse
|
16
|
Wang TY, Li Q, Bi KS. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci 2017; 13:12-23. [PMID: 32104374 PMCID: PMC7032191 DOI: 10.1016/j.ajps.2017.08.004] [Citation(s) in RCA: 494] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/30/2017] [Accepted: 08/10/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonoids, a class of polyphenol secondary metabolites, are presented broadly in plants and diets. They are believed to have various bioactive effects including anti-viral, anti-inflammatory, cardioprotective, anti-diabetic, anti-cancer, anti-aging, etc. Their basic structures consist of C6-C3-C6 rings with different substitution patterns to produce a series of subclass compounds, and correlations between chemical structures and bioactivities have been studied before. Given their poor bioavailability, however, information about associations between structure and biological fate is limited and urgently needed. This review therefore attempts to bring some order into relationships between structure, activity as well as pharmacokinetics of bioactive flavonoids.
Collapse
Affiliation(s)
- Tian-Yang Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Kai-Shun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
17
|
Cui Y, Chen Q, Li Y, Tang L. A new model of flavonoids affinity towards P-glycoprotein: genetic algorithm-support vector machine with features selected by a modified particle swarm optimization algorithm. Arch Pharm Res 2016; 40:214-230. [DOI: 10.1007/s12272-016-0876-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023]
|
18
|
Kraege S, Stefan K, Köhler SC, Wiese M. Optimization of Acryloylphenylcarboxamides as Inhibitors of ABCG2 and Comparison with Acryloylphenylcarboxylates. ChemMedChem 2016; 11:2547-2558. [PMID: 27785905 DOI: 10.1002/cmdc.201600455] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/05/2016] [Indexed: 11/08/2022]
Abstract
ABCG2 belongs to the superfamily of ATP binding cassette (ABC) proteins and is associated with the limited success of anticancer chemotherapy, given its responsibility for the cross-resistance of tumor cells, known as multidrug resistance (MDR). Several classes of ABCG2 inhibitors were developed for increasing the efficacy of chemotherapy. A series of chalcones coupled to an additional aromatic residue was synthesized and investigated for their inhibition of ABC transporters. In our previous work we determined the preferred position of the linker on the A-ring to be ortho, and found several substitution patterns at the additional ring that improved potency. In this study we investigated whether a methoxy group that improved the inhibitory activity of chalcones would also be beneficial for the acryloylphenylcarboxamide scaffold. Indeed, this modification led to highly potent ABCG2 inhibitors. To support the hypothesis of a beneficial effect of the amide linker, six acryloylphenylcarboxylates were synthesized and investigated for their inhibitory activity. Replacement of the amide linker with an ester group resulted in decreased inhibition. Molecular modeling showed that the conformational preference of both series differs, thereby explaining the positive effect of the amide linker. Several compounds were characterized in detail by investigating their intrinsic cytotoxicity and capacity to reverse MDR in MTT assays and their effect on vanadate-sensitive ATPase activity.
Collapse
Affiliation(s)
- Stefanie Kraege
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Sebastian C Köhler
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
19
|
Mohana S, Ganesan M, Agilan B, Karthikeyan R, Srithar G, Beaulah Mary R, Ananthakrishnan D, Velmurugan D, Rajendra Prasad N, Ambudkar SV. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer. MOLECULAR BIOSYSTEMS 2016; 12:2458-70. [PMID: 27216424 PMCID: PMC4955727 DOI: 10.1039/c6mb00187d] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
P-Glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and they significantly reduced resistance in cytotoxicity assays to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Binding Sites
- Catalytic Domain
- Cell Line, Tumor
- Computer Simulation
- Dietary Supplements
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm/genetics
- Drug Screening Assays, Antitumor
- Flavonoids/chemistry
- Flavonoids/pharmacology
- Humans
- Ligands
- Models, Molecular
- Molecular Docking Simulation
- Protein Binding
- Protein Conformation
- Structure-Activity Relationship
Collapse
Affiliation(s)
- S Mohana
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - M Ganesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - B Agilan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - R Karthikeyan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - G Srithar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - R Beaulah Mary
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - D Ananthakrishnan
- Bioinformatics Infrastructure Facility (BIF), University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - D Velmurugan
- Bioinformatics Infrastructure Facility (BIF), University of Madras, Guindy Campus, Chennai, Tamil Nadu, India and CAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar-608 002, Tamilnadu, India.
