1
|
Kaur P, Dahiya R, Nandave M, Sharma K, Goyal RK. Unveiling the crucial role of intercellular adhesion molecule-1 in secondary diabetic complications. Cell Biochem Funct 2024; 42:e4037. [PMID: 38736204 DOI: 10.1002/cbf.4037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/06/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.
Collapse
Affiliation(s)
- Prabhnain Kaur
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Ritu Dahiya
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Mukesh Nandave
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Ramesh K Goyal
- Department of Pharmacology, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| |
Collapse
|
2
|
Capecchi E, Piccinino D, Nascimben C, Tomaino E, Ceccotti Vlas N, Gabellone S, Saladino R. Biosynthesis of Novel Ascorbic Acid Esters and Their Encapsulation in Lignin Nanoparticles as Carriers and Stabilizing Systems. Int J Mol Sci 2023; 24:ijms24109044. [PMID: 37240391 DOI: 10.3390/ijms24109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
A dual-target strategy was designed for the application of lignin nanoparticles in the lipase mediated biosynthesis of novel 3-O-ethyl-L-ascorbyl-6-ferulate and 3-O-ethyl-L-ascorbyl-6-palmitate and in their successive solvent-shift encapsulation in order to improve stability and antioxidant activity against temperature and pH-dependent degradation. The loaded lignin nanoparticles were fully characterized in terms of kinetic release, radical scavenging activity and stability under pH 3 and thermal stress (60 °C), showing improved antioxidant activity and high efficacy in the protection of ascorbic acid esters from degradation.
Collapse
Affiliation(s)
- Eliana Capecchi
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Davide Piccinino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Chiara Nascimben
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Elisabetta Tomaino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Natalia Ceccotti Vlas
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Sofia Gabellone
- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST-IRCCS, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
3
|
Gallego-Villada LA, Alarcón EA, Ruiz DM, Romanelli GP. Kinetic study of the esterification of t-cinnamic acid over Preyssler structure acid. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of twelve nature-inspired 3,4,5-trimethoxycinnamates were prepared and characterized. All compounds, including the starting 3,4,5-trimethoxycinnamic acid, were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro; the selectivity index (SI) was also determined. 2-Fluororophenyl (2E)-3-(3,4,5-trimethoxyphenyl)-prop-2-enoate demonstrated the highest SI (1.71) in favor of BChE inhibition. 2-Chlorophenyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate showed the highest AChE-inhibiting (IC50 = 46.18 µM) as well as BChE-inhibiting (IC50 = 32.46 µM) activity with an SI of 1.42. The mechanism of action of the most potent compound was determined by the Lineweaver–Burk plot as a mixed type of inhibition. An in vitro cell viability assay confirmed the insignificant cytotoxicity of the discussed compounds on the two cell lines. Trends between structure, physicochemical properties and activity were discussed.
Collapse
|
5
|
Ashraf MA, Liu Z, Li C, Zhang D. Fe3O4@HcdMeen-Pd(0) Organic–Inorganic Hybrid: As a Novel Heterogeneous Nanocatalyst for Chemo and Homoselective Heck C–C Cross-Coupling Synthesis of Butyl Cinnamates. Catal Letters 2021. [DOI: 10.1007/s10562-020-03509-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Methyl 3,4,5-trimethoxycinnamate suppresses inflammation in RAW264.7 macrophages and blocks macrophage-adipocyte interaction. Inflammopharmacology 2020; 28:1315-1326. [PMID: 32418005 PMCID: PMC7524821 DOI: 10.1007/s10787-020-00720-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/02/2020] [Indexed: 12/22/2022]
Abstract
Methyl 3,4,5-trimethoxycinnamate (MTC) is a bioactive natural phenylpropanoid. We evaluated anti-inflammatory effects of synthetic MTC in RAW264.7 macrophages and RAW264.7–3T3-L1 adipocytes co-culture. Levels of cytokines and chemokines, as well as NO and PGE2 in cell supernatants were analysed using ELISAs, Griess assay and enzyme immunoassays, respectively. In-cell cytoblot was used to assess levels of proteins; while DNA binding and reporter gene assays were used to measure transcription factor DNA binding and transcriptional activities, respectively. Glucose uptake in adipocytes was evaluated with 2‐deoxy‐2‐[(7‐nitro‐2, 1, 3‐benzoxadiazol‐4‐yl) amino]‐d‐glucose uptake. MTC (5–20 µM) suppressed LPS + IFNγ-induced release of TNFα, IL-6 and IL-1β, as well as NO/iNOS and PGE2/COX-2 levels in RAW264.7 cells. Furthermore, there was a reduction in phospho-IκB and phospho-p65 proteins, accompanied by a reduction in total IκB in RAW264.7 cells. Further studies showed that MTC also produced a reduction in NF-κB DNA binding and luciferase activity. Treatment of RAW264.7 cells with MTC (5–20 µM) resulted in enhanced DNA binding of Nrf2 and an increase in ARE-luciferase activity. In a macrophage–adipocyte co-culture, the compound reduced the release of TNFα, IL-6, IL-1β, MCP-1 and RANTES, while enhancing glucose uptake and activation of AMPKα. Our results suggest that MTC produced anti-inflammatory and antioxidant activities in macrophages. MTC also prevented inflammation in macrophage–adipocyte co-culture. The effect of MTC on glucose uptake in adipocytes is proposed to be linked to activation of AMPK.
