1
|
Acuz A, Güngör Ö, Kılıçaslan D, Güngör SA, Köse M. 1,2,3-Triazole naphthaldehyde compounds and their oxime derivatives: in vitro and in silico DNA binding properties. J Biomol Struct Dyn 2025:1-14. [PMID: 40219737 DOI: 10.1080/07391102.2025.2490060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/15/2024] [Indexed: 04/14/2025]
Abstract
In this work, we report the synthesis and DNA binding properties of a series of 1,2,3-triazole naphthaldehyde compounds and their oxime derivatives. The 1,2,3-triazole naphthaldehyde compounds (1a-1f) were prepared by the Cu(I) catalysed click reactions. The 1,2,3-triazole naphthaldehyde compounds (1a-1f) were then reacted with hydroxyl amine to yield 1,2,3-triazole oxime compounds (2a-2f). The structures of all compounds were characterized by Fourier-transform ınfrared spectroscopy, Nuclear magnetic resonance and elemental analysis. Crystal structures of compounds 1a, 1c, 1f, 2c and 2d were investigated by single crystal X-ray crystallography. The compounds were evaluated for their DNA binding properties via in vitro spectrophotometric and in silico molecular docking studies. The compounds were found to interact with DNA via a groove binding mode with considerable the binding constants. The groove binding mode of interactions were also suggested by fluorescence ethidium bromide replacement experiments and viscosity studies. Binding interactions of the compounds with DNA have also been studied by molecular docking studies.
Collapse
Affiliation(s)
- Ahmet Acuz
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Derya Kılıçaslan
- Chemistry and Chemical Processing Technologies Department, Afsin Vocational School, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
- Research and Development Centre for University-Industry-Public Relations, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Seyit Ali Güngör
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Muhammet Köse
- Chemistry Department, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
2
|
Liu A. Catalase-peroxidase (KatG): a potential frontier in tuberculosis drug development. Crit Rev Biochem Mol Biol 2024; 59:434-446. [PMID: 40013498 PMCID: PMC11935562 DOI: 10.1080/10409238.2025.2470630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Mycobacterium tuberculosis (Mtb) depends on the bifunctional enzyme catalase-peroxidase (KatG) for survival within the host. KatG exhibits both catalase and peroxidase activities, serving distinct yet critical roles. While its peroxidase activity is essential for activating the frontline tuberculosis drug isoniazid, its catalase activity protects Mtb from oxidative stress. This bifunctional enzyme is equipped with a unique, protein-derived cofactor, methionine-tyrosine-tryptophan (MYW), which enables catalase activity to efficiently disproportionate hydrogen peroxide in phagocytes. Recent studies reveal that the MYW cofactor naturally exists in a hydroperoxylated form (MYW-OOH) when cell cultures are grown under ambient conditions. New findings highlight a dynamic regulation of KatG activity, wherein the modification of the protein cofactor is removable-from MYW-OOH to MYW-at body temperature or in the presence of micromolar concentrations of hydrogen peroxide. This reversible modification modulates KatG's dual activities: MYW-OOH inhibits catalase activity while enhancing peroxidase activity, demonstrating the chemical accessibility of the cofactor. Such duality positions KatG as a unique target for tuberculosis drug development. Therapeutic strategies that exploit cofactor modification could hold promise, particularly against drug-resistant strains with impaired peroxidase activity. By selectively inhibiting catalase activity, these approaches would render Mtb more vulnerable to oxidative stress while enhancing isoniazid activation-a double-edged strategy for combating tuberculosis.