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, Maryland 20892-4256, USA.
| |
Collapse
|
20
|
Kraege S, Stefan K, Juvale K, Ross T, Willmes T, Wiese M. The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2). Eur J Med Chem 2016; 117:212-29. [PMID: 27100033 DOI: 10.1016/j.ejmech.2016.03.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/08/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022]
Abstract
During the last decade it has been found that chalcones and quinazolines are promising inhibitors of ABCG2. The combination of these two scaffolds offers a new class of heterocyclic compounds with potentially high inhibitory activity against ABCG2. For this purpose we investigated 22 different heterodimeric derivatives. In this series only methoxy groups were used as substituents as these had been proven superior for inhibitory activity of chalcones. All compounds were tested for their inhibitory activity, specificity and cytotoxicity. The most potent ABCG2 inhibitor in this series showed an IC50 value of 0.19 μM. It possesses low cytotoxicity (GI50 = 93 μM), the ability to reverse MDR and is nearly selective toward ABCG2. Most compounds containing dimethoxy groups showed slight activity against ABCB1 too. Among these three compounds (17, 19 and 24) showed even higher activity toward ABCB1 than ABCG2. All inhibitors were further screened for their effect on basal ATPase activity. Although the basal ATPase activity was partially stimulated, the compounds were not transported by ABCG2. Thus, quinazoline-chalcones are a new class of effective ABCG2 inhibitors.
Collapse
Affiliation(s)
- Stefanie Kraege
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katja Stefan
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Kapil Juvale
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Thomas Ross
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Thomas Willmes
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Michael Wiese
- Pharmaceutical Chemistry II, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany.
| |
Collapse
|
21
|
Yang M, Chen J, Shi X, Xu L, Xi Z, You L, An R, Wang X. Development of in Silico Models for Predicting P-Glycoprotein Inhibitors Based on a Two-Step Approach for Feature Selection and Its Application to Chinese Herbal Medicine Screening. Mol Pharm 2015; 12:3691-713. [PMID: 26376206 DOI: 10.1021/acs.molpharmaceut.5b00465] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
P-glycoprotein (P-gp) is regarded as an important factor in determining the ADMET (absorption, distribution, metabolism, elimination, and toxicity) characteristics of drugs and drug candidates. Successful prediction of P-gp inhibitors can thus lead to an improved understanding of the underlying mechanisms of both changes in the pharmacokinetics of drugs and drug-drug interactions. Therefore, there has been considerable interest in the development of in silico modeling of P-gp inhibitors in recent years. Considering that a large number of molecular descriptors are used to characterize diverse structural moleculars, efficient feature selection methods are required to extract the most informative predictors. In this work, we constructed an extensive available data set of 2428 molecules that includes 1518 P-gp inhibitors and 910 P-gp noninhibitors from multiple resources. Importantly, a two-step feature selection approach based on a genetic algorithm and a greedy forward-searching algorithm was employed to select the minimum set of the most informative descriptors that contribute to the prediction of P-gp inhibitors. To determine the best machine learning algorithm, 18 classifiers coupled with the feature selection method were compared. The top three best-performing models (flexible discriminant analysis, support vector machine, and random forest) and their ensemble model using respectively only 3, 9, 7, and 14 descriptors achieve an overall accuracy of 83.2%-86.7% for the training set containing 1040 compounds, an overall accuracy of 82.3%-85.5% for the test set containing 1039 compounds, and a prediction accuracy of 77.4%-79.9% for the external validation set containing 349 compounds. The models were further extensively validated by DrugBank database (1890 compounds). The proposed models are competitive with and in some cases better than other published models in terms of prediction accuracy and minimum number of descriptors. Applicability domain then was addressed by developing an ensemble classification model to obtain more reliable predictions. Finally, we employed these models as a virtual screening tool for identifying potential P-gp inhibitors in Traditional Chinese Medicine Systems Pharmacology (TCMSP) database containing a total of 13 051 unique compounds from 498 herbs, resulting in 875 potential P-gp inhibitors and 15 inhibitor-rich herbs. These predictions were partly supported by a literature search and are valuable not only to develop novel P-gp inhibitors from TCM in the early stages of drug development, but also to optimize the use of herbal remedies.
