1
|
Latambale G, Juvale K. Thiazolidinedione derivatives: emerging role in cancer therapy. Mol Divers 2025:10.1007/s11030-024-11093-3. [PMID: 39899123 DOI: 10.1007/s11030-024-11093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025]
Abstract
Cancer remains the leading cause of death worldwide, with the Globocan 2022 study reporting an estimated 9.7 million cancer deaths. Without the selectivity built for tumour cells, chemotherapeutic agents could be toxic to non-cancerous cells. Administration of such non-selective cytotoxic compounds causes severe side effects and could lead to death. Improved cancer treatments are required to overcome the limitations of the current cancer treatment. The potential of thiazolidinedione derivatives as anticancer drugs has recently drawn attention, despite their primary use as insulin sensitizers in the treatment of type 2 diabetes. The ability of thiazolidinedione derivatives to alter important molecular pathways implicated in carcinogenesis, such as cell proliferation, apoptosis, angiogenesis, Raf kinase, EGFR and HER-2 kinases, HDAC, COX-2 enzyme and metastasis, is highlighted in this review, which examines the growing relevance of these compounds in cancer treatment. Thiazolidinediones have anti-inflammatory, antioxidant, and antiproliferative properties in a variety of cancer types, including breast, colon, and prostate cancers, via activating the peroxisome proliferator-activated gamma receptor (PPARγ). In addition to examining the safety profile and difficulties in clinical translation, the paper looks at preclinical and clinical research that points to these medicines potential to improve the effectiveness of immunotherapy and chemotherapy. This review highlights the encouraging therapeutic possibilities and structure-activity relationship insight of TZDs for their anticancer activity and highlights the molecular level facets of the 'glitazone' pharmacophore for its anticancer activity.
Collapse
Affiliation(s)
- Ganesh Latambale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Muller C, Lacroix-Malgras V, Kluza J, Laine W, Güler Y, Bost F, Boisbrun M, Mazerbourg S, Flament S. The troglitazone derivative EP13 disrupts energy metabolism through respiratory chain complex I inhibition in breast cancer cells and potentiates the antiproliferative effect of glycolysis inhibitors. Cancer Cell Int 2024; 24:132. [PMID: 38594745 PMCID: PMC11005237 DOI: 10.1186/s12935-024-03319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND The metabolism of cancer cells generally differs from that of normal cells. Indeed, most cancer cells have a high rate of glycolysis, even at normal oxygen concentrations. These metabolic properties can potentially be exploited for therapeutic intervention. In this context, we have developed troglitazone derivatives to treat hormone-sensitive and triple-negative breast cancers, which currently lack therapeutic targets, have an aggressive phenotype, and often have a worse prognosis than other subtypes. Here, we studied the metabolic impact of the EP13 compound, a desulfured derivative of Δ2-troglitazone that we synthetized and is more potent than its parent compounds. METHODS EP13 was tested on two triple-negative breast cancer cell lines, MDA-MB-231 and Hs578T, and on the luminal cell line MCF-7. The oxygen consumption rate (OCR) of the treated cell lines, Hs578T mammospheres and isolated mitochondria was measured using the XFe24 Seahorse analyser. ROS production was quantified using the MitoSOX fluorescent probe. Glycolytic activity was evaluated through measurement of the extracellular acidification rate (ECAR), glucose consumption and lactate production in extracellular medium. The synergistic effect of EP13 with glycolysis inhibitors (oxamate and 2-deoxyglucose) on cell cytotoxicity was established using the Chou-Talalay method. RESULTS After exposure to EP13, we observed a decrease in the mitochondrial oxygen consumption rate in MCF7, MDA-MB-231 and Hs578T cells. EP13 also modified the maximal OCR of Hs578T spheroids. EP13 reduced the OCR through inhibition of respiratory chain complex I. After 24 h, ATP levels in EP13-treated cells were not altered compared with those in untreated cells, suggesting compensation by glycolysis activity, as shown by the increase in ECAR, the glucose consumption and lactate production. Finally, we performed co-treatments with EP13 and glycolysis inhibitors (oxamate and 2-DG) and observed that EP13 potentiated their cytotoxic effects. CONCLUSION This study demonstrates that EP13 inhibits OXPHOS in breast cancer cells and potentiates the effect of glycolysis inhibitors.
Collapse
Affiliation(s)
- Claire Muller
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | | | - Jérôme Kluza
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pour la Recherche Sur le Cancer de Lille, UMR 9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - William Laine
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pour la Recherche Sur le Cancer de Lille, UMR 9020 - UMR-S 1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Yonca Güler
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | - Frédéric Bost
- Inserm U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire, Team Cancer Metabolism, Environment, F-06200, Nice, France
| | | | - Sabine Mazerbourg
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France.
- CRAN, UMR 7039, Faculté des Sciences et Technologies, BP 70239, 54506, Vandœuvre-lès-Nancy, France.
| | | |
Collapse
|
3
|
Moura MLV, de Menezes AAPM, de Oliveira Filho JWG, do Nascimento MLLB, dos Reis AC, Ribeiro AB, da Silva FCC, Nunes AMV, Rolim HML, de Carvalho Melo Cavalcante AA, Sousa JMDCE. Advances in Antitumor Effects Using Liposomal Citrinin in Induced Breast Cancer Model. Pharmaceutics 2024; 16:174. [PMID: 38399235 PMCID: PMC10892831 DOI: 10.3390/pharmaceutics16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 02/25/2024] Open
Abstract
The study aimed to evaluate the antitumor and toxicogenetic effects of liposomal nanoformulations containing citrinin in animal breast carcinoma induced by 7,12-dimethylbenzanthracene (DMBA). Mus musculus virgin females were divided into six groups treated with (1) olive oil (10 mL/kg); (2) 7,12-DMBA (6 mg/kg); (3) citrinin, CIT (2 mg/kg), (4) cyclophosphamide, CPA (25 mg/kg), (5) liposomal citrinin, LP-CIT (2 μg/kg), and (6) LP-CIT (6 µg/kg). Metabolic, behavioral, hematological, biochemical, histopathological, and toxicogenetic tests were performed. DMBA and cyclophosphamide induced behavioral changes, not observed for free and liposomal citrinin. No hematological or biochemical changes were observed for LP-CIT. However, free citrinin reduced monocytes and caused hepatotoxicity. During treatment, significant differences were observed regarding the weight of the right and left breasts treated with DMBA compared to negative controls. Treatment with CPA, CIT, and LP-CIT reduced the weight of both breasts, with better results for liposomal citrinin. Furthermore, CPA, CIT, and LP-CIT presented genotoxic effects for tumor, blood, bone marrow, and liver cells, although less DNA damage was observed for LP-CIT compared to CIT and CPA. Healthy cell damage induced by LP-CIT was repaired during treatment, unlike CPA, which caused clastogenic effects. Thus, LP-CIT showed advantages for its use as a model of nanosystems for antitumor studies.
Collapse
Affiliation(s)
- Michely Laiany Vieira Moura
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Ag-Anne Pereira Melo de Menezes
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - José Williams Gomes de Oliveira Filho
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Maria Luiza Lima Barreto do Nascimento
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Antonielly Campinho dos Reis
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - Alessandra Braga Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal;
| | - Felipe Cavalcanti Carneiro da Silva
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | | | - Hercília Maria Lins Rolim
- Laboratory of Pharmaceutical Nanosystems—NANOSFAR, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil
| | - Ana Amélia de Carvalho Melo Cavalcante
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| | - João Marcelo de Castro e Sousa
- Laboratory of Toxicological Genetics—LAPGENIC, Graduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina 64049-550, Brazil; (M.L.V.M.); (A.-A.P.M.d.M.); (J.W.G.d.O.F.); (M.L.L.B.d.N.); (A.C.d.R.); (F.C.C.d.S.); (A.A.d.C.M.C.); (J.M.d.C.e.S.)
| |
Collapse
|
4
|
Modh DH, Kulkarni VM. Anticancer Drug Discovery By Structure-Based Repositioning Approach. Mini Rev Med Chem 2024; 24:60-91. [PMID: 37165589 DOI: 10.2174/1389557523666230509123036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 05/12/2023]
Abstract
Despite the tremendous progress that has occurred in recent years in cell biology and oncology, in chemical, physical and computer sciences, the disease cancer has continued as the major cause of death globally. Research organizations, academic institutions and pharmaceutical companies invest huge amounts of money in the discovery and development of new anticancer drugs. Though much effort is continuing and whatever available approaches are being attempted, the success of bringing one effective drug into the market has been uncertain. To overcome problems associated with drug discovery, several approaches are being attempted. One such approach has been the use of known, approved and marketed drugs to screen these for new indications, which have gained considerable interest. This approach is known in different terms as "drug repositioning or drug repurposing." Drug repositioning refers to the structure modification of the active molecule by synthesis, in vitro/ in vivo screening and in silico computational applications where macromolecular structure-based drug design (SBDD) is employed. In this perspective, we aimed to focus on the application of repositioning or repurposing of essential drug moieties present in drugs that are already used for the treatment of some diseases such as diabetes, human immunodeficiency virus (HIV) infection and inflammation as anticancer agents. This review thus covers the available literature where molecular modeling of drugs/enzyme inhibitors through SBDD is reported for antidiabetics, anti-HIV and inflammatory diseases, which are structurally modified and screened for anticancer activity using respective cell lines.