Collapse
|
7
|
Zhao Z, Song H, Xie J, Liu T, Zhao X, Chen X, He X, Wu S, Zhang Y, Zheng X. Research progress in the biological activities of 3,4,5-trimethoxycinnamic acid (TMCA) derivatives. Eur J Med Chem 2019; 173:213-227. [PMID: 31009908 PMCID: PMC7115657 DOI: 10.1016/j.ejmech.2019.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 01/02/2023]
Abstract
TMCA (3,4,5-trimethoxycinnamic acid) ester and amide are privileged structural scaffolds in drug discovery which are widely distributed in natural products and consequently produced diverse therapeutically relevant pharmacological functions. Owing to the potential of TMCA ester and amide analogues as therapeutic agents, researches on chemical syntheses and modifications have been carried out to drug-like candidates with broad range of medicinal properties such as antitumor, antiviral, CNS (central nervous system) agents, antimicrobial, anti-inflammatory and hematologic agents for a long time. At the same time, SAR (structure-activity relationship) studies have draw greater attention among medicinal chemists, and many of the lead compounds were derived for various disease targets. However, there is an urgent need for the medicinal chemists to further exploit the precursor in developing chemical entities with promising bioactivity and druggability. This review concisely summarizes the synthesis and biological activity for TMCA ester and amide analogues. It also comprehensively reveals the relationship of significant biological activities along with SAR studies. 3,4,5-Trimethoxycinnamic acid (TMCA) derivatives show applications in different pathophysiological conditions due to its privileged structural scaffolds. Natural derived TMCA analogues and chemically modified TMCA ester and amide analogues and their bioactivities are focused in this review. Additionally, it also comprehensively summarized the relationship of significant biological activities along with SAR studies of synthetic TMCA derivatives.
Collapse
Affiliation(s)
- Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Huanhuan Song
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Jing Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Tian Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xue Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xufei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China
| | - Xirui He
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China; Biomedicine Key Laboratory of Shaanxi Province, Northwest University, Xi'an, Shaanxi, 710069, China; Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi'an, 710069, China.
| |
Collapse
|
8
|
Abstract
Piplartine is an alkamide found in different Piper species and possesses several biological activities, including antiparasitic properties. Thus, the aim of the present study was to evaluate a series of 32 synthetic piplartine analogues against the Leishmania amazonensis promastigote forms and establish the structure-activity relationship and 3D-QSAR of these compounds. The antileishmanial effect of the compounds was determined using the MTT method. Most compounds were found to be active against L. amazonensis. Among 32 assayed derivatives, compound (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity (IC50 = 0.007 ± 0.008 μM, SI > 10), followed by benzyl 3,4,5-trimethoxybenzoate (IC50 = 0.025 ± 0.009 μM, SI > 3.205) and (E)-furfuryl 3-(3,4,5-trimethoxyphenyl)-acrylate (IC50 = 0.029 ± 0.007 μM, SI > 2.688). It was found that the rigid substituents contribute to increasing antiparasitic activity against L. amazonensis promastigotes. The presence of the unsaturated heterocyclic substituent in the phenylpropanoid chemical structure (furfuryl group) resulted in a bioactive derivative. Molecular simplification of benzyl 3,4,5-trimethoxybenzoate by omitting the spacer group contributed to the bioactivity of this compound. Furthermore, bornyl radical appears to be important for antileishmanial activity, since (E)-(−)-bornyl 3-(3,4,5-trimethoxyphenyl)-acrylate exhibited the most potent antileishmanial activity. These results show that some derivatives studied would be useful as prototype molecules for the planning of new derivatives with profile of antileishmanial drugs.