Collapse
Affiliation(s)
- Ming Yang
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China.,Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Jialei Chen
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Xiufeng Shi
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Liwen Xu
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Zhijun Xi
- Department of Pharmacy, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine , Shanghai 200032, People's Republic of China
| | - Lisha You
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China
| | - Rui An
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China
| | - Xinhong Wang
- Department of Chemistry, College of Pharmacy, Shanghai University of Traditional Chinese Medicine , Shanghai 200444, People's Republic of China
| |
Collapse
|
22
|
Gonzales GB, Smagghe G, Grootaert C, Zotti M, Raes K, Van Camp J. Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab Rev 2015; 47:175-90. [PMID: 25633078 DOI: 10.3109/03602532.2014.1003649] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Flavonoids are a group of polyphenols that provide health-promoting benefits upon consumption. However, poor bioavailability has been a major hurdle in their use as drugs or nutraceuticals. Low bioavailability has been associated with flavonoid interactions at various stages of the digestion, absorption and distribution process, which is strongly affected by their molecular structure. In this review, we use structure-activity/property relationship to discuss various flavonoid interactions with food matrices, digestive enzymes, intestinal transporters and blood proteins. This approach reveals specific bioactive properties of flavonoids in the gastrointestinal tract as well as various barriers for their bioavailability. In the last part of this review, we use these insights to determine the effect of different structural characteristics on the overall bioavailability of flavonoids. Such information is crucial when flavonoid or flavonoid derivatives are used as active ingredients in foods or drugs.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University , Gent , Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Efferth T, Zeino M, Volm M. Modulation of P-Glycoprotein-Mediated Multidrug Resistance by Synthetic and Phytochemical Small Molecules, Monoclonal Antibodies, and Therapeutic Nucleic Acids. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2015. [DOI: 10.1007/978-3-319-09801-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Silva R, Palmeira A, Carmo H, Barbosa DJ, Gameiro M, Gomes A, Paiva AM, Sousa E, Pinto M, Bastos MDL, Remião F. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity. Arch Toxicol 2014; 89:1783-800. [PMID: 25234084 DOI: 10.1007/s00204-014-1333-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/12/2014] [Indexed: 11/26/2022]
Abstract
The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.
Collapse
Affiliation(s)
- Renata Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Andreia Palmeira
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Helena Carmo
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Daniel José Barbosa
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Mariline Gameiro
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Ana Gomes
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Ana Mafalda Paiva
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Centro de Química Medicinal (CEQUIMED-UP), Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| | - Maria de Lourdes Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Fernando Remião
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
25
|
Gadhe CG, Balupuri A, Kothandan G, Cho SJ. Theoretical Characterization of Binding Mode of Organosilicon Inhibitor with p38: Docking, MD Simulation and MM/GBSA Free Energy Approach. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.8.2494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Zeino M, Saeed MEM, Kadioglu O, Efferth T. The ability of molecular docking to unravel the controversy and challenges related to P-glycoprotein--a well-known, yet poorly understood drug transporter. Invest New Drugs 2014; 32:618-25. [PMID: 24748336 DOI: 10.1007/s10637-014-0098-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/30/2014] [Indexed: 01/26/2023]
Abstract
P-glycoprotein is the most crucial membrane transporter implicated in tumor resistance. Intensive efforts were paid to elucidate the complex mechanism of transport and to identify modulators of this transporter. However, the borderline between substrates and modulators is very thin and identification of the binding sites within P-glycoprotein is complex. Herein, we provide an intensive review of those issues and use molecular docking to assess its ability: first, to differentiate between three groups (substrates, modulators and non-substrates) and second to identify the binding sites. After thorough statistical analysis, we conclude despite the various challenges that molecular docking should not be underestimated as differences between the distinct groups were significant. However, when it comes to defining the binding site, care must be taken, since consensus throughout literature could not be reached.