Collapse
Affiliation(s)
- Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX 78256, USA
| |
Collapse
|
3
|
Moghadam MK, Eshghi H, Ghodsinia SSE, Shiri A. Cu/N-doped carbon spheres derived from soybean flour as an active green nanocomposite for the synthesis of 1,4-disubstituted 1H-1,2,3-triazole derivatives. Sci Rep 2024; 14:24352. [PMID: 39420079 PMCID: PMC11487062 DOI: 10.1038/s41598-024-75803-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Cu immobilized onto N-doped carbon spheres (Cu/N-doped CS) derived from soybean flour was synthesized via the hydrothermal method and certified as a green high-efficiency catalyst for the regioselective synthesis of 1,4-disubstituted 1H-1,2,3-triazoles. The obtained N-doped carbon spheres from a combination of glucose and soy flour have a larger size and suitable affinity for load copper species. The morphology and structure of the as-prepared catalyst have been confirmed based on FT-IR, XRD, FE-SEM, EDX, BET, and ICP-OES characterizations. The catalytic performance of the Cu/N-doped carbon spheroids was investigated experimentally. It was found that the Cu/N-doped CS nanocomposite has a high efficiency and recyclability for 5 cycles without any appreciable loss in its catalytic activity in the synthesis of 1,4-disubstituted 1H-1,2,3-triazoles via the three-component condensation reaction of various epoxide/alkyl or aryl halides, sodium azide, and phenylacetylene in a water medium. Furthermore, significant advantages such as stability, ease of preparation, low cost of the carbon resource, high regioselectivity, and good product yield have been achieved in the heterogeneous catalyst system attractive for large-scale in many industrial products.
Collapse
Affiliation(s)
- Mahya Kohansal Moghadam
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Sara S E Ghodsinia
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran
| |
Collapse
|
4
|
Venugopala KN, Chandrashekharappa S, Deb PK, Al-Shar'i NA, Pillay M, Tiwari P, Chopra D, Borah P, Tamhaev R, Mourey L, Lherbet C, Aldhubiab BE, Tratrat C, Attimarad M, Nair AB, Sreeharsha N, Mailavaram RP, Venugopala R, Mohanlall V, Morsy MA. Identification of potent indolizine derivatives against Mycobacterial tuberculosis: In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies. Int J Biol Macromol 2024; 274:133285. [PMID: 38925196 DOI: 10.1016/j.ijbiomac.2024.133285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
In the current study, two sets of compounds: (E)-1-(2-(4-substitutedphenyl)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium derivatives (3a-3e); and (E)-3-(substitutedbenzoyl)-7-((hydroxyimino)methyl)-2-substitutedindolizine-1-carboxylate derivatives (5a-5j), were synthesized and biologically evaluated against two strains of Mycobacterial tuberculosis (ATCC 25177) and multi-drug resistant (MDR) strains. Further, they were also tested in vitro against the mycobacterial InhA enzyme. The in vitro results showed excellent inhibitory activities against both MTB strains and compounds 5a-5j were found to be more potent, and their MIC values ranged from 5 to 16 μg/mL and 16-64 μg/mL against the M. tuberculosis (ATCC 25177) and MDR-TB strains, respectively. Compound 5h with phenyl and 4-fluorobenzoyl groups attached to the 2- and 3-position of the indolizine core was found to be the most active against both strains with MIC values of 5 μg/mL and 16 μg/mL, respectively. On the other hand, the two sets of compounds showed weak to moderate inhibition of InhA enzyme activity that ranged from 5 to 17 % and 10-52 %, respectively, with compound 5f containing 4-fluoro benzoyl group attached to the 3-position of the indolizine core being the most active (52 % inhibition of InhA). Unfortunately, there was no clear correlation between the InhA inhibitory activity and MIC values of the tested compounds, indicating the probability that they might have different modes of action other than InhA inhibition. Therefore, a computational investigation was conducted by employing molecular docking to identify their putative drug target(s) and, consequently, understand their mechanism of action. A panel of 20 essential mycobacterial enzymes was investigated, of which β-ketoacyl acyl carrier protein synthase I (KasA) and pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzymes were revealed as putative targets for compounds 3a-3e and 5a-5j, respectively. Moreover, in silico ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.
