1
|
Hassan AHE, Alam MM, Phan TN, Baek KH, Lee H, Cho SB, Lee CH, Kim YJ, No JH, Lee YS. Repurposing of conformationally-restricted cyclopentane-based AKT-inhibitors leads to discovery of potential and more selective antileishmanial agents than miltefosine. Bioorg Chem 2023; 141:106890. [PMID: 37783099 DOI: 10.1016/j.bioorg.2023.106890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Conformational restriction was addressed towards the development of more selective and effective antileishmanial agents than currently used drugs for treatment of Leishmania donovani; the causative parasite of the fatal visceral leishmaniasis. Five types of cyclopentane-based conformationally restricted miltefosine analogs that were previously explored in literature as anticancer AKT-inhibitors were reprepared and repurposed as antileishmanial agents. Amongst, positions-1 and 2 cis-conformationally-restricted compound 1a and positions-2 and 3 trans-conformationally-restricted compound 3b were highly potent eliciting sub-micromolar IC50 values for inhibition of infection and inhibition of parasite number compared with the currently used miltefosine drug that showed low micromolar IC50 values for inhibition of infection and inhibition of parasite number. Compounds 1a and 3b eradicated the parasite without triggering host cells cytotoxicity over more than one log concentration interval which is a superior performance compared to miltefosine. In silico studies suggested that conformational restriction conserved the conformer capable of binding LdAKT-like kinase while it might be possible that it excludes other conformers mediating undesirable effects and/or toxicity of miltefosine. Together, this study presents compounds 1a and 3b as antileishmanial agents with superior performance over the currently used miltefosine drug.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Mohammad Maqusood Alam
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Trong-Nhat Phan
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Kyung-Hwa Baek
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hyeryon Lee
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Soo Bin Cho
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Chae Hyeon Lee
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeon Ju Kim
- Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Joo Hwan No
- Host-Parasite Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Park SE, Chung KS, Heo SW, Kim SY, Lee JH, Hassan AHE, Lee YS, Lee JY, Lee KT. Therapeutic role of 2-stearoxyphenethyl phosphocholine targeting microtubule dynamics and Wnt/β-catenin/EMT signaling in human colorectal cancer cells. Life Sci 2023; 334:122227. [PMID: 37926298 DOI: 10.1016/j.lfs.2023.122227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The inhibition of cell death, perturbation of microtubule dynamics, and acceleration of Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling are fundamental processes in the progression and metastasis of colorectal cancer (CRC). To explore the role of 2-stearoxyphenethyl phosphocholine (stPEPC), an alkylphospholipid-based compound, in CRC, we conducted an MTT assay, cell cycle analysis, western blot analysis, immunoprecipitation, immunofluorescence staining, Annexin V/propidium iodide double staining, small interfering RNA gene silencing, a wound-healing assay, an invasion assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in the human CRC cell lines HT29 and HCT116. stPEPC showed anti-proliferative properties and mitotic cell accumulation via upregulated phosphorylation of BUBR1 and an association between mitotic arrest deficiency 2 (MAD2) and cell division cycle protein 20 homolog (CDC20). These results suggest that activation of the mitotic checkpoint complex and tubulin polymerization occurred, resulting in mitotic catastrophe in HT29 and HCT116 cells. In addition, stPEPC attenuated cell migration and invasion by regulating proteins mediated by EMT, such as E-cadherin and occludin. stPEPC altered the protein expression of Wnt3a and phosphorylation of low-density lipoprotein receptor-related protein 6 (LRP6), glycogen synthase kinase 3β (GSK3β), and β-catenin as well as their target genes, including cMyc and cyclin D1, in CRC cells. Thus, stPEPC may be useful for developing new drugs to treat human CRC.