Collapse
Affiliation(s)
- Maen Zeino
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128, Mainz, Rhineland-Palatinate, Germany
| | | | | | | |
Collapse
|
27
|
Shityakov S, Förster C. In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions. Adv Appl Bioinform Chem 2014; 7:1-9. [PMID: 24711707 PMCID: PMC3969253 DOI: 10.2147/aabc.s56046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
P-glycoprotein (P-gp) is an ATP (adenosine triphosphate)-binding cassette transporter that causes multidrug resistance of various chemotherapeutic substances by active efflux from mammalian cells. P-gp plays a pivotal role in limiting drug absorption and distribution in different organs, including the intestines and brain. Thus, the prediction of P-gp–drug interactions is of vital importance in assessing drug pharmacokinetic and pharmacodynamic properties. To find the strongest P-gp blockers, we performed an in silico structure-based screening of P-gp inhibitor library (1,300 molecules) by the gradient optimization method, using polynomial empirical scoring (POLSCORE) functions. We report a strong correlation (r2=0.80, F=16.27, n=6, P<0.0157) of inhibition constants (Kiexp or pKiexp; experimental Ki or negative decimal logarithm of Kiexp) converted from experimental IC50 (half maximal inhibitory concentration) values with POLSCORE-predicted constants (KiPOLSCORE or pKiPOLSCORE), using a linear regression fitting technique. The hydrophobic interactions between P-gp and selected drug substances were detected as the main forces responsible for the inhibition effect. The results showed that this scoring technique might be useful in the virtual screening and filtering of databases of drug-like compounds at the early stage of drug development processes.
Collapse
Affiliation(s)
- Sergey Shityakov
- Department of Anesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| | - Carola Förster
- Department of Anesthesia and Critical Care, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Li Y, Han C, Wang J, Yang Y, Zhang J, Zhang S, Yang L. Insight into the structural features of pyrazolopyrimidine- and pyrazolopyridine-based B-Raf(V600E) kinase inhibitors by computational explorations. Chem Biol Drug Des 2014; 83:643-55. [PMID: 24373283 DOI: 10.1111/cbdd.12276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/10/2013] [Accepted: 12/12/2013] [Indexed: 12/30/2022]
Abstract
Presently, both ligand-based and receptor-based 3D-QSAR modelings were performed on 107 pyrazolopyrimidine- and pyrazolopyridine-based inhibitors of B-Raf(V600E) kinase. The optimal model is successful to predict the inhibitors' activity with Q(2) of 0.504, R(2) ncv of 0.960, and R(2) pred of 0.872. Besides, the 3D contour maps explain well the structural requirements of the interaction between the ligand and the receptor. Furthermore, molecular docking and MD were also carried out to study the binding mode. Our findings are the following: (i) Bulky substituents at position 3, 10 and ring D improve the inhibitory activity, but impair the activity at position 5, 11, and 19. (ii) Electropositive groups at position 10, 13 and 20 and electronegative groups at position 2 increase the biological activity. (iii) Hydrophobic substituents at ring C are beneficial to improve the biological activity, while hydrophilic substituents at position 11 and ring D are good for the activity. (4) This scaffold of inhibitors may bind to the B-Raf kinase with an 'L' conformation and belong to type III binding mode, which is fixed by hydrophobic interaction and hydrogen bonds with residues from hinge region and DFG motif. These results may be a guidance to develop new B-Raf(V600E) kinase inhibitors.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Bin JW, Wong ILK, Hu X, Yu ZX, Xing LF, Jiang T, Chow LMC, Biao WS. Structure–Activity Relationship Study of Permethyl Ningalin B Analogues as P-Glycoprotein Chemosensitizers. J Med Chem 2013; 56:9057-70. [DOI: 10.1021/jm400930e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jin Wen Bin