Collapse
Affiliation(s)
- Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa.
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, Lucknow, UP 226002, India.
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology (BIT), Mesra, Ranchi 835215, Jharkhand, India.
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban 4001, South Africa
| | - Priya Tiwari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER-R), Raebareli, Lucknow, UP 226002, India
| | - Deepak Chopra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal By-pass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Pobitra Borah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology (IIT), Kanpur, 208016, Uttar Pradesh, India
| | - Rasoul Tamhaev
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Christian Lherbet
- Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique (LSPCMIB), UMR 5068, CNRS, Université Toulouse III - Paul Sabatier (UT3), Toulouse, France
| | - Bandar E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Raghu Prasad Mailavaram
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Samtanagar, Dhule 424 001, Maharashtra, India
| | - Rashmi Venugopala
- Department of Public Health Medicine, Howard College Campus, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Viresh Mohanlall
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4000, South Africa
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia 61511, Egypt
| |
Collapse
|
5
|
Mechken KA, Menouar M, Talbi Z, Saidi-Besbes S, Belkhodja M. Self-assembly and antimicrobial activity of cationic gemini surfactants containing triazole moieties. RSC Adv 2024; 14:19185-19196. [PMID: 38882484 PMCID: PMC11177579 DOI: 10.1039/d4ra02177k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
1,2,3-Triazole-based gemini bis-quaternary ammonium surfactants with varying hydrophobic chain length and ethylene or butylene spacers were synthesized and characterized. Their surface and aggregation properties were analyzed using tensiometry and conductimetry. The gemini surfactants showed significantly lower CMC values compared to their single-tail counterparts and conventional gemini surfactants described in the literature. The micellization and surface adsorption processes in water can be tailored according to the hydrophobic chain and the spacer length and were substantially improved by the presence of the heterocycle. These surfactants are active against various Gram-positive and Gram-negative bacterial stains, as well as fungi. The gemini surfactant with tetradecyl chain and ethylene spacer (Bis 14-2-14) exhibited the highest activity against all investigated microbial strains.
Collapse
Affiliation(s)
- Karima Amel Mechken
- Université Oran1, Laboratoire de Synthèse Organique Appliquée (LSOA), Département de Chimie, Faculté des Sciences Exactes et Appliquées BP 1524 ELMnaouer 31000 Oran Algeria
- Université Oran 2, Institut de Maintenance et de Sécurité Industrielle 31000 Oran Algeria
| | - Mohammed Menouar
- Université Oran 1, Laboratoire de Biotoxicologie Expérimentale, Biodépollution et Phytoremédiation 31000 Oran Algeria
| | - Zahera Talbi
- Université Oran 2, Institut de Maintenance et de Sécurité Industrielle 31000 Oran Algeria
| | - Salima Saidi-Besbes
- Université Oran1, Laboratoire de Synthèse Organique Appliquée (LSOA), Département de Chimie, Faculté des Sciences Exactes et Appliquées BP 1524 ELMnaouer 31000 Oran Algeria
| | - Moulay Belkhodja
- Université Oran 1, Laboratoire de Biotoxicologie Expérimentale, Biodépollution et Phytoremédiation 31000 Oran Algeria
| |
Collapse
|
6
|
Majrashi TA, Sabt A, Abd El Salam HA, Al-Ansary GH, Hamissa MF, Eldehna WM. An updated review of fatty acid residue-tethered heterocyclic compounds: synthetic strategies and biological significance. RSC Adv 2023; 13:13655-13682. [PMID: 37152561 PMCID: PMC10157362 DOI: 10.1039/d3ra01368e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Heterocyclic compounds have been featured as the key building blocks for the development of biologically active molecules. In addition to being derived from renewable raw materials, fatty acids possess a variety of biological properties. The two bioactive ingredients are being combined by many researchers to produce hybrid molecules that have a number of desirable properties. Biological activities and significance of heterocyclic derivatives of fatty acids have been demonstrated in a new class of heterocyclic compounds called heterocyclic fatty acid hybrid derivatives. The significance of heterocyclic-fatty acid hybrid derivatives has been emphasized in numerous research articles over the past few years. In this review, we emphasize the development of synthetic methods and their biological evaluation for heterocyclic fatty acid derivatives. These reports, combined with the upcoming compilation, are expected to serve as comprehensive foundations and references for synthetic, preparative, and applicable methods in medicinal chemistry.