Collapse
Affiliation(s)
- Dharti H Modh
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Erandwane, Pune, 411038, Maharashtra, India
| | - Vithal M Kulkarni
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Erandwane, Pune, 411038, Maharashtra, India
| |
Collapse
|
5
|
Discovery of Novel Thiazolidinedione-Derivatives with Multi-Modal Antidiabetic Activities In Vitro and In Silico. Int J Mol Sci 2023; 24:ijms24033024. [PMID: 36769344 PMCID: PMC9917550 DOI: 10.3390/ijms24033024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) and related complications continue to exert a significant burden on health care systems globally. Although conventional pharmacological therapies are beneficial in the management of this metabolic condition, it is still necessary to seek novel potential molecules for its management. On this basis, we have synthesised and evaluated the anti-diabetic properties of four novel thiazolidinedione (TZD)-derivatives. The TZD derivatives were synthesised through the pharmacophore hybridisation strategy based on N-arylpyrrole and TZD. The resultant derivatives at different concentrations were screened against key enzymes of glucose metabolism and glucose utilisation in the liver (HEP-G2) cell line. Additionally, peroxisome proliferator-activated receptor-γ activation was performed through docking studies. Docking of these molecules against PPAR-γ predicted strong binding, similar to that of rosiglitazone. Hence, TZDD2 was able to increase glucose uptake in the liver cells as compared to the control. The enzymatic inhibition assays showed a relative inhibition activity; with all four derivatives exhibiting ≥ 50% inhibition activity in the α-amylase inhibition assay and a concentration dependent activity in the α-glucosidase inhibition assay. All four derivatives exhibited ≥30% inhibition in the aldose reductase inhibition assay, except TZDD1 at 10 µg/mL. Interestingly, TZDD3 showed a decreasing inhibition activity. In the dipeptidyl peptidase-4 inhibition assay, TZDD2 and TZDD4 exhibited ≥20% inhibition activity.
Collapse
|
6
|
Fettach S, Thari FZ, Hafidi Z, Karrouchi K, Bouathmany K, Cherrah Y, El Achouri M, Benbacer L, El Mzibri M, Sefrioui H, Bougrin K, Faouzi MEA. Biological, toxicological and molecular docking evaluations of isoxazoline-thiazolidine-2,4-dione analogues as new class of anti-hyperglycemic agents. J Biomol Struct Dyn 2023; 41:1072-1084. [PMID: 34957934 DOI: 10.1080/07391102.2021.2017348] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, three isoxazoline-thiazolidine-2,4-dione derivatives were synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR and ESI-MS spectrometry. All compounds have been investigated for their α-amylase and α-glucosidase inhibitory activities. In vitro enzymatic evaluation revealed that all compounds were inhibitory potent against α-glucosidase with IC50 values varied from 40.67 ± 1.81 to 92.54 ± 0.43 µM, and α-amylase with IC50 in the range of 07.01 ± 0.02 to 75.10 ± 1.06 µM. One of the tested compounds were found to be more potent inhibitor compared to other compounds and standard drug Acarbose (IC50 glucosidase= 97.12 ± 0.35 µM and IC50 amylase= 2.97 ± 0.01 μM). All compounds were then evaluated for their acute toxicity in vivo and shown their safety at a high dose with LD > 2000mg/kg BW. A cell-based toxicity evaluation was performed to determine the safety of compounds on liver cells, using the MTT assay against HepG2 cells, and the results shown that all compounds have non-toxic impact against cell viability and proliferation compared to reference drug (Pioglitazone). Furthermore, the molecular homology analysis, SAR and the molecular binding properties of compound with the active site of α-amylase and α-glucosidase were confirmed through computational analysis. This study has identified the inhibitory potential of a new class of synthesized isoxazoline-thiazolidine-2,4-dione derivatives in controlling both hyperglycemia and type 2 diabetes mellitus without any hepatic toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saad Fettach
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Fatima Zahra Thari
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Rabat, Morocco
| | - Zakaria Hafidi
- Department of Surfactants and Nanobiotechnology, IQAC-CSIC, c/Jordi Girona, Barcelona, Spain
| | - Khalid Karrouchi
- Laboratory of Analytical Chemistry and Bromatology, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Kaoutar Bouathmany
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Yahia Cherrah
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed El Achouri
- Laboratoire de Physico-Chimie des Matériaux Inorganiques et Organiques, Centre des Sciences des Matériaux, Ecole Normale Supérieure-Rabat, Mohammed V University, Rabat, Morocco
| | - Laila Benbacer
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Mohammed El Mzibri
- Biology and Molecular Research Unit, Department of Life Sciences, National Center for Energy, Nuclear Science and Technology (CNESTEN), Rabat, Morocco
| | - Hassan Sefrioui
- Moroccan Foundation for Science, Innovation & Research (MAScIR), Centre de Biotechnologie Médicale, Rabat, Morocco
| | - Khalid Bougrin
- Equipe de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculty of Science, B.P. 1014, Geophysics, Natural Patrimony and Green Chemistry (GEOPAC) Research Center, Mohammed V University in Rabat, Rabat, Morocco.,Chemical and Biochemical Sciences Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
7
|
Cortelazzo-Polisini E, Boisbrun M, Gansmüller AH, Comoy C. Photoisomerization of Arylidene Heterocycles: Toward the Formation of Fused Heterocyclic Quinolines. J Org Chem 2022; 87:9699-9713. [PMID: 35801862 DOI: 10.1021/acs.joc.2c00748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the photoinduced isomerization of a series of arylidene heterocycles 1. The photoreaction mechanism was investigated by a combined UV-vis/photo-NMR spectroscopic study, and we showed that Ar-TZDs exhibit a positive P-type photochromism, which limits their isomerization efficiency. By exploring the solvatochromism in a series of solvents, the conditions favoring the conversion toward one or the other stereoisomer have been studied, in particular by choosing the appropriate wavelengths. Finally, the extension of this photoisomerization study was proposed with a convenient preparation of various fused heterocyclic quinolines in good overall yields.
Collapse
Affiliation(s)
| | | | | | - Corinne Comoy
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| |
Collapse
|
8
|
AB186 Inhibits Migration of Triple-Negative Breast Cancer Cells and Interacts with α-Tubulin. Int J Mol Sci 2022; 23:ijms23126859. [PMID: 35743305 PMCID: PMC9225035 DOI: 10.3390/ijms23126859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Breast cancer is one of the leading causes of cancer-related death among females worldwide. A major challenge is to develop innovative therapy in order to treat breast cancer subtypes resistant to current treatment. In the present study, we examined the effects of two Troglitazone derivatives Δ2-TGZ and AB186. Previous studies showed that both compounds induce apoptosis, nevertheless AB186 was a more potent agent. The kinetic of cellular events was investigated by real-time cell analysis system (RTCA) in MCF-7 (hormone dependent) and MDA-MB-231 (triple negative) breast cancer (TNBC) cells, followed by cell morphology analysis by immuno-localization. Both compounds induced a rapid modification of both impedance-based signals and cellular morphology. This process was associated with an inhibition of cell migration measured by wound healing and transwell assays in TNBC MDA-MB-231 and Hs578T cells. In order to identify cytoplasmic targets of AB186, we performed surface plasmon resonance (SPR) and pull-down analyses. Subsequently, 6 cytoskeleton components were identified as potential targets. We further validated α-tubulin as one of the direct targets of AB186. In conclusion, our results suggested that AB186 could be promising to develop novel therapeutic strategies to treat aggressive forms of breast cancer such as TNBC.
Collapse
|
9
|
Islam MM, Goertzen A, Singh PK, Saha R. Exploring the metabolic landscape of pancreatic ductal adenocarcinoma cells using genome-scale metabolic modeling. iScience 2022; 25:104483. [PMID: 35712079 PMCID: PMC9194136 DOI: 10.1016/j.isci.2022.104483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major research focus because of its poor therapy response and dismal prognosis. PDAC cells adapt their metabolism to the surrounding environment, often relying on diverse nutrient sources. Because traditional experimental techniques appear exhaustive to find a viable therapeutic strategy, a highly curated and omics-informed PDAC genome-scale metabolic model was reconstructed using patient-specific transcriptomics data. From the model-predictions, several new metabolic functions were explored as potential therapeutic targets in addition to the known metabolic hallmarks of PDAC. Significant downregulation in the peroxisomal beta oxidation pathway, flux modulation in the carnitine shuttle system, and upregulation in the reactive oxygen species detoxification pathway reactions were observed. These unique metabolic traits of PDAC were correlated with potential drug combinations targeting genes with poor prognosis in PDAC. Overall, this study provides a better understanding of the metabolic vulnerabilities in PDAC and will lead to novel effective therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Mazharul Islam
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Andrea Goertzen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Pankaj K. Singh
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rajib Saha
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
10
|
Levshin IB, Simonov AY, Lavrenov SN, Panov AA, Grammatikova NE, Alexandrov AA, Ghazy ESMO, Savin NA, Gorelkin PV, Erofeev AS, Polshakov VI. Antifungal Thiazolidines: Synthesis and Biological Evaluation of Mycosidine Congeners. Pharmaceuticals (Basel) 2022; 15:ph15050563. [PMID: 35631390 PMCID: PMC9145892 DOI: 10.3390/ph15050563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Novel derivatives of Mycosidine (3,5-substituted thiazolidine-2,4-diones) are synthesized by Knoevenagel condensation and reactions of thiazolidines with chloroformates or halo-acetic acid esters. Furthermore, 5-Arylidene-2,4-thiazolidinediones and their 2-thioxo analogs containing halogen and hydroxy groups or di(benzyloxy) substituents in 5-benzylidene moiety are tested for antifungal activity in vitro. Some of the synthesized compounds exhibit high antifungal activity, both fungistatic and fungicidal, and lead to morphological changes in the Candida yeast cell wall. Based on the use of limited proteomic screening and toxicity analysis in mutants, we show that Mycosidine activity is associated with glucose transport. This suggests that this first-in-class antifungal drug has a novel mechanism of action that deserves further study.