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Iris L. K. Wong
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
for Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
- State
Key Laboratory in Chinese Medicine and Molecular Pharmacology, Shenzhen, 518057 Guangdong, China
| | - Xuesen Hu
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
for Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
- State
Key Laboratory in Chinese Medicine and Molecular Pharmacology, Shenzhen, 518057 Guangdong, China
| | - Zhang Xiao Yu
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Li Fu Xing
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Tao Jiang
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| | - Larry M. C. Chow
- Department
of Applied Biology and Chemical Technology and the State Key Laboratory
for Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
- State
Key Laboratory in Chinese Medicine and Molecular Pharmacology, Shenzhen, 518057 Guangdong, China
| | - Wan Sheng Biao
- Key
Laboratory of Marine Drugs, Chinese Ministry of Education, School
of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 Shandong, China
| |
Collapse
|
30
|
Li MS, Cen J, He L, Liu L, Ji BS. CJY, an isoflavone, interacts with ATPase of P-glycoprotein in the rat brain microvessel endothelial cells (RBMECs). J Chemother 2013; 25:347-54. [PMID: 24090809 DOI: 10.1179/1973947813y.0000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Our previous study reported CJY, an isoflavone, can reverse P-glycoprotein (P-gp) efflux activity in rat brain microvessel endothelial cells (RBMECs). In the present report, by assessment of ATPase activity of RBMECs, we gained further insight into the nature of the CJY interactions with P-gp. The results revealed that the basal P-gp ATPase activity was increased by CJY. Kinetic studies on ATPase activity showed the effects of Tetrandrine (Tet) on CJY-stimulated, CsA on CJY-stimulated, and CsA on Tet-stimulated P-gp ATPase activity were all non-competitive inhibition, indicating that these substrates can simultaneously but independently bind to diverse sites on P-gp. Furthermore, the combined effects of CJY with Tet, and CJY with CsA were also evaluated isobolographically. The results showed synergistic interactions in both combinations, implying that combined treatment of CJY with other modulators may exert synergistic interactions for the drug's penetration into the brain and the treatment of neurological disorders.
Collapse
|
31
|
Cao F, Li X, Ye L, Xie Y, Wang X, Shi W, Qian X, Zhu Y, Yu H. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on the aryl hydrocarbon receptor agonistic activity of hydroxylated polychlorinated biphenyls. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:626-635. [PMID: 23850706 DOI: 10.1016/j.etap.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
The binding interactions between hydroxylated polychlorinated biphenyls (HO-PCBs) and the aryl hydrocarbon receptor (AhR) are suspected of causing toxic effects. To understand the binding mode between HO-PCBs and AhR, and to explore the structural characteristics that influence the AhR agonistic activities of HO-PCBs, the combination of molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations was performed. Using molecular docking, the HO-PCBs were docked into the binding pocket of AhR, which was generated by homology modeling. Comparative molecular similarity index analysis (CoMSIA) models were subsequently developed from three different alignment rules. The optimum 3D-QSAR model showed good predictive ability (q(2)=0.583, R(2)=0.913) and good mechanism interpretability. The statistical reliability of the CoMSIA model was also validated. In addition, molecular docking and MD simulations were applied to explore the binding modes between the ligands and AhR. The results obtained from this study may lead to a better understanding of the interaction mechanism between HO-PCBs and AhR.