Collapse
Affiliation(s)
- Taghreed A Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University Asir 61421 Saudi Arabia
| | - Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki Cairo Egypt
| | | | - Ghada H Al-Ansary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University Cairo P.O. Box 11566 Egypt
| | - Mohamed Farouk Hamissa
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) 33 El Bohouth St., P.O. 12622, Dokki Giza Egypt
- Department of Biomolecular Spectroscopy, Institute of Organic Chemistry and Biochemistry, Academy of Sciences Prague Czech Republic
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University Kafrelsheikh P.O. Box 33516 Egypt
- School of Biotechnology, Badr University in Cairo Cairo 11829 Egypt
| |
Collapse
|
7
|
Chitti S, Van Calster K, Cappoen D, Nandikolla A, Khetmalis YM, Cos P, Kumar BK, Murugesan S, Gowri Chandra Sekhar KV. Design, synthesis and biological evaluation of benzo-[ d]-imidazo-[2,1- b]-thiazole and imidazo-[2,1- b]-thiazole carboxamide triazole derivatives as antimycobacterial agents. RSC Adv 2022; 12:22385-22401. [PMID: 36105967 PMCID: PMC9364363 DOI: 10.1039/d2ra03318f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/03/2022] [Indexed: 11/21/2022] Open
Abstract
In the search for new anti-mycobacterial agents, we revealed the importance of imidazo-[2,1-b]-thiazole and benzo-[d]-imidazo-[2,1-b]-thiazole carboxamide derivatives. We designed, in silico ADMET predicted and synthesized four series of novel imidazo-[2,1-b]-thiazole and benzo-[d]-imidazo-[2,1-b]-thiazole carboxamide analogues in combination with piperazine and various 1,2,3 triazoles. All the synthesized derivatives were characterized by 1H NMR, 13C NMR, HPLC and MS spectral analysis and evaluated for in vitro antitubercular activity. The most active benzo-[d]-imidazo-[2,1-b]-thiazole derivative IT10, carrying a 4-nitro phenyl moiety, displayed IC90 of 7.05 μM and IC50 of 2.32 μM against Mycobacterium tuberculosis (Mtb) H37Ra, while no acute cellular toxicity was observed (>128 μM) towards the MRC-5 lung fibroblast cell line. Another benzo-[d]-imidazo-[2,1-b]-thiazole compound, IT06, which possesses a 2,4-dichloro phenyl moiety, also showed significant activity with IC50 2.03 μM and IC90 15.22 μM against the tested strain of Mtb. Furthermore, the selected hits showed no activity towards a panel of non-tuberculous mycobacteria (NTM), thus suggesting a selective inhibition of Mtb by the tested imidazo-[2,1-b]-thiazole derivatives over the selected panel of NTM. Molecular docking and dynamics studies were also carried out for the most active compounds IT06 and IT10 in order to understand the putative binding pattern, as well as stability of the protein-ligand complex, against the selected target Pantothenate synthetase of Mtb.