Collapse
Affiliation(s)
- Igor B. Levshin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexander Y. Simonov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Sergey N. Lavrenov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexey A. Panov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
- Correspondence:
| | - Natalia E. Grammatikova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, 119021 Moscow, Russia; (I.B.L.); (A.Y.S.); (S.N.L.); (N.E.G.)
| | - Alexander A. Alexandrov
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.A.A.); (E.S.M.O.G.)
| | - Eslam S. M. O. Ghazy
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the RAS, 119071 Moscow, Russia; (A.A.A.); (E.S.M.O.G.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Department of Microbiology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Nikita A. Savin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Peter V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Alexander S. Erofeev
- Research Laboratory of Biophysics, National University of Science and Technology “MISiS”, 4 Leninsky Ave., 119049 Moscow, Russia; (N.A.S.); (P.V.G.); (A.S.E.)
| | - Vladimir I. Polshakov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 27/1 Lomonosovsky Ave., 119991 Moscow, Russia;
| |
Collapse
|
11
|
Mohamed FA, Elkhabiry S, Ismail IA, Attia AO. Synthesis, Application and Antimicrobial Activity of New Acid Dyes Based
on 3-Amino-2-thioxo-4-thiazolidinone Nucleus on Wool and Silk Fabrics. Curr Org Synth 2022; 19:166-176. [DOI: 10.2174/1570179418666210713145959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
The dyes are synthesized by 3-Amino-2-thioxo-4thiazolidinone (N-Amino rhodanine) with glutaraldehyde or terephthalaldehyde by 2:1 mole to form a and b then coupled with diazonium salts p-Amino benzenesulfonic acid and 4-Amino 3,4-disulfoazobenzeneazobenzene by 2:1 to form new different bis-mono-azo a1 and b1 and diazo a2 and b2 acid dyes. Therefore, the synthesized dyes were applied to both silk and wool fabric materials. We also evaluated the antimicrobial susceptivity of these dyed fabrics to two model gram-negative and gram-positive bacteria. Further, the chemical composition of these dyes is emphasized by an elemental analysis.
Aims:
This paper aims to synthesize and apply dye and antimicrobial to four new acid dyes based on derivatives of N-Amino rhodanine as a chromophoric group. Then, these dyes are used in dyeing silk and wool which have good lightfastness, and are also excellent for washing, rubbing and sweating fastness. Also, we measure antimicrobial susceptivity of silk and wool fabrics to Gram-negative and Gram-positive bacteria.
Background:
The new synthetic acid dyes, which have antimicrobial susceptivity to gram-negative and gram-positive bacteria, are mostly used on silk and wool fabrics which are excellent for lightfastness, washing, rubbing and sweating fastness.
Objective:
The present studies aimed at synthesis, characterization and antimicrobial susceptivity to gram-negative and gram-positive bacteria.
Methods:
The infra-red spectrum was recorded using an Infra-red spectrometer, Perkin Elmer/1650 FT-IR. The 1H-NMR spectra were recorded using a Varian 400MHz spectrometer. The absorbance of the dyes was measured in the ultraviolet-visible region between 300 and 700 nm by a UNICAM UV spectrophotometer. The dye uptake by wool and silk fabrics was measured using a Shimadzu UV-2401PC (UV/V is spectrophotometer at λmax) before and after dyeing. The produced dyes were found to have a good antimicrobial susceptivity to a variety of bacteria.
Results and Discussion:
The compounds a1, b1, a2 &b2 show good antimicrobial activity toward gram-negative (E. coli), gram-positive (S. aurous) bacteria. The data showed that exhaustion and fastness activities of silk and wool dyed fabrics were both very high.
Conclusion:
In this work, we prepared newly synthesized acid dyes based on 3-Amino-2-thioxo-4-thiazolidinone derivatives and used them for dyeing wool and silk fabrics. Both synthetic dyes have shown good lightfastness and fastness properties. Also, all dyes have shown a good antimicrobial effect.
Collapse
Affiliation(s)
- Fatma A. Mohamed
- Textile Research Division, National Research Centre, Dokki, Giza 12622
| | - Shaban Elkhabiry
- Textile Research Division, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ismail A. Ismail
- Department of Biology, College of
Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Attia O. Attia
- Department of Biology, College of
Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
12
|
Tilekar K, Shelke O, Upadhyay N, Lavecchia A, Ramaa CS. Current status and future prospects of molecular hybrids with thiazolidinedione (TZD) scaffold in anticancer drug discovery. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Chi T, Wang M, Wang X, Yang K, Xie F, Liao Z, Wei P. PPAR-γ Modulators as Current and Potential Cancer Treatments. Front Oncol 2021; 11:737776. [PMID: 34631571 PMCID: PMC8495261 DOI: 10.3389/fonc.2021.737776] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, cancer has become one of the leading causes of mortality. Peroxisome Proliferator-Activated Receptors (PPARs) is a family of critical sensors of lipids as well as regulators of diverse metabolic pathways. They are also equipped with the capability to promote eNOS activation, regulate immunity and inflammation response. Aside from the established properties, emerging discoveries are also made in PPAR's functions in the cancer field. All considerations are given, there exists great potential in PPAR modulators which may hold in the management of cancers. In particular, PPAR-γ, the most expressed subtype in adipose tissues with two isoforms of different tissue distribution, has been proven to be able to inhibit cell proliferation, induce cell cycle termination and apoptosis of multiple cancer cells, promote intercellular adhesion, and cripple the inflamed state of tumor microenvironment, both on transcriptional and protein level. However, despite the multi-functionalities, the safety of PPAR-γ modulators is still of clinical concern in terms of dosage, drug interactions, cancer types and stages, etc. This review aims to consolidate the functions of PPAR-γ, the current and potential applications of PPAR-γ modulators, and the challenges in applying PPAR-γ modulators to cancer treatment, in both laboratory and clinical settings. We sincerely hope to provide a comprehensive perspective on the prospect of PPAR-γ applicability in the field of cancer treatment.
Collapse
Affiliation(s)
- Tiange Chi
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,First Clinical Medical School, Beijing University of Chinese Medicine, Beijing, China
| | - Mina Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Department of Acupuncture and Moxibustion, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ke Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Lewoniewska S, Oscilowska I, Huynh TYL, Prokop I, Baszanowska W, Bielawska K, Palka J. Troglitazone-Induced PRODH/POX-Dependent Apoptosis Occurs in the Absence of Estradiol or ERβ in ER-Negative Breast Cancer Cells. J Clin Med 2021; 10:jcm10204641. [PMID: 34682765 PMCID: PMC8538344 DOI: 10.3390/jcm10204641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary PRODH/POX (proline dehydrogenase/proline oxidase) is a mitochondrial enzyme that catalyzes proline degradation generating reactive oxygen species (ROS). Estrogens limit proline availability for PRODH/POX by stimulating collagen biosynthesis. It has been considered that estrogens determine efficiency of troglitazone (TGZ)-induced PRODH/POX-dependent apoptosis in breast cancer cells. The studies were performed in wild-type and PRODH/POX-silenced estrogen-dependent MCF-7 cells and estrogen-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, ROS production was measured by fluorescence assay, protein expression was determined by Western blot and proline concentration by LC/MS analysis. We found that: i/TGZ-induced apoptosis in MDA-MB-231 occurs only in the absence of estradiol or ERβ, ii/the process is mediated by PRODH/POX, iii/and is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis (proline utilizing process). The data suggest that combined TGZ and anti-estrogen treatment could be considered in experimental therapy of ER negative breast cancers. Abstract The impact of estradiol on troglitazone (TGZ)-induced proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied in wild-type and PRODH/POX-silenced estrogen receptor (ER) dependent MCF-7 cells and ER-independent MDA-MB-231 cells. DNA and collagen biosynthesis were determined by radiometric method, prolidase activity evaluated by colorimetric method, ROS production was measured by fluorescence assay. Protein expression was determined by Western blot and proline concentration by LC/MS analysis. PRODH/POX degrades proline yielding reactive oxygen species (ROS). Estrogens stimulate collagen biosynthesis utilizing free proline and limiting its availability for PRODH/POX-dependent apoptosis. TGZ cytotoxicity was highly pronounced in wild-type MDA-MB-231 cells cultured in medium without estradiol or in the cells cultured in medium with estradiol but deprived of ERβ (by ICI-dependent degradation), while in PRODH/POX-silenced cells the process was not affected. The TGZ cytotoxicity was accompanied by increase in PRODH/POX expression, ROS production, expression of cleaved caspase-3, caspase-9 and PARP, inhibition of collagen biosynthesis, prolidase activity and decrease in intracellular proline concentration. The phenomena were not observed in PRODH/POX-silenced cells. The data suggest that TGZ-induced apoptosis in MDA-MB-231 cells cultured in medium without estradiol or deprived of ERβ is mediated by PRODH/POX and the process is facilitated by proline availability for PRODH/POX by TGZ-dependent inhibition of collagen biosynthesis. It suggests that combined TGZ and antiestrogen treatment could be considered in experimental therapy of estrogen receptor negative breast cancers.