Collapse
Affiliation(s)
- Fu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Li Ye
- Suzhou NeuPharma Co., Ltd., Suzhou 215123, China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiangping Qian
- Suzhou NeuPharma Co., Ltd., Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | | | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
32
|
Gadhe CG, Kothandan G, Cho SJ. Characterization of Binding Mode of the Heterobiaryl gp120 Inhibitor in HIV-1 Entry: A Molecular Docking and Dynamics Simulation Study. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Kothandan G, Gadhe CG, Cho SJ. Theoretical Characterization of Galanin Receptor Type 3 (Gal3) and Its Interaction with Agonist (GALANIN) and Antagonists (SNAP 37889 and SNAP 398299): AnIn SilicoAnalysis. Chem Biol Drug Des 2013; 81:757-74. [DOI: 10.1111/cbdd.12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Gugan Kothandan
- Department of Bio-New Drug Development; College of Medicine; Chosun University; Gwangju; 501-759; Korea
| | - Changdev G. Gadhe
- Department of Bio-New Drug Development; College of Medicine; Chosun University; Gwangju; 501-759; Korea
| | | |
Collapse
|
34
|
Murumkar PR, Sharma MK, Shinde AC, Bothara KG. Three-dimensional quantitative structure–activity relationship CoMFA/CoMSIA on pyrrolidine-based tartrate diamides as TACE inhibitors. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0409-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Chakraborty A, Pan S, Chattaraj PK. Biological Activity and Toxicity: A Conceptual DFT Approach. STRUCTURE AND BONDING 2013. [DOI: 10.1007/978-3-642-32750-6_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Zhu T, Chen J, Yang J. Some substrates of P-glycoprotein targeting <i>β</i>-amyloid clearance by quantitative structure-activity relationship (QSAR)/membrane-interaction (MI)-QSAR analysis. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.49116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Luo Y, Zhang S, Qiu KM, Liu ZJ, Yang YS, Fu J, Zhong WQ, Zhu HL. Synthesis, biological evaluation, 3D-QSAR studies of novel aryl-2H-pyrazole derivatives as telomerase inhibitors. Bioorg Med Chem Lett 2012; 23:1091-5. [PMID: 23312949 DOI: 10.1016/j.bmcl.2012.12.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
Abstract
A series of novel aryl-2H-pyrazole derivatives bearing 1,4-benzodioxan or 1,3-benzodioxole moiety were designed as potential telomerase inhibitors to enhance the ability of aryl-2H-pyrazole derivatives to inhibit telomerase, a target of anticancer. The telomerase inhibition tests showed that compound 16A displayed the most potent inhibitory activity with IC(50) value of 0.9 μM for telomerase. The antiproliferative tests showed that compound 16A exhibited high activity against human gastric cancer cell SGC-7901 and human melanoma cell B16-F10 with IC(50) values of 18.07 and 5.34 μM, respectively. Docking simulation showed that compound 16A could bind well with the telomerase active site and act as telomerase inhibitor. 3D-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent telomerase inhibitory activity.
Collapse
Affiliation(s)
- Yin Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Madhavan T, Gadhe CG, Kothandan G, Cho SJ. Enhancement of P-gylcoprotein modulators of arylmethylamine-phenyl derivatives: an integrative modeling approach. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0246-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
39
|
Synthesis and anti Methicillin resistant Staphylococcus aureus activity of substituted chalcones alone and in combination with non-beta-lactam antibiotics. Bioorg Med Chem Lett 2012; 22:4555-60. [DOI: 10.1016/j.bmcl.2012.05.112] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 05/23/2012] [Accepted: 05/30/2012] [Indexed: 11/24/2022]
|
40
|
Bhatt HG, Patel PK. Pharmacophore modeling, virtual screening and 3D-QSAR studies of 5-tetrahydroquinolinylidine aminoguanidine derivatives as sodium hydrogen exchanger inhibitors. Bioorg Med Chem Lett 2012; 22:3758-65. [DOI: 10.1016/j.bmcl.2012.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/15/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|