Collapse
|
9
|
da Nóbrega FR, Ozdemir O, Nascimento Sousa SCS, Barboza JN, Turkez H, de Sousa DP. Piplartine Analogues and Cytotoxic Evaluation against Glioblastoma. Molecules 2018; 23:E1382. [PMID: 29890617 PMCID: PMC6099735 DOI: 10.3390/molecules23061382] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022] Open
Abstract
Piplartine (1) is an alkamide extracted from plants of the genus Piper which shows several pharmacological properties, including antitumor activity. To improve this activity, a series of analogues based on 1 have been synthesized by esterification and amidation using the 3,4,5-trimethoxycinnamic acid-like starting material. During the study, the moieties 3-(3,4,5-trimethoxyphenyl)acrylate and 3-(3,4,5-trimethoxyphenyl)acrylamide were maintained on esters and amides respectively. Meanwhile, functional changes were exploited, and it was revealed that the presence of two aromatic rings in the side-chain was important to improve the cytotoxic activity against the U87MG cell line, such as the compound (E)-benzhydryl 3-(3,4,5-trimethoxyphenyl)acrylate (10), an ester that exhibited strong cytotoxicity and a similar level of potency to that of paclitaxel, a positive control. Compound 10 had a marked concentration-dependent inhibitory effect on the viability of the U87MG cell line with apoptotic and oxidative processes, showing good potential for altering main molecular pathways to prevent tumor development. Moreover, it has strong bioavailability with non-genotoxic and non-cytotoxic properties on human blood cells. In conclusion, the findings of the present study demonstrated that compound 10 is a promising agent that may find applications combatting diseases associated with oxidative stress and as a prototype for the development of novel drugs used in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Flávio Rogério da Nóbrega
- Laboratory of Pharmaceutical Chemistry, Universidade Federal da Paraíba, João Pessoa 58051-085, Brazil.
| | - Ozlem Ozdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey.
| | | | - Joice Nascimento Barboza
- Laboratory of Pharmaceutical Chemistry, Universidade Federal da Paraíba, João Pessoa 58051-085, Brazil.
| | - Hasan Turkez
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum 25240, Turkey.
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Via dei Vestini 31, 66013 Chieti Scalo, CH, Italy.
| | | |
Collapse
|
10
|
Abstract
This paper reviews naturally occurring cell adhesion inhibitors derived from a plant, microbial and marine origin. Plant-derived inhibitors are classified according to a type of structure. Microbially and marine-derived inhibitors were described according to age. In addition, effects of inhibitors on cell proliferation and that of standards on cell adhesion are listed as much as possible.
Collapse
Affiliation(s)
- Satoshi Takamatsu
- Division of Natural Medicine and Therapeutics, Department of Clinical Pharmacy, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| |
Collapse
|
11
|
Synthesis of (E)-cinnamyl ester derivatives via a greener Steglich esterification. Bioorg Med Chem 2018; 26:5291-5298. [PMID: 29703423 DOI: 10.1016/j.bmc.2018.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/19/2022]
Abstract
Cinnamic acid derivatives are known antifungal, antimicrobial, antioxidant, and anticancer compounds. We have developed a facile and mild methodology for the synthesis of (E)-cinnamate derivatives using a modified Steglich esterification of (E)-cinnamic acid. Using acetonitrile as the solvent, rather than the typical chlorinated solvent, and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) as the coupling agent enables ester conversion in 45 min with mild heating (40-45 °C) and an average yield of 70% without need for further purification. These conditions were used to couple (E)-cinnamic acid with 1° and 2° aliphatic alcohols, benzylic and allylic alcohols, and phenols. This work demonstrates a facile and greener methodology for Steglich esterification reactions.