Collapse
Affiliation(s)
- Sylwia Lewoniewska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Ilona Oscilowska
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Thi Yen Ly Huynh
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Izabela Prokop
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Weronika Baszanowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Katarzyna Bielawska
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (S.L.); (T.Y.L.H.); (I.P.); (W.B.); (K.B.)
- Correspondence: ; Tel.: +48-85-748-5706
| |
Collapse
|
15
|
de Vasconcelos A, Boeira AJZ, Drawanz BB, Pedra NS, Bona NP, Stefanello FM, Cunico W. 2,4-Thiazolidinedione as Precursor to the Synthesis of Compounds with Anti-glioma Activities in C6 and GL261 Cells. Med Chem 2021; 17:601-610. [PMID: 32242786 DOI: 10.2174/1573406416666200403075826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Thiazolidinediones (TZDs) represent an important class of heterocyclic compounds that have versatile biological activities, including anticancer activity. Glioma is one of the most common primary brain tumors, and it is responsible for most of the deaths caused by primary brain tumors. In the present work, 2,4-thiazolidinediones were synthesized via a multicomponent microwave one-pot procedure. The cytotoxicity of compounds was analyzed in vitro using rat (C6) and mouse (GL261) glioblastoma cell lines and primary cultures of astrocytes. OBJECTIVE This study aims to synthesize and characterize 2,4-thiazolidinediones and evaluate their antitumor activity. METHODS TZDs were synthesized from three components: 2,4-thiazolidinedione, arene-aldehydes, and aryl chlorides. The reactions were carried out inside a microwave and monitored using thinlayer chromatography (TLC). Compounds were identified and characterized using gas chromatography coupled to mass spectrometry (CG-MS) and hydrogen (1H-NMR) and carbon nuclear magnetic resonance spectroscopy (13C-NMR). The antitumor activity was analyzed using the 3-(4,5- dimethyl)-2,5-diphenyltetrazolium bromide (MTT) reduction test, in which cell viability was verified in the primary cultures of astrocytes and in rat and mouse glioblastoma cells exposed to the synthesized compounds. The cytotoxicity of all derivatives was analyzed at the 100 μM concentration, both in astrocytes and in the mouse and rat glioblastoma cell lines. The compounds that showed the best results, 4CI and 4DI, were also tested at concentrations 25, 50, 100, 175, and 250 μM to obtain the IC50. RESULTS Seventeen TZD derivatives were easily obtained through one-pot reactions in 40 minutes with yields ranging from 12% to 49%. All compounds were cytotoxic to both glioblastoma cell lines without being toxic to the astrocyte primary cell line at 100 μM, thus demonstrating a selective activity. Compounds 4CI and 4DI showed the best results in the C6 cells: IC50 of 28.51 μM and 54.26 μM, respectively. CONCLUSION The compounds were not cytotoxic in astrocyte culture, demonstrating selectivity for malignant cells. Changes in both rings are important for anti-glioma activity in the cell lines tested. TZD 4CI had the best anti-glioma activity.
Collapse
Affiliation(s)
- Alana de Vasconcelos
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Ana Júlia Zulian Boeira
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Bruna Bento Drawanz
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Nathalia Stark Pedra
- Laboratorio de Neuroquimica, inflamacao e Cancer (Neurocan) Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Natália Pontes Bona
- Laboratorio de Neuroquimica, inflamacao e Cancer (Neurocan) Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Francieli Moro Stefanello
- Laboratorio de Neuroquimica, inflamacao e Cancer (Neurocan) Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| | - Wilson Cunico
- Laboratorio de Quimica Aplicada a Bioativos (LaQuiABio), Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitario s/n, Capao do Leao, RS, CEP: 96010-900, Brazil
| |
Collapse
|
16
|
Shankar B, Khatri V, Kumar B, Maikhuri VK, Kumar A, Tomar R, Prasad AK. Synthesis and Structural Characterization of 1-( E-1-Arylpropenon-3-yl)-3,4,6-tri- O-benzyl-d-glucals and Their Transformation into Pentasubstituted (2 R,3 S,4 R)-Chromanes via Pd-Catalyzed Cross Dehydrogenative Coupling Reaction. ACS OMEGA 2021; 6:11248-11259. [PMID: 34056280 PMCID: PMC8153922 DOI: 10.1021/acsomega.1c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
We have developed an efficient methodology for the synthesis of (2R,3S,4R)-2-hydroxymethyl-3,4-dihydroxy-6-aryl-7-aroylchromanes in which the chirality at the C-2, C-3, and C-4 positions is being drawn from C-glucopyranosyl aldehyde, which in turn can be efficiently synthesized from d-glucose. Thus, the synthesis starts with the transformation of sugar aldehyde into 1-(E-1-arylpropenon-3-yl)-3,4,6-tri-O-benzyl-d-glucals using Claisen-Schmidt type condensation reaction with different acetophenones and then to 1,2-disubstituted glucals via Pd(II)-catalyzed cross dehydrogenative coupling reaction, which in turn has been efficiently converted into (2R,3S,4R)-chromanes via 6π-electrocyclization and in situ dehydrogenative aromatization.
Collapse
Affiliation(s)
- Bhawani Shankar
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
- Department
of Chemistry, Deshbandhu College, University
of Delhi, Delhi 110019, India
| | - Vinod Khatri
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Banty Kumar
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Vipin K. Maikhuri
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Amit Kumar
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Rashmi Tomar
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Ashok K. Prasad
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| |
Collapse
|
17
|
Roosta A, Alizadeh A, Rezaiyehraad R, Khanpour M. Efficient and Chemoselective Procedure for Conversion of Rhodanine Derivatives into 1,3‐Thiazolidine‐2,4‐diones via 1,3‐Dipolar Cycloaddition Reaction and Rearrangement Sequences. ChemistrySelect 2020. [DOI: 10.1002/slct.202003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atefeh Roosta
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Abdolali Alizadeh
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Reze Rezaiyehraad
- Department of Chemistry Tarbiat Modares University P.O. Box 14115-175 Tehran Iran
| | - Mojtaba Khanpour
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
18
|
Synthesis, characterization and in vitro biological evaluation of novel organotin(IV) compounds with derivatives of 2-(5-arylidene-2,4-dioxothiazolidin-3-yl)propanoic acid. J Inorg Biochem 2020; 211:111207. [PMID: 32801055 DOI: 10.1016/j.jinorgbio.2020.111207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022]
Abstract
Two novel triphenyltin(IV) compounds, [Ph3SnL1] (L1 = 2-(5-(4-fluorobenzylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (1)) and [Ph3SnL2] (L2 = 2-(5-(5-methyl-2-furfurylidene)-2,4-dioxotetrahydrothiazole-3-yl)propanoate (2)) were synthesized and characterized by FT-IR, (1H and 13C) NMR spectroscopy, mass spectrometry, and elemental microanalysis. The in vitro anticancer activity of the synthesized organotin(IV) compounds was determined against four tumor cell lines: PC-3 (prostate), HT-29 (colon), MCF-7 (breast), and HepG2 (hepatic) using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-12 diphenyltetrazolium bromide) and CV (crystal violet) assays. The IC50 values are found to be in the range from 0.11 to 0.50 μM. Compound 1 exhibits the highest activity toward PC-3 cells (IC50 = 0.115 ± 0.009 μM; CV assay). The tin and platinum uptake in PC-3 cells showed a threefold lower uptake of tin in comparison to platinum (as cisplatin). Together with its higher activity this indicates a much higher cell inhibition potential of the tin compounds (calculated to ca. 50 to 100 times). Morphological analysis suggested that the compounds induce apoptosis in PC-3 cells, and flow cytometry analysis revealed that 1 and 2 induce autophagy as well as NO (nitric oxide) production.
