1
|
Gao D, Niu M, Wei SZ, Zhang CE, Zhou YF, Yang ZW, Li L, Wang JB, Zhang HZ, Zhang L, Xiao XH. Identification of a Pharmacological Biomarker for the Bioassay-Based Quality Control of a Thirteen-Component TCM Formula (Lianhua Qingwen) Used in Treating Influenza A Virus (H1N1) Infection. Front Pharmacol 2020; 11:746. [PMID: 32523531 PMCID: PMC7261828 DOI: 10.3389/fphar.2020.00746] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/04/2020] [Indexed: 12/16/2022] Open
Abstract
As chemical analysis for quality control (QC) of traditional Chinese medicine (TCM) formula is difficult to guarantee the effectiveness, a bioassay method that combines QC with evaluation of therapeutic effects has been developed to assess the TCM quality. Here, we chose a thirteen-component TCM formula, Lianhua Qingwen capsule (LHQW), as a representative sample, to explore the pivotal biomarkers for a bioassay and to investigate close association between QC and pharmacological actions. Initially, our results showed that chemical fingerprinting could not effectively distinguish batches of LHQW. Pharmacological experiments indicated that LHQW could treat influenza A virus (H1N1) infection in the H1N1 mouse model, as claimed in clinical trials, by improving pathologic alterations and bodyweight loss, and decreasing virus replication, lung lesions and inflammation. Furthermore, by using serum metabolomics analysis, we identified two important metabolites, prostaglandin F2α and arachidonic acid, and their metabolic pathway, arachidonic acid metabolism, as vital indicators of LHQW in treatment of influenza. Subsequently, macrophages transcriptomics highlighted the prominent role of cyclooxygenase-2 (COX-2) as the major rate-limiting enzyme in the arachidonic acid metabolism pathway. Finally, COX-2 was validated by in vivo gene expression and in vitro enzymatic activity with 43 batches of LHQW as a viable pharmacological biomarker for the establishment of bioassay-based QC. Our study provides systematic methodology in the pharmacological biomarker exploration for establishing the bioassay-based QC of LHQW or other TCM formulas relating to their pharmacological activities and mechanism.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China.,Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Shi-Zhang Wei
- Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Cong-En Zhang
- Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Yong-Feng Zhou
- Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Zheng-Wei Yang
- Department of Pharmacy, the Sixth Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Jia-Bo Wang
- Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | - Hai-Zhu Zhang
- College of Pharmacy and Chemistry, Dali University, Dali, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xiao-He Xiao
- Department of China Military Institute of Chinese Materia, the Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| |
Collapse
|
2
|
Bacik JP, Klesmith JR, Whitehead TA, Jarboe LR, Unkefer CJ, Mark BL, Michalczyk R. Producing glucose 6-phosphate from cellulosic biomass: structural insights into levoglucosan bioconversion. J Biol Chem 2015; 290:26638-48. [PMID: 26354439 DOI: 10.1074/jbc.m115.674614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 11/06/2022] Open
Abstract
The most abundant carbohydrate product of cellulosic biomass pyrolysis is the anhydrosugar levoglucosan (1,6-anhydro-β-d-glucopyranose), which can be converted to glucose 6-phosphate by levoglucosan kinase (LGK). In addition to the canonical kinase phosphotransfer reaction, the conversion requires cleavage of the 1,6-anhydro ring to allow ATP-dependent phosphorylation of the sugar O6 atom. Using x-ray crystallography, we show that LGK binds two magnesium ions in the active site that are additionally coordinated with the nucleotide and water molecules to result in ideal octahedral coordination. To further verify the metal binding sites, we co-crystallized LGK in the presence of manganese instead of magnesium and solved the structure de novo using the anomalous signal from four manganese atoms in the dimeric structure. The first metal is required for catalysis, whereas our work suggests that the second is either required or significantly promotes the catalytic rate. Although the enzyme binds its sugar substrate in a similar orientation to the structurally related 1,6-anhydro-N-acetylmuramic acid kinase (AnmK), it forms markedly fewer bonding interactions with the substrate. In this orientation, the sugar is in an optimal position to couple phosphorylation with ring cleavage. We also observed a second alternate binding orientation for levoglucosan, and in these structures, ADP was found to bind with lower affinity. These combined observations provide an explanation for the high Km of LGK for levoglucosan. Greater knowledge of the factors that contribute to the catalytic efficiency of LGK can be used to improve applications of this enzyme for levoglucosan-derived biofuel production.
Collapse
Affiliation(s)
- John-Paul Bacik
- From the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545,
| | | | - Timothy A Whitehead
- Chemical Engineering and Materials Science, and Biosystems and Agricultural Engineering, Michigan State University, East Lansing, Michigan 48824
| | - Laura R Jarboe
- the Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, and
| | - Clifford J Unkefer
- From the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Brian L Mark
- the Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ryszard Michalczyk
- From the Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| |
Collapse
|