Collapse
Affiliation(s)
- Surendar Chitti
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| | - Kevin Van Calster
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp Universiteitsplein 1, 2610 Wilrijk Belgium
| | - Davie Cappoen
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp Universiteitsplein 1, 2610 Wilrijk Belgium
| | - Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| | - Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Pharmaceutical Sciences, University of Antwerp Universiteitsplein 1, 2610 Wilrijk Belgium
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 Telangana India +91 40 66303527
| |
Collapse
|
8
|
Prem Kumar S, Shaikh IA, Mahnashi MH, Alshahrani MA, Dixit SR, Kulkarni VH, Lherbet C, Gadad AK, Aminabhavi TM, Joshi SD. Design, synthesis and computational approach to study novel pyrrole scaffolds as active inhibitors of enoyl ACP reductase (InhA) and Mycobacterium tuberculosis antagonists. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Eisavi R, Ahmadi F. Fe 3O 4@SiO 2-PMA-Cu magnetic nanoparticles as a novel catalyst for green synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. Sci Rep 2022; 12:11939. [PMID: 35831386 PMCID: PMC9279321 DOI: 10.1038/s41598-022-15980-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
The magnetic nanoparticles of Fe3O4 were synthesized through a solid-state reaction of hydrated iron (III) chloride, hydrated iron (II) chloride and NaOH, and then purified by calcination at high temperature. In order to protect ferrite nanoparticles from oxidation and agglomeration, and to manufacture a novel catalytic system of anchored copper on the magnetic substrate, the Fe3O4 was core-shelled by adding tetraethyl orthosilicate. Next, the prepared Fe3O4@SiO2 was supported by phosphomolybdic acid (PMA) as the second layer of nanocomposite at 80 °C in 30 h. Eventually, the new nanocomposite of Fe3O4@SiO2-PMA-Cu was successfully synthesized by adding copper (II) chloride solution and solid potassium borohydride. The structure of magnetic nanocatalyst was acknowledged through different techniques such as EDS, VSM, XRD, TEM, FT-IR, XPS, TGA, BET and FESEM. The synthesis of β-thiolo/benzyl-1,2,3-triazoles from various thiiranes, terminal alkynes and sodium azide was catalyzed by Fe3O4@SiO2-PMA-Cu nanocomposite in aqueous medium. In order to obtain the optimum condition, the effects of reaction time, temperature, catalyst amount and solvent were gauged. The recycled catalyst was used for several consecutive runs without any loss of activity.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor Universtiy (PNU), P.O. BOX 19395-4697, Tehran, Iran.
| | - Fereshteh Ahmadi
- Department of Chemistry, Payame Noor Universtiy (PNU), P.O. BOX 19395-4697, Tehran, Iran
| |
Collapse
|
10
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
11
|
Beukeaw D, Yotphan S. Copper‐Catalyzed Decarboxylative Cycloaddition of Alkynyl Carboxylic Acids and Sodium Azide with Epoxides and Ethers. ChemistrySelect 2021. [DOI: 10.1002/slct.202102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Danupat Beukeaw
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road Bangkok 10400 Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road Bangkok 10400 Thailand
| |
Collapse
|
12
|
Mechken KA, Menouar M, Belkhodja M, Saidi-Besbes S. Synthesis, surface properties and bioactivity of novel 4-Substituted 1,2,3-Triazole quaternary ammonium surfactants. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
13
|
Eisavi R, Naseri K. Preparation, characterization and application of MgFe 2O 4/Cu nanocomposite as a new magnetic catalyst for one-pot regioselective synthesis of β-thiol-1,4-disubstituted-1,2,3-triazoles. RSC Adv 2021; 11:13061-13076. [PMID: 35423852 PMCID: PMC8697271 DOI: 10.1039/d1ra01588e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Magnesium ferrite magnetic nanoparticles were synthesized by a solid-state reaction of magnesium nitrate, hydrated iron(iii) nitrate, NaOH and NaCl salts and then calcined at high temperatures. In order to prevent oxidation and aggregation of magnesium ferrite particles, and also for preparing a new catalyst of supported copper on the magnetic surface, the MgFe2O4 was covered by copper nanoparticles in alkaline medium. Magnetic nanoparticles of MgFe2O4/Cu were successfully obtained. The structure of the synthesized magnetic nanoparticles was identified using XRD, TEM, EDS, FT-IR, FESEM and VSM techniques. The prepared catalyst was used in the three component one-pot regioselective synthesis of 1,2,3-triazoles in water. The various thiiranes bearing alkyl, allyl and aryl groups with terminal alkynes, and sodium azide in the presence of the MgFe2O4/Cu nanocatalyst were converted to the corresponding β-thiolo/benzyl-1,2,3-triazoles as new triazole derivatives. The effects of different factors such as time, temperature, solvent, and catalyst amount were investigated, and performing the reaction using 0.02 g of catalyst in water at 60 °C was chosen as the optimum conditions. The recovered catalyst was used several times without any significant change in catalytic activity or magnetic property.