Collapse
|
19
|
Jaladanki CK, Gahlawat A, Rathod G, Sandhu H, Jahan K, Bharatam PV. Mechanistic studies on the drug metabolism and toxicity originating from cytochromes P450. Drug Metab Rev 2020; 52:366-394. [DOI: 10.1080/03602532.2020.1765792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chaitanya K. Jaladanki
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Anuj Gahlawat
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Hardeep Sandhu
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Kousar Jahan
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry and Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Punjab, India
| |
Collapse
|
20
|
Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells 2020; 9:cells9051110. [PMID: 32365809 PMCID: PMC7290852 DOI: 10.3390/cells9051110] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is a serine/threonine (S/T) protein kinase. Although GSK-3 originally was identified to have functions in regulation of glycogen synthase, it was subsequently determined to have roles in multiple normal biochemical processes as well as various disease conditions. GSK-3 is sometimes referred to as a moonlighting protein due to the multiple substrates and processes which it controls. Frequently, when GSK-3 phosphorylates proteins, they are targeted for degradation. GSK-3 is often considered a component of the PI3K/PTEN/AKT/GSK-3/mTORC1 pathway as GSK-3 is frequently phosphorylated by AKT which regulates its inactivation. AKT is often active in human cancer and hence, GSK-3 is often inactivated. Moreover, GSK-3 also interacts with WNT/β-catenin signaling and β-catenin and other proteins in this pathway are targets of GSK-3. GSK-3 can modify NF-κB activity which is often expressed at high levels in cancer cells. Multiple pharmaceutical companies developed small molecule inhibitors to suppress GSK-3 activity. In addition, various natural products will modify GSK-3 activity. This review will focus on the effects of small molecule inhibitors and natural products on GSK-3 activity and provide examples where these compounds were effective in suppressing cancer growth.
Collapse
|
21
|
Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
22
|
Dupommier D, Muller C, Comoy C, Mazerbourg S, Bordessa A, Piquard E, Pawlak M, Piquard F, Martin H, De Fays E, Grandemange S, Flament S, Boisbrun M. New desulfured troglitazone derivatives: Improved synthesis and biological evaluation. Eur J Med Chem 2020; 187:111939. [PMID: 31838327 DOI: 10.1016/j.ejmech.2019.111939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is a major medical threat which cannot be sufficiently addressed by current therapies because of spontaneous or acquired treatment resistance. Besides, triple-negative breast cancer (TNBC) tumors do not respond to targeted therapies, thus new therapeutic strategies are needed. In this context, we designed and prepared new desulfured troglitazone (TGZ)-derived molecules and evaluated them in vitro for their anti-proliferative activity, with a special focus on triple-negative breast cancer cell lines. Optimization of the synthetic strategies and deracemization of the lead compound were performed to give highly active compound 10 with low-micromolar potency. Further studies revealed that this compound triggers apoptosis rather than cell cycle arrest as observed with TGZ.
Collapse
Affiliation(s)
| | - Claire Muller
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | - Corinne Comoy
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | | | | | - Eline Piquard
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | - Manon Pawlak
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | | | - Hélène Martin
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000, Besançon, France
| | - Elia De Fays
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
| | | | | | | |
Collapse
|
23
|
Rančić MP, Stojiljković I, Milošević M, Prlainović N, Jovanović M, Milčić MK, Marinković AD. Solvent and substituent effect on intramolecular charge transfer in 5-arylidene-3-substituted-2,4-thiazolidinediones: Experimental and theoretical study. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
24
|
Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1132-1148. [DOI: 10.1080/21691401.2019.1573824] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Meyer M, Foulquier S, Dupuis F, Flament S, Grimaud L, Henrion D, Lartaud I, Monard G, Grillier-Vuissoz I, Boisbrun M. Synthesis and evaluation of new designed multiple ligands directed towards both peroxisome proliferator-activated receptor-γ and angiotensin II type 1 receptor. Eur J Med Chem 2018; 158:334-352. [PMID: 30223121 DOI: 10.1016/j.ejmech.2018.08.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023]
Abstract
Because of the complex biological networks, many pathologic disorders fail to be treated with a molecule directed towards a single target. Thus, combination therapies are often necessary, but they have many drawbacks. An alternative consists in building molecules intended to interact with multiple targets, called designed multiple ligands. We followed such a strategy in order to treat metabolic syndrome, by setting up molecules directed towards both type 1 angiotensin II (AT1) receptor and peroxisome proliferator-activated receptor-γ (PPAR-γ). For this purpose, many molecules were prepared by merging both pharmacophores following three different strategies. Their ability to activate PPAR-γ and to block AT1 receptors were evaluated in vitro. This strategy led to the preparation of many new PPAR-γ activating and AT1 blocking molecules. Among them, some exhibited both activities, highlighting the convenience of this approach.
Collapse
Affiliation(s)
- Maxime Meyer
- Université de Lorraine, CNRS, L2CM, F-54000, Nancy, France
| | | | | | | | - Linda Grimaud
- UMR CNRS 6214, INSERM U1083, CARFI facility, MITOVASC Institute, University of Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6214, INSERM U1083, CARFI facility, MITOVASC Institute, University of Angers, Angers, France
| | | | - Gérald Monard
- Université de Lorraine, CNRS, LPCT, 54000, Nancy, France
| | | | | |
Collapse
|
26
|
Rodriguez-Duarte J, Dapueto R, Galliussi G, Turell L, Kamaid A, Khoo NKH, Schopfer FJ, Freeman BA, Escande C, Batthyány C, Ferrer-Sueta G, López GV. Electrophilic nitroalkene-tocopherol derivatives: synthesis, physicochemical characterization and evaluation of anti-inflammatory signaling responses. Sci Rep 2018; 8:12784. [PMID: 30143727 PMCID: PMC6109136 DOI: 10.1038/s41598-018-31218-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/14/2018] [Indexed: 12/26/2022] Open
Abstract
Inflammation plays a major role in the onset and development of chronic non-communicable diseases like obesity, cardiovascular diseases and cancer. Combined, these diseases represent the most common causes of death worldwide, thus development of novel pharmacological approaches is crucial. Electrophilic nitroalkenes derived from fatty acids are formed endogenously and exert anti-inflammatory actions by the modification of proteins involved in inflammation signaling cascades. We have developed novel nitroalkenes derived from α-tocopherol aiming to increase its salutary actions by adding anti-inflammatory properties to a well-known nutraceutical. We synthesized and characterized an α-tocopherol-nitroalkene (NATOH) and two hydrosoluble analogues derived from Trolox (NATxME and NATx0). We analyzed the kinetics of the Michael addition reaction of these compounds with thiols in micellar systems aiming to understand the effect of hydrophobic partition on the reactivity of nitroalkenes. We studied NATxME in vitro showing it exerts non-conventional anti-inflammatory responses by inducing Nrf2-Keap1-dependent gene expression and inhibiting the secretion of NF-κB dependent pro-inflammatory cytokines. NATxME was also effective in vivo, inhibiting neutrophil recruitment in a zebrafish model of inflammation. This work lays the foundation for the rational design of a new therapeutic strategy for the prevention and treatment of metabolic and inflammation-related diseases.
Collapse
Affiliation(s)
- Jorge Rodriguez-Duarte
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departmento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.,INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Rosina Dapueto
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departmento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay.,INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Germán Galliussi
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur de Montevideo, Montevideo, Uruguay.,INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Lucía Turell
- Laboratorio de Enzimología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Andrés Kamaid
- INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Analytical Biochemistry and Proteomics Unit, Montevideo, Uruguay
| | - Nicholas K H Khoo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlos Escande
- INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Laboratory of Metabolic Diseases and Aging, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Batthyány
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,Analytical Biochemistry and Proteomics Unit, Montevideo, Uruguay.