Collapse
|
12
|
Kumar S, Singh BK, Prasad AK, Parmar VS, Biswal S, Ghosh B. Ethyl 3',4',5'-trimethoxythionocinnamate modulates NF-κB and Nrf2 transcription factors. Eur J Pharmacol 2012; 700:32-41. [PMID: 23261968 DOI: 10.1016/j.ejphar.2012.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 01/26/2023]
Abstract
Recently, we identified a novel cinnamate analog, ethyl 3',4',5'-trimethoxythionocinnamate (ETMTC) as a potent inhibitor of cell adhesion molecules (CAMs), such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and E-selectin. However, its mechanism of action has not been elucidated so far. Since, nuclear factor-kappa B (NF-κB) is the major transcription factor involved in the regulation of ICAM-1, VCAM-1 and E-selectin expression, we determined the status of NF-κB activation in ETMTC treated human endothelial cells. Here, we demonstrate that ETMTC inhibits TNF-α-induced nuclear translocation and activation of NF-κB by inhibiting phosphorylation and degradation of IκBα. The inhibition of IκBα phosphorylation and degradation by ETMTC was found to be due to its ability to inhibit IκB kinase activity. In addition, oxidative stress is known to regulate NF-κB activation through TNF-α signaling cascade, therefore, we examined the effect of ETMTC on TNF-α-induced reactive oxygen species generation. We observed that ETMTC significantly inhibits TNF-α-induced reactive oxygen species generation in endothelial cells. To further elucidate the anti-oxidant potential of ETMTC, we examined its effect on induction of anti-oxidant genes viz. glutamate-cysteine ligase, modifier subunit (GCLM), heme oxygenase-1 (HO1) and NAD (P)H:quinone oxidoreductase 1 (NQO1) in human bronchial epithelial cells. Interestingly, ETMTC significantly induces the anti-oxidant genes viz. GCLM, HO1 and NQO1 by activating nuclear factor-erythroid 2 p45-related factor 2 (Nrf2). Thus, ETMTC could be useful towards developing potent anti-inflammatory molecules.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | | | |
Collapse
|
13
|
Kumar S, Mabalirajan U, Rehman R, Singh BK, Parmar VS, Prasad AK, Biswal S, Ghosh B. A novel cinnamate derivative attenuates asthma features and reduces bronchial epithelial injury in mouse model. Int Immunopharmacol 2012; 15:150-9. [PMID: 23137769 DOI: 10.1016/j.intimp.2012.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 10/18/2012] [Indexed: 10/27/2022]
Abstract
Airway epithelial injury is the hallmark of various respiratory diseases and therapeutic targeting of epithelial injury could be an effective strategy for controlling these diseases. We recently reported that a novel cinnamate, ethyl 3',4',5'-trimethoxythionocinnamate (ETMTC) derived from Piper longum derivative, was most potent among various cinnamate derivatives in inhibiting inflammatory cell adhesion molecules (CAMs). In this study, we investigated the effects of ETMTC on the features of allergic asthma and epithelial injury in a murine model. ETMTC treatment to ovalbumin sensitized and challenged mice during ovalbumin challenge reduced airway hyperresponsiveness, and airway inflammation. This attenuation of asthma features was associated with the reduction in the expressions of various CAMs, NF-κB activation, Th2 cytokines, eotaxin and 8-isoprostane that were estimated in lung homogenates. Further, it increased activities of mitochondrial complexes I and IV in lung mitochondria and reduced cytochrome c and caspase 9 activities in lung cytosol. In addition, it reduced the levels of oxidative DNA damage marker in bronchoalveolar lavage fluid and DNA fragmentation of bronchial epithelia in lung sections. Further, ETMTC not only increased the levels of 15-(S)-hydroxyeicosatetraenoic acid, suppressor of airway remodeling, but also inhibited goblet cell metaplasia and sub-epithelial fibrosis. These results demonstrate that ETMTC reduces epithelial injury and mitochondrial dysfunction associated with allergic asthma and thus ETMTC could be useful to develop efficient therapeutic molecule against asthma.
Collapse
Affiliation(s)
- Sarvesh Kumar
- Molecular Immunogenetics Laboratory, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|