Collapse
Affiliation(s)
- Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - So-Won Heo
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo-Yeon Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ahmed H E Hassan
- Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yong Sup Lee
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Medicinal Chemistry Laboratory, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Süleymanoğlu N, Ustabaş R, Güler Hİ, Direkel Ş, Çelik F, Ünver Y. Bis-1,2,4-triazol derivatives: Synthesis, characterization, DFT, antileishmanial activity and molecular docking studyo. J Biomol Struct Dyn 2022:1-11. [PMID: 35850638 DOI: 10.1080/07391102.2022.2098825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study, triazol derivatives, 4,4'-(((1E, 1E')-1,2-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (2), 4,4'-(((1E, 1E')-1,3-phenylenebis (methanylyidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (3) and 4,4'-(((1E, 1E')-1,4-phenylene bis (methanyl yidene)) bis (azanylidene)) bis (5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one (4) were synthesized from the reaction of 4-amino-5-methyl-2,4-dihydro-3H-1,2,4-triazol-3-one and phthalaldehyde/isophthalaldehyde/terephthalaldehyde, respectively. Compounds 2-4 were characterized by Fourier transform infrared (FTIR), proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR) spectroscopic methods. Theoretical study for compounds 2-4 were carried out by DFT/B3LYP/6-311++G(d,p). Structural and spectroscopic parameters were determined theoreticaly and compared with experimental ones. Also, the molecular electrostatic potential (MEP) maps of compounds were obtained. Leishmanicidal activity of compounds 2-4 against to Leishmania infantum was determined by microdilution broth method containing alamar blue. As a result of the study, compounds 2-4 were found to be effective against the specie of Leishmania. Molecular docking analysis against Trypanothione Reductase (TRe) with compound 2 was carried out to see the necessary interactions responsible for antileishmanial activity. The docking calculations of compound 2 supported the antileishmanial activity exhibiting high inhibition constant.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nevin Süleymanoğlu
- Vocational School of Technical Sciences, Gazi University, Ostim/Ankara, Turkey
| | - Reşat Ustabaş
- Department of Mathematics and Science Education, Ondokuz Mayıs University, Samsun, Turkey
| | - Halil İbrahim Güler
- Faculty of Science, Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon, Turkey
| | - Şahin Direkel
- Department of Medical Microbiology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Fatih Çelik
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Yasemin Ünver
- Faculty of Sciences, Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Zaremberg V, Ganesan S, Mahadeo M. Lipids and Membrane Microdomains: The Glycerolipid and Alkylphosphocholine Class of Cancer Chemotherapeutic Drugs. Handb Exp Pharmacol 2020; 259:261-288. [PMID: 31302758 DOI: 10.1007/164_2019_222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Synthetic antitumor lipids are metabolically stable lysophosphatidylcholine derivatives, encompassing a class of non-mutagenic drugs that selectively target cancerous cells. In this chapter we review the literature as relates to the clinical efficacy of these antitumor lipid drugs and how our understanding of their mode of action has evolved alongside key advances in our knowledge of membrane structure, organization, and function. First, the history of the development of this class of drugs is described, providing a summary of clinical outcomes of key members including edelfosine, miltefosine, perifosine, erufosine, and erucylphosphocholine. A detailed description of the biophysical properties of these drugs and specific drug-lipid interactions which may contribute to the selectivity of the antitumor lipids for cancer cells follows. An updated model on the mode of action of these lipid drugs as membrane disorganizing agents is presented. Membrane domain organization as opposed to targeting specific proteins on membranes is discussed. By altering membranes, these antitumor lipids inhibit many survival pathways while activating pro-apoptotic signals leading to cell demise.
Collapse
|
5
|
Alam MM, Hassan AH, Lee KW, Cho MC, Yang JS, Song J, Min KH, Hong J, Kim DH, Lee YS. Design, synthesis and cytotoxicity of chimeric erlotinib-alkylphospholipid hybrids. Bioorg Chem 2019; 84:51-62. [DOI: 10.1016/j.bioorg.2018.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/03/2018] [Accepted: 11/17/2018] [Indexed: 11/25/2022]
|
6
|
Inositol-C2-PAF acts as a biological response modifier and antagonizes cancer-relevant processes in mammary carcinoma cells. Cell Oncol (Dordr) 2018; 41:505-516. [PMID: 30047091 DOI: 10.1007/s13402-018-0387-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Previous studies have identified alkyl-phospholipids as promising compounds for cancer therapy by targeting constituents of the cell membrane and different signaling pathways. We previously showed that the alkylphospholipid Inositol-C2-PAF inhibits the proliferation and migration of immortalized keratinocytes and the squamous carcinoma-derived cell line SCC-25. Here, we investigated the effect of this compound on growth and motility as well as its mode of action in mammary carcinoma-derived cell lines. METHODS Using BrdU incorporation and haptotactic cell migration assays, we assessed the effects of Inositol-C2-PAF on MCF-7 and MBA-MB-231 cell proliferation and migration. The phosphorylation status of signaling molecules was investigated by Western blotting as well as indirect immunofluorescence analysis and capillary isoelectric focusing. RESULTS We found that Inositol-C2-PAF inhibited the growth as well as the migration in MCF-7 and MBA-MB-231 cells. Furthermore, we found that this compound inhibited phosphorylation of the protein kinase Akt at serine residue 473, but had no impact on phosphorylation at threonine 308. Phosphorylation of other kinases, such as Erk1/2, FAK and Src, which are targeted by Inositol-C2-PAF in other cells, remained unaffected by the compound in the mammary carcinoma-derived cell lines tested. In MCF-7 cells, we found that IGF-1-induced growth, as well as phosphorylation of AktS473, mTOR and the tumor suppressor pRB, was inhibited in the presence of Inositol-C2-PAF. Moreover, we found that in these cells IGF-1 had no impact on migration and did not seem to be linked to full Akt activity. Therefore, MCF-7 cell migration appears to be inhibited by Ino-C2-PAF in an Akt-independent manner. CONCLUSION The antagonistic effects of Inositol-C2-PAF on cell migration and proliferation are indicative for its potential for breast cancer therapy, alone or in combination with other cytostatic drugs.