| | - Gerardo Ferrer-Sueta
- Laboratorio de Fisicoquímica Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| | - Gloria V López
- Laboratory of Vascular Biology and Drug Development, Institut Pasteur de Montevideo, Montevideo, Uruguay. .,Departmento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay. .,INDICYO Program, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
27
|
Colin C, Meyer M, Cerella C, Kleinclauss A, Monard G, Boisbrun M, Diederich M, Flament S, Grillier-Vuissoz I, Kuntz S. Biotinylation enhances the anticancer effects of 15d‑PGJ2 against breast cancer cells. Int J Oncol 2018; 52:1991-2000. [PMID: 29620161 DOI: 10.3892/ijo.2018.4338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/08/2018] [Indexed: 11/05/2022] Open
Abstract
15-Deoxy-∆12,14-prostaglandin J2 (15d‑PGJ2) is a natural agonist of peroxisome proliferator-activated receptor γ (PPARγ) that displays anticancer activity. Various studies have indicated that the effects of 15d‑PGJ2 are due to both PPARγ-dependent and -independent mechanisms. In the present study, we examined the effects of a biotinylated form of 15d‑PGJ2 (b‑15d‑PGJ2) on hormone-dependent MCF‑7 and triple‑negative MDA‑MB‑231 breast cancer cell lines. b‑15d‑PGJ2 inhibited cell proliferation more efficiently than 15d‑PGJ2 or the synthetic PPARγ agonist, efatutazone. b‑15d‑PGJ2 was also more potent than its non-biotinylated counterpart in inducing apoptosis. We then analyzed the mechanisms underlying this improved efficiency. It was found not to be the result of biotin receptor-mediated increased incorporation, since free biotin in the culture medium did not decrease the anti-proliferative activity of b‑15d‑PGJ2 in competition assays. Of note, b‑15d‑PGJ2 displayed an improved PPARγ agonist activity, as measured by transactivation experiments. Molecular docking analyses revealed a similar insertion of b‑15d‑PGJ2 and 15d‑PGJ2 into the ligand binding domain of PPARγ via a covalent bond with Cys285. Finally, PPARγ silencing markedly decreased the cleavage of the apoptotic markers, poly(ADP-ribose) polymerase 1 (PARP‑1) and caspase‑7, that usually occurs following b‑15d‑PGJ2 treatment. Taken together, our data indicate that biotinylation enhances the anti-proliferative and pro-apoptotic activity of 15d‑PGJ2, and that this effect is partly mediated via a PPARγ-dependent pathway. These results may aid in the development of novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
| | - Maxime Meyer
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Claudia Cerella
- Laboratory for Molecular and Cellular Biology of Cancer, Kirchberg Hospital, L‑2540 Luxembourg, Luxembourg
| | | | - Gérald Monard
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | | | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151‑742, Republic of Korea
| | | | | | - Sandra Kuntz
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| |
Collapse
|
28
|
Trotsko N, Kosikowska U, Paneth A, Wujec M, Malm A. Synthesis and antibacterial activity of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moieties. Saudi Pharm J 2018; 26:568-577. [PMID: 29844729 PMCID: PMC5961620 DOI: 10.1016/j.jsps.2018.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/31/2018] [Indexed: 11/22/2022] Open
Abstract
A series of new (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid derivatives with thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin moiety (28–65) were synthesized by the reaction of (2,4-dioxothiazolidin-5-yl/ylidene)acetic acid chlorides with 5-(hydroxybenzylidene) thiazolidine-2,4-dione, rhodanine and 2-thiohydantoin derivatives. Obtained compounds (28–65) were tested on reference strains of Gram-positive bacteria and ones of the Gram-negative bacteria. The antibacterial activity of target compounds was determined by broth microdilution method. These derivatives showed antibacterial activity generally against Gram-positive bacterial strains. Most active compounds possess MIC = 3.91 mg/L. Our results suggest that presence of electron-withdrawing substituent at phenyl ring is favorable while geometry of molecule does not play important role in antibacterial response. It was confirmed the lack of direct influence of substitution pattern at phenyl ring on antibacterial activity of closely related compounds of series 1–3. The antibacterial activity of some compounds was similar or higher than the activity of commonly used reference drugs such as oxacillin and cefuroxime.
Collapse
Affiliation(s)
- Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University, 4A Chodźki, 20-093 Lublin, Poland
| | - Urszula Kosikowska
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Faculty of Pharmacy with Medical Analytics Division, Medical University, 1 Chodźki, 20-093 Lublin, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University, 4A Chodźki, 20-093 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy with Medical Analytics Division, Medical University, 4A Chodźki, 20-093 Lublin, Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology with Laboratory for Microbiological Diagnostics, Faculty of Pharmacy with Medical Analytics Division, Medical University, 1 Chodźki, 20-093 Lublin, Poland
| |
Collapse
|
29
|
Liu J, Ming B, Gong GH, Wang D, Bao GL, Yu LJ. Current research on anti-breast cancer synthetic compounds. RSC Adv 2018. [DOI: 10.1039/c7ra12912b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is the most common cancer for females and its incidence tends to increase year by year.
Collapse
Affiliation(s)
- Jia Liu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Bian Ming
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Guo-Hua Gong
- First Clinical Medical of Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
| | - Di Wang
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Gui-Lan Bao
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| | - Li-Jun Yu
- Medicinal Chemistry and Pharmacology Institute
- Inner Mongolia University for Nationalities
- Tongliao
- People's Republic of China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System
| |
Collapse
|
30
|
Ingold M, Dapueto R, Victoria S, Galliusi G, Batthyàny C, Bollati-Fogolín M, Tejedor D, García-Tellado F, Padrón JM, Porcal W, López GV. A green multicomponent synthesis of tocopherol analogues with antiproliferative activities. Eur J Med Chem 2018; 143:1888-1902. [DOI: 10.1016/j.ejmech.2017.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/16/2022]
|
31
|
Feng YJ, Chen YH, Huang SL, Liu YH, Lin YC. Cyclization Reactions of Aryl Propargyl Acetates with Tethered Epoxide Induced by Ruthenium Complex. Chem Asian J 2017; 12:3027-3038. [PMID: 28980768 DOI: 10.1002/asia.201701070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/14/2017] [Indexed: 01/05/2023]
Abstract
Reactions of the ruthenium complex [Ru]Cl ([Ru]=Cp(PPh3 )2 Ru; Cp=η5 -C5 H5 ) with several aryl propargyl acetates, each with an ortho-substituted chain of various length containing an epoxide on the aromatic ring and with or without methyl substitutents on the epoxide ring, bring about novel cyclizations. The cyclization reactions of HC≡CCH(OAc)(C6 H4 )CH2 (RC2 H2 O) (R=H, 6 a; R=CH3 , 6 b, where RC2 H2 O is an epoxide ring) in MeOH give the vinylidene complexes 5 a-b, respectively, each with the Cβ integrated into a tetrahydro-5H-benzo[7]annulen-6-ol ring. A C-C bond formation takes place between the propargyl acetate and the less substituted carbon of the epoxide ring. Further cyclizations of 5 a-b induced by HBF4 give the corresponding vinylidene complexes 8 a-b each with a new 8-oxabicyclo-[3.2.1]octane ring by removal of a methanol molecule in high yield. For similar aryl propargyl acetates with a shorter epoxide chain, the cyclization gives a mixture of a vinylidene complex with a tetrahydronaphthalen-1-ol ring and a carbene complex with a tricyclic indeno-furan ring. For the cyclization of 18, with a longer epoxide chain, opening of the epoxide is required to afford the vicinal bromohydrin 22, then tandem cyclization occurs in one pot. Products are characterized by spectroscopic methods as well as by XRD analysis.
Collapse
Affiliation(s)
- Yi-Jhen Feng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Yi-Hsin Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Shou-Ling Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Yi-Hung Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| | - Ying-Chih Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan), Fax: (+886) 223636359
| |
Collapse
|
32
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem 2017; 140:542-594. [PMID: 28987611 PMCID: PMC7111298 DOI: 10.1016/j.ejmech.2017.09.031] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 09/17/2017] [Indexed: 02/02/2023]
Abstract
The presented review is an attempt to summarize a huge volume of data on 5-ene-4-thiazolidinones being a widely studied class of small molecules used in modern organic and medicinal chemistry. The manuscript covers approaches to the synthesis of 5-ene-4-thiazolidinone derivatives: modification of the C5 position of the basic core; synthesis of the target compounds in the one-pot or multistage reactions or transformation of other related heterocycles. The most prominent pharmacological profiles of 5-ene derivatives of different 4-thiazolidinone subtypes belonging to hit-, lead-compounds, drug-candidates and drugs as well as the most studied targets have been discussed. Currently target compounds (especially 5-en-rhodanines) are assigned as frequent hitters or pan-assay interference compounds (PAINS) within high-throughput screening campaigns. Nevertheless, the crucial impact of the presence/nature of C5 substituent (namely 5-ene) on the pharmacological effects of 5-ene-4-thiazolidinones was confirmed by the numerous listed findings from the original articles. The main directions for active 5-ene-4-thiazolidinones optimization have been shown: i) complication of the fragment in the C5 position; ii) introduction of the substituents in the N3 position (especially fragments with carboxylic group or its derivatives); iii) annealing in complex heterocyclic systems; iv) combination with other pharmacologically attractive fragments within hybrid pharmacophore approach. Moreover, the utilization of 5-ene-4-thiazolidinones in the synthesis of complex compounds with potent pharmacological application is described. The chemical transformations cover mainly the reactions which involve the exocyclic double bond in C5 position of the main core and correspond to the abovementioned direction of the 5-ene-4-thiazolidinone modification.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine.