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry, Payame Noor University PO Box 19395-3697 Tehran Iran
| | - Kazhal Naseri
- Department of Chemistry, Payame Noor University PO Box 19395-3697 Tehran Iran
| |
Collapse
|
14
|
Atukuri D, Gunjal R, Holagundi N, Korlahalli B, Gangannavar S, Akkasali K. Contribution of N-heterocycles towards anti-tubercular drug discovery (2014-2019); predicted and reengineered molecular frameworks. Drug Dev Res 2021; 82:767-783. [PMID: 33660325 DOI: 10.1002/ddr.21809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 11/08/2022]
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, responsible for high death frequency every year all over the world. In this regard, efficient drug-design and discovery towards the prevention of M.tb H37 Rv is of prime concern. Prevention of the infection may include vaccination, and the treatment comprises anti-TB drug regimen. However, the vaccine decreases the risk of tuberculosis infection only to some extent, while drug-resistance limits the efficacy of the existing anti-TB agents. Much improvement has to be achieved to overcome pitfalls such as side effects, high-toxicity, low bioavailability, pharmacokinetics and pharmacodynamics, and hence forth in clinical therapeutics. Amongst heterocyclic compounds, N-heterocycles played a pivotal role in drug-design and discovery. A wide range of microbial diseases are being treated by the N-heterocyclic drugs. The present review comprises description of anti-TB effects of the N-heterocycles such as indoles, triazoles, thiazoles, and pyrazoles. The potent anti-TB activity exerted by the derivatives of these heterocycles is evaluated critically alongside emphasizing structure-activity relationship. Besides, docking studies supporting anti-TB activity is supplemented. Alongside this, based on the potent heterocyclic molecules, the molecular frameworks are designed that would bring about enhanced M. tb H37 Rv inhibitory potencies.
Collapse
Affiliation(s)
- Dorababu Atukuri
- Department of Chemistry, SRMPP Govt. First Grade College, Huvinahadagali, India
| | - Rutu Gunjal
- Department of Chemistry, SRMPP Govt. First Grade College, Huvinahadagali, India
| | - Nagaraj Holagundi
- Department of Chemistry, SRMPP Govt. First Grade College, Huvinahadagali, India
| | | | | | - Kirankumar Akkasali
- Department of Chemistry, SRMPP Govt. First Grade College, Huvinahadagali, India
| |
Collapse
|
15
|
de Almeida SMV, Santos Soares JC, Dos Santos KL, Alves JEF, Ribeiro AG, Jacob ÍTT, da Silva Ferreira CJ, Dos Santos JC, de Oliveira JF, de Carvalho Junior LB, de Lima MDCA. COVID-19 therapy: What weapons do we bring into battle? Bioorg Med Chem 2020; 28:115757. [PMID: 32992245 PMCID: PMC7481143 DOI: 10.1016/j.bmc.2020.115757] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 01/18/2023]
Abstract
Urgent treatments, in any modality, to fight SARS-CoV-2 infections are desired by society in general, by health professionals, by Estate-leaders and, mainly, by the scientific community, because one thing is certain amidst the numerous uncertainties regarding COVID-19: knowledge is the means to discover or to produce an effective treatment against this global disease. Scientists from several areas in the world are still committed to this mission, as shown by the accelerated scientific production in the first half of 2020 with over 25,000 published articles related to the new coronavirus. Three great lines of publications related to COVID-19 were identified for building this article: The first refers to knowledge production concerning the virus and pathophysiology of COVID-19; the second regards efforts to produce vaccines against SARS-CoV-2 at a speed without precedent in the history of science; the third comprehends the attempts to find a marketed drug that can be used to treat COVID-19 by drug repurposing. In this review, the drugs that have been repurposed so far are grouped according to their chemical class. Their structures will be presented to provide better understanding of their structural similarities and possible correlations with mechanisms of actions. This can help identifying anti-SARS-CoV-2 promising therapeutic agents.