Collapse
|
7
|
Rahimi M, Geertsema EM, Miao Y, van der Meer JY, van den Bosch T, de Haan P, Zandvoort E, Poelarends GJ. Inter- and intramolecular aldol reactions promiscuously catalyzed by a proline-based tautomerase. Org Biomol Chem 2018; 15:2809-2816. [PMID: 28277572 DOI: 10.1039/c7ob00302a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enzyme 4-oxalocrotonate tautomerase (4-OT), which in nature catalyzes a tautomerization step as part of a catabolic pathway for aromatic hydrocarbons, was found to promiscuously catalyze different types of aldol reactions. These include the self-condensation of propanal, the cross-coupling of propanal and benzaldehyde, the cross-coupling of propanal and pyruvate, and the intramolecular cyclizations of hexanedial and heptanedial. Mutation of the catalytic amino-terminal proline (P1A) greatly reduces 4-OT's aldolase activities, whereas mutation of another active site residue (F50A) strongly enhances 4-OT's aldolase activities, indicating that aldolization is an active site process. This catalytic promiscuity of 4-OT could be exploited as starting point to create tailor-made, artificial aldolases for challenging self- and cross-aldolizations.
Collapse
Affiliation(s)
- Mehran Rahimi
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Edzard M Geertsema
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Yufeng Miao
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Jan-Ytzen van der Meer
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Thea van den Bosch
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Pim de Haan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Ellen Zandvoort
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
8
|
Alam MM, Hassan AHE, Kwon YH, Lee HJ, Kim NY, Min KH, Lee SY, Kim DH, Lee YS. Design, synthesis and evaluation of alkylphosphocholine-gefitinib conjugates as multitarget anticancer agents. Arch Pharm Res 2017; 41:35-45. [DOI: 10.1007/s12272-017-0977-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/19/2017] [Indexed: 01/28/2023]
|
9
|
Timko L, Fischer-Fodor E, Garajová M, Mrva M, Chereches G, Ondriska F, Bukovský M, Lukáč M, Karlovská J, Kubincová J, Devínsky F. Synthesis of structural analogues of hexadecylphosphocholine and their antineoplastic, antimicrobial and amoebicidal activity. Eur J Med Chem 2015; 93:263-73. [DOI: 10.1016/j.ejmech.2015.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/09/2015] [Accepted: 02/10/2015] [Indexed: 12/23/2022]
|
10
|
Prajapti SK, Shrivastava S, Bihade U, Gupta AK, Naidu VGM, Banerjee UC, Babu BN. Synthesis and biological evaluation of novel Δ2-isoxazoline fused cyclopentane derivatives as potential antimicrobial and anticancer agents. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00525b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel Δ2-isoxazoline fused cyclopentane derivatives have been synthesized and evaluated for their antimicrobial and anticancer activities.
Collapse
Affiliation(s)
- Santosh Kumar Prajapti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Shweta Shrivastava
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Umesh Bihade
- Department of Pharmaceutical Technology
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Ajay Kumar Gupta
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - V. G. M. Naidu
- Department of Pharmacology and Toxicology
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology
- National Institute of Pharmaceutical Education and Research (NIPER)
- S. A. S. Nagar
- India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- Hyderabad 500037
- India
| |
Collapse
|
11
|
Jangir S, Bala V, Lal N, Kumar L, Sarswat A, Kumar A, Hamidullah, Saini KS, Sharma V, Verma V, Maikhuri JP, Konwar R, Gupta G, Sharma VL. Novel alkylphospholipid-DTC hybrids as promising agents against endocrine related cancers acting via modulation of Akt-pathway. Eur J Med Chem 2014; 85:638-47. [PMID: 25128666 DOI: 10.1016/j.ejmech.2014.08.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 08/07/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
A new series of 2-(alkoxy(hydroxy)phosphoryloxy)ethyl dialkylcarbodithioate derivatives was synthesized and evaluated against endocrine related cancers, acting via modulation of Akt-pathway. Eighteen compounds were active at 7.24-100 μM against MDA-MB-231 or MCF-7 cell lines of breast cancer. Three compounds (14, 18 and 22) were active against MCF-7 cells at IC50 significantly better than miltefosine and most of the compounds were less toxic towards non-cancer cell lines, HEK-293. On the other hand, twelve compounds exhibited cell growth inhibiting activity against prostate cancer cell lines, either PC-3 or DU-145 at 14.69-95.20 μM. While nine of these were active against both cell lines. The most promising compounds 14 and 18 were about two and five fold more active than miltefosine against DU-145 and MCF-7 cell lines respectively and significantly down regulated phospho-Akt. Possibly anti-cancer and pro-apoptotic activity was mostly due to blockade of Akt-pathway.