| |
Collapse
|
33
|
Pro-apoptotic effect of Δ2-TGZ in “claudin-1-low” triple-negative breast cancer cells: involvement of claudin-1. Breast Cancer Res Treat 2017; 165:517-527. [DOI: 10.1007/s10549-017-4378-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022]
|
34
|
One-pot three component isocyanide-based reaction: Synthesis of novel tetracyclic fused furo[2′,3′:4,5]pyrimido[2,1- b ][1,3]benzothiazole. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Božić B, Rogan J, Poleti D, Rančić M, Trišović N, Božić B, Ušćumlić G. Synthesis, characterization and biological activity of 2-(5-arylidene-2,4-dioxotetrahydrothiazole-3-yl)propanoic acid derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2013.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
36
|
Naim MJ, Alam MJ, Ahmad S, Nawaz F, Shrivastava N, Sahu M, Alam O. Therapeutic journey of 2,4-thiazolidinediones as a versatile scaffold: An insight into structure activity relationship. Eur J Med Chem 2017; 129:218-250. [DOI: 10.1016/j.ejmech.2017.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/10/2017] [Accepted: 02/11/2017] [Indexed: 01/24/2023]
|
37
|
Khalifa NM, Al-Omar MA, Amr AE. Synthesis and characterization of novel 5-allyl-6-{(benzo[d]thiazol-2-yl)methyl}-2-(alkylsulfanyl)oxopyrimidine derivatives. RUSS J GEN CHEM+ 2016. [DOI: 10.1134/s1070363216120367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Berthe A, Flament S, Grandemange S, Zaffino M, Boisbrun M, Mazerbourg S. Δ2-Troglitazone promotes cytostatic rather than pro-apoptotic effects in breast cancer cells cultured in high serum conditions. Cell Cycle 2016; 15:3402-3412. [PMID: 27753533 DOI: 10.1080/15384101.2016.1245248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that Δ2-Troglitazone (Δ2-TGZ) displayed anticancer effects on breast cancer cell lines grown in low serum conditions (1% fetal calf serum (FCS)). The present study was performed in order to characterize the effects of Δ2-TGZ in high serum containing medium and to determine if starvation could influence the response of breast cancer cells to this compound, keeping in mind the potential interest for breast cancer therapy. We observed that in high serum conditions (10% FCS), a 48 h treatment with Δ2-TGZ induced a decrease in cell numbers in MDA-MB-231 and MCF-7 breast cancer cell lines. The IC50 values were higher than in low serum conditions. Furthermore, in contrast to our previous results obtained in 1% FCS conditions, we observed that in 10% FCS-containing medium, MCF-7 cells were more sensitive to Δ2-TGZ than MDA-MB-231 cells. Δ2-TGZ also induced endoplasmic reticulum (ER) stress mainly in MDA-MB-231 cells. Besides, in high serum conditions, Δ2-TGZ induced a G0/G1 cell cycle arrest, an inhibition of BrdU incorporation and a reduced level of cyclin D1. We observed a limited cleavage of PARP and a limited proportion of cells in sub-G1 phase. Thus, in high serum conditions, Δ2-TGZ displayed cytostatic effects rather than apoptosis as previously reported in 1% FCS-containing medium. Our results are in accordance with studies suggesting that serum starvation could potentiate the action of diverse anti-cancer agents.
Collapse
Affiliation(s)
- Audrey Berthe
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Stéphane Flament
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Stéphanie Grandemange
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Marie Zaffino
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Michel Boisbrun
- c Université de Lorraine, SRSMC , UMR 7565, Vandœuvre-lès-Nancy , France.,d CNRS, SRSMC , UMR 7565, Vandœuvre-lès-Nancy , France
| | - Sabine Mazerbourg
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| |
Collapse
|
39
|
Bao M, Jiang B, Wang H, Li L. Three-component [3+2+1] cyclizations leading to densely functionalized benzo[4,5]thiazolo[1,2- a ]pyrimidines. Tetrahedron 2016. [DOI: 10.1016/j.tet.2015.12.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
|
41
|
Abbasi P, Shamsasenjan K, Movassaghpour Akbari AA, Akbarzadehlaleh P, Dehdilani N, Ejtehadifar M. The Effect of Baicalin as A PPAR Activator on Erythroid Differentiation of CD133(+)Hematopoietic Stem Cells in Umbilical Cord Blood. CELL JOURNAL 2015; 17:15-26. [PMID: 25870831 PMCID: PMC4393663 DOI: 10.22074/cellj.2015.508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/14/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The peroxisome proliferator-activated receptors (PPARs) are a group of nu- clear receptor proteins whose functions as transcription factors regulate gene expres- sions. PPARs play essential roles in the regulation of cellular differentiation, development, and metabolism (carbohydrate, lipid, protein), and tumorigenesis of higher organisms. This study attempts to determine the effect of baicalin, a PPARγ activator, on erythroid differentiation of cluster of differentiation 133(+)(CD133(+)) cord blood hematopoietic stem cells (HSCs). MATERIALS AND METHODS In this experimental study, in order to investigate the effects of the PPARγ agonists baicalin and troglitazone on erythropoiesis, we isolated CD133(+) cells from human umbilical cord blood using the MACS method. Isolated cells were cultured in erythroid-inducing medium with or without various amounts of the two PPARγ activa- tors (baicalin and troglitazone). Erythroid differentiation of CD133(+)cord blood HSCs were assessed using microscopic morphology analysis, flow cytometric analysis of erythroid surface markers transferrin receptor (TfR) and glycophorin A (GPA) and bycolony forming assay. RESULTS Microscopic and flow cytometric analysis revealed the erythroid differentiation of CD133(+)cord blood HSCs under applied erythroid inducing conditions. Our flow cytometric data showed that the TfR and GPA positive cell population diminished significantly in the presence of either troglitazone or baicalin. The suppression of erythroid differentiation in response to PPARγ agonists was dose-dependent. Erythroid colony-forming ability of HSC decreased significantly after treatment with both PPARγ agonists but troglitazone had a markedly greater effect. CONCLUSION Our results have demonstrated that PPARγ agonists modulate erythroid dif- ferentiation of CD133(+)HSCs, and therefore play an important role in regulation of normal erythropoiesis under physiologic conditions. Thus, considering the availability and applica- tion of this herbal remedy for treatment of a wide range of diseases, the inhibitory effect of baicalin on erythropoiesis should be noted.
Collapse
Affiliation(s)
- Parvaneh Abbasi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Karim Shamsasenjan
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran ; Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | | | - Parvin Akbarzadehlaleh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Dehdilani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mostafa Ejtehadifar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
42
|
Kuntz S, Mazerbourg S, Boisbrun M, Cerella C, Diederich M, Grillier-Vuissoz I, Flament S. Energy restriction mimetic agents to target cancer cells: comparison between 2-deoxyglucose and thiazolidinediones. Biochem Pharmacol 2014; 92:102-11. [PMID: 25083915 DOI: 10.1016/j.bcp.2014.07.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/02/2023]
Abstract
The use of energy restriction mimetic agents (ERMAs) to selectively target cancer cells addicted to glycolysis could be a promising therapeutic approach. Thiazolidinediones (TZDs) are synthetic agonists of the nuclear receptor peroxisome proliferator-activated receptor (PPAR)γ that were developed to treat type II diabetes. These compounds also display anticancer effects which appear mainly to be independent of their PPARγ agonist activity but the molecular mechanisms involved in the anticancer action are not yet well understood. Results obtained on ciglitazone derivatives, mainly in prostate cancer cell models, suggest that these compounds could act as ERMAs. In the present paper, we introduce how compounds like 2-deoxyglucose target the Warburg effect and then we discuss the possibility that the PPARγ-independent effects of various TZD could result from their action as ERMAs.
Collapse
Affiliation(s)
- Sandra Kuntz
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Sabine Mazerbourg
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Michel Boisbrun
- Université de Lorraine, SRSMC, UMR 7565, Vandœuvre-lès-Nancy, F-54506, France; CNRS, SRSMC, UMR 7565, Vandœuvre-lès-Nancy, F-54506, France
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer. Hôpital Kirchberg, L-2540, Luxembourg
| | - Marc Diederich
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer. Hôpital Kirchberg, L-2540, Luxembourg; Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Isabelle Grillier-Vuissoz
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France
| | - Stephane Flament
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, F-54506, France.
| |
Collapse
|
43
|
Bordessa A, Colin-Cassin C, Grillier-Vuissoz I, Kuntz S, Mazerbourg S, Husson G, Vo M, Flament S, Martin H, Chapleur Y, Boisbrun M. Optimization of troglitazone derivatives as potent anti-proliferative agents: towards more active and less toxic compounds. Eur J Med Chem 2014; 83:129-40. [PMID: 24953030 DOI: 10.1016/j.ejmech.2014.06.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/16/2014] [Accepted: 06/09/2014] [Indexed: 11/25/2022]
Abstract
Δ2-Troglitazone derivatives were shown to exhibit anti-proliferative activity in a PPARγ-independent manner. We prepared various compounds in order to increase their potency and decrease their toxicity towards non-malignant primary cultured hepatocytes. Many compounds induced viabilities less than 20% at 10 μM on various cancer cell lines. Furthermore, five of them showed hepatocyte viability of 80% or more at 200 μM. In addition, compounds 17 and 18 exhibited promising maximum tolerated doses on a murine model, enabling future investigations.
Collapse
Affiliation(s)
- Andrea Bordessa
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
| | - Christelle Colin-Cassin
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Isabelle Grillier-Vuissoz
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Sandra Kuntz
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Sabine Mazerbourg
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Gauthier Husson
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Myriam Vo
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
| | - Stéphane Flament
- Université de Lorraine, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France; CNRS, CRAN, UMR 7039, BP 70239, F-54506 Vandœuvre-lès-Nancy Cedex, France
| | - Hélène Martin
- Université de Franche-Comté, Laboratoire de Toxicologie Cellulaire, EA 4267, 25030 Besançon Cedex, France
| | - Yves Chapleur
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France
| | - Michel Boisbrun
- Université de Lorraine, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France; CNRS, SRSMC, UMR 7565, BP 70239, F-54506 Vandœuvre-lès-Nancy, France.
| |
Collapse
|
44
|
Djaković-Sekulić T, Lozanov-Crvenković Z, Rančić M, Trišović N, Ušćumlić G. SUBSTITUENT EFFECTS ON CHROMATOGRAPHIC RETENTION DATA OF 5-ARYLIDENE-2,4-THIAZOLIDINEDIONES IN QSAR METHODOLOGY. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2013.825858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Tatjana Djaković-Sekulić
- a Department of Chemistry, Biochemistry and Environmental Protection , University of Novi Sad Faculty of Sciences , Novi Sad , Republic of Serbia
| | - Zagorka Lozanov-Crvenković
- b Department of Mathematics and Informatics , University of Novi Sad Faculty of Sciences , Novi Sad , Republic of Serbia
| | - Milica Rančić
- c Faculty of Forestry Science, University of Belgrade , Belgrade , Republic of Serbia
| | - Nemanja Trišović
- d Faculty of Technology and Metallurgy, University of Belgrade , Belgrade , Republic of Serbia
| | - Gordana Ušćumlić
- d Faculty of Technology and Metallurgy, University of Belgrade , Belgrade , Republic of Serbia
| |
Collapse
|
45
|
Synthesis of 1,3-thiazine-2,4-diones with potential anticancer activity. Eur J Med Chem 2013; 70:411-8. [DOI: 10.1016/j.ejmech.2013.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 01/04/2023]
|
46
|
Colin-Cassin C, Yao X, Cerella C, Chbicheb S, Kuntz S, Mazerbourg S, Boisbrun M, Chapleur Y, Diederich M, Flament S, Grillier-Vuissoz I. PPARγ-inactive Δ2-troglitazone independently triggers ER stress and apoptosis in breast cancer cells. Mol Carcinog 2013; 54:393-404. [PMID: 24293218 DOI: 10.1002/mc.22109] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 10/08/2013] [Accepted: 10/23/2013] [Indexed: 01/02/2023]
Abstract
Our aim was to better understand peroxisome proliferator-activated receptor gamma (PPARγ)-independent pathways involved in anti-cancer effects of thiazolidinediones (TZDs). We focused on Δ2-troglitazone (Δ2-TGZ), a PPARγ inactive TZD that affects breast cancer cell viability. Appearance of TUNEL positive cells, changes in mitochondrial membrane potential, cleavage of poly(ADP-ribose) polymerase (PARP)-1 and caspase-7 revealed that apoptosis occurred in both hormone-dependent MCF7 and hormone-independent MDA-MB-231 breast cancer cells after 24 and 48 h of treatment. A microarray study identified endoplasmic reticulum (ER) stress as an essential cellular function since many genes involved in ER stress were upregulated in MCF7 cells following Δ2-TGZ treatment. Δ2-TGZ-induced ER stress was further confirmed in MCF7 cells by phosphorylation of pancreatic endoplasmic reticulum kinase-like endoplasmic reticulum kinase (PERK) and its target eIF2α after 1.5 h, rapid increase in activating transcription factor (ATF) 3 mRNA levels, splicing of X-box binding protein 1 (XBP1) after 3 h, accumulation of binding immunogloblulin protein (BiP) and CCAAT-enhancer-binding protein homologous protein (CHOP) after 6 h. Immunofluorescence microscopy indicated that CHOP was relocalized to the nucleus of treated cells. Similarly, in MDA-MB-231 cells, overexpression of ATF3, splicing of XBP1, and accumulation of BiP and CHOP were observed following Δ2-TGZ treatment. In MCF7 cells, knock-down of CHOP or the inhibition of c-Jun N-terminal kinase (JNK) did not impair cleavage of PARP-1 and caspase-7. Altogether, our results show that ER stress is an early response of major types of breast cancer cells to Δ2-TGZ, prior to, but not causative of apoptosis.
Collapse
Affiliation(s)
- Christelle Colin-Cassin
- Université de Lorraine, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France; CNRS, CRAN, UMR 7039, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Feng YJ, Lai YH, Lin YC, Huang SL, Liu YH. Reactions of aromatic S- and O-enynes with two methyl substituents on the olefinic unit assisted by a ruthenium complex: tandem cyclization and product selectivity. Chem Asian J 2013; 9:602-11. [PMID: 24265173 DOI: 10.1002/asia.201301264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Indexed: 11/10/2022]
Abstract
Ruthenium-assisted cyclizations of two enynes, HC≡CCH(OH)(C6H4)X-CH2CH=CMe2 (X=S (1a), O (1b)), each of which contains two terminal methyl substituents on the olefinic parts, are explored. The reaction of 1a in CH2Cl2 gives the vinylidene complex 2a from the first cyclization and two side products, 3a and the carbene complex 4a with a benzothiophene ligand. The same reaction in the presence of HBF4 affords 4a exclusively. Air oxidation of 4a in the presence of Et3N readily gives an aldehyde product. In MeOH, tandem cyclizations of 1a generate a mixture of the benzothiochromene compound 10a and the carbene complex 7a also with a benzothiochromene ligand. First, cyclization of 1b likewise proceeds in CH2Cl2 to give 2b. Tandem cyclization of 1b in MeOH yields comparable products 10b and 7b with benzochromene moieties, yet with no other side product. The reaction of [Ru]Cl with HC≡CCH(OH)(C6H4)S-CH2CH=CH2 (1c), which contains no methyl substituent in the olefinic part, in MeOH gives the carbene complex 15c with an unsubstituted thiochromene by means of a C-S bond formation. Structures of 3a and 15c are confirmed by X-ray diffraction analysis. The presence of methyl groups of enynes 1a and 1b promotes sequential cyclization reactions that involve C-C bond formation through carbocationic species.
Collapse
Affiliation(s)
- Yi-Jhen Feng
- Department of Chemistry, National Taiwan University, Taipei, 106 (Taiwan), Fax: (+886) 223636359
| | | | | | | | | |
Collapse
|
48
|
Experimental and theoretical study of substituent effect on 13C NMR chemical shifts of 5-arylidene-2,4-thiazolidinediones. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Nagarapu L, Vanaparthi S, Bantu R, Ganesh Kumar C. Synthesis of novel benzo[4,5]thiazolo[1,2-a]pyrimidine-3-carboxylate derivatives and biological evaluation as potential anticancer agents. Eur J Med Chem 2013; 69:817-22. [PMID: 24113366 DOI: 10.1016/j.ejmech.2013.08.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 01/04/2023]
Abstract
A novel series of building blocks consisting of benzo[4,5]thiazolo[1,2-a]pyrimidine-3-carboxylate have been synthesized as potential anticancer compounds. These compounds were prepared from 2-aminobenzothiazole, benzaldehyde and ethyl acetoacetate in ethylene glycol by catalysing with TBAHS to give benzo[4,5]thiazo[1,2-a]pyrimidine derivative 4 followed by the formation of amide by reaction with several secondary amines in good yields. The cytotoxicity of these compounds was evaluated against human cancer cell lines in vitro (A549, HeLa, MDA-MB-231 and MCF-7). Compound 5b exhibited promising cytotoxicity with IC₅₀ values of 0.58 and 1.58 μM specifically against human breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231, while compound 5a showed promising cytotoxicity against MDA-MB-231 (IC₅₀ value of 5.01 μM).
Collapse
Affiliation(s)
- Lingaiah Nagarapu
- Organic Chemistry Division II, Indian Institute of Chemical Technology (CSIR), Tarnaka, Hyderabad 500007, India.
| | | | | | | |
Collapse
|
50
|
Thiazolidine-2,4-diones: progress towards multifarious applications. Bioorg Med Chem 2013; 21:1599-620. [PMID: 23419324 DOI: 10.1016/j.bmc.2013.01.029] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/08/2013] [Accepted: 01/10/2013] [Indexed: 11/24/2022]
Abstract
The promising activity shown by compounds containing thiazolidine-2,4-dione nucleus in numerous categories such as anti-hyperglycaemics, aldose reductase inhibitors, anti-cancer, anti-inflammatory, anti-arthritics, anti-microbials, etc. has made it an indispensable anchor for development of new therapeutic agents. Varied substituents on the thiazolidine-2,4-dione nucleus have provided a wide spectrum of biological activities. Importance of this nucleus in some activities like, peroxisome proliferator activated receptor γ (PPARγ) agonism and PPARγ-dependent and -independent anti-cancer activities are reviewed separately in literature. Short reviews on biological importance of this nucleus are also known in literature. However, owing to fast development of new drugs possessing thiazolidine-2,4-dione nucleus many research reports are generated in short span of time. So, there is a need to couple the latest information with the earlier information to understand the current status of thiazolidine-2,4-dione nucleus in medicinal chemistry research. In the present review, various derivatives of thiazolidine-2,4-diones with different pharmacological activities are described on the basis of substitution pattern around the nucleus combined with the docking studies performed in the active site of the corresponding receptors with an aim to help medicinal chemists for developing an SAR on thiazolidine-2,4-dione derived compounds for each activity. This discussion will further help in the development of novel thiazolidine-2,4-dione compounds.
Collapse
|