Collapse
Affiliation(s)
- Santosh Jangir
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Veenu Bala
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research, New Delhi 110001, India
| | - Nand Lal
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Lalit Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Sarswat
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Kumar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Hamidullah
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Karan S Saini
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikas Sharma
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vikas Verma
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jagdamba P Maikhuri
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Gopal Gupta
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Vishnu L Sharma
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research, New Delhi 110001, India.
| |
Collapse
|
12
|
Cantharidin inhibits angiogenesis by suppressing VEGF-induced JAK1/STAT3, ERK and AKT signaling pathways. Arch Pharm Res 2014; 38:282-9. [DOI: 10.1007/s12272-014-0383-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/29/2014] [Indexed: 11/25/2022]
|
13
|
Synthesis, antileishmanial activity and structure–activity relationship of 1-N-X-phenyl-3-N′-Y-phenyl-benzamidines. Eur J Med Chem 2013; 67:166-74. [DOI: 10.1016/j.ejmech.2013.06.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 11/23/2022]
|
14
|
Lukáč M, Mrva M, Garajová M, Mojžišová G, Varinská L, Mojžiš J, Sabol M, Kubincová J, Haragová H, Ondriska F, Devínsky F. Synthesis, self-aggregation and biological properties of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride. Eur J Med Chem 2013; 66:46-55. [PMID: 23792315 DOI: 10.1016/j.ejmech.2013.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 01/29/2023]
Abstract
A series of alkylphosphocholine and alkylphosphohomocholine derivatives of cetyltrimethylammonium bromide, cetylpyridinium bromide, benzalkonium bromide (C16) and benzethonium chloride have been synthesized. Their physicochemical properties were also investigated. The critical micelle concentration (cmc), the surface tension value at the cmc (γcmc), and the surface area at the surface saturation per head group (Acmc) were determined by means of surface tension measurements. The prepared compounds exhibit significant cytotoxic, antifungal and antiprotozoal activities. Alkylphosphocholines and alkylphosphohomocholines possess higher antifungal activity against Candida albicans in comparison with quaternary ammonium compounds in general. However, quaternary ammonium compounds exhibit significantly higher activity against human tumor cells and pathogenic free-living amoebae Acanthamoeba lugdunensis and Acanthamoeba quina compared to alkylphosphocholines. The relationship between structure, physicochemical properties and biological activity of the tested compounds is discussed.
Collapse
Affiliation(s)
- Miloš Lukáč
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University, Kalinčiakova 8, 832 32 Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ring formation from acyclic precursors: sequential palladium-catalyzed double acetoxylation-cyclization of 3,6-heptadienoates to 2,4-diacetoxycyclopentylideneacetates. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.02.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Synthesis, characterization and Akt phosphorylation inhibitory activity of cyclopentanecarboxylate-substituted alkylphosphocholines. Bioorg Med Chem 2013; 21:2018-24. [DOI: 10.1016/j.bmc.2013.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/17/2022]
|
17
|
The Development of Novel Therapies for the Treatment of Acute Myeloid Leukemia (AML). Cancers (Basel) 2012; 4:1161-79. [PMID: 24213503 PMCID: PMC3712735 DOI: 10.3390/cancers4041161] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/29/2012] [Accepted: 10/17/2012] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is nearly always a fatal malignancy. For the past 40 years, the standard of care remains a combination of cytarabine and an anthracycline known as 7 + 3. This treatment regimen is troubled by both low survival rates (10% at 5 years) and deaths due to toxicity. Substantial new laboratory findings over the past decade have identified many cellular pathways that contribute to leukemogenesis. These studies have led to the development of novel agents designed to target these pathways. Here we discuss the molecular underpinnings and clinical benefits of these novel treatment strategies. Most importantly these studies demonstrate that clinical response is best achieved by stratifying each patient based on a detailed understanding of their molecular abnormalities.
Collapse
|