Collapse
Affiliation(s)
- Sinara Mônica Vitalino de Almeida
- Laboratório de Biologia Molecular, Universidade de Pernambuco, Garanhuns, PE, Brazil; Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil; Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - José Cleberson Santos Soares
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Keriolaine Lima Dos Santos
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Amélia Galdino Ribeiro
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Íris Trindade Tenório Jacob
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | - Jamerson Ferreira de Oliveira
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Maria do Carmo Alves de Lima
- Laboratório de Química e Inovação Terapêutica (LQIT) - Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
16
|
Caciolla J, Picone G, Farruggia G, Valenti D, Rampa A, Malucelli E, Belluti F, Trezza A, Spiga O, Iotti S, Gobbi S, Cappadone C, Bisi A. Multifaceted activity of polyciclic MDR revertant agents in drug-resistant leukemic cells: Role of the spacer. Bioorg Chem 2020; 106:104460. [PMID: 33229118 DOI: 10.1016/j.bioorg.2020.104460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
A small library of derivatives carrying a polycyclic scaffold recently identified by us as a new privileged structure in medicinal chemistry was designed and synthesized, aiming at obtaining potent MDR reverting agents also endowed with antitumor properties. In particular, as a follow-up of our previous studies, attention was focused on the role of the spacer connecting the polycyclic core with a properly selected nitrogen-containing group. A relevant increase in reverting potency was observed, going from the previously employed but-2-ynyl- to a pent-3-ynylamino moiety, as in compounds 3d and 3e, while the introduction of a triazole ring proved to differently impact on the activity of the compounds. The docking results supported the data obtained by biological tests, showing, for the most active compounds, the ability to establish specific bonds with P-glycoprotein. Moreover, a multifaceted anticancer profile and dual in vitro activity was observed for all compounds, showing both revertant and antitumor effects on leukemic cells. In this respect, 3c emerged as a "triple-target" agent, endowed with a relevant reverting potency, a considerable antiproliferative activity and a collateral sensitivity profile.
Collapse
Affiliation(s)
- Jessica Caciolla
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giovanna Picone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy; National Institute of Biostructures and Biosystems, Via delle Medaglie D'oro, 305, 00136 Roma, Italy
| | - Dario Valenti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Angela Rampa
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Federica Belluti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Alfonso Trezza
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Ottavia Spiga
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy; National Institute of Biostructures and Biosystems, Via delle Medaglie D'oro, 305, 00136 Roma, Italy
| | - Silvia Gobbi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Alessandra Bisi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
17
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
18
|
First triclosan-based macrocyclic inhibitors of InhA enzyme. Bioorg Chem 2019; 95:103498. [PMID: 31855823 DOI: 10.1016/j.bioorg.2019.103498] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/07/2023]
Abstract
Two macrocyclic derivatives based on the triclosan frame were designed and synthesized as inhibitors of Mycobacterium tuberculosis InhA enzyme. One of the two molecules M02 displayed promising inhibitory activity against InhA enzyme with an IC50 of 4.7 μM. Molecular docking studies of these two compounds were performed and confirmed that M02 was more efficient as inhibitor of InhA activity. These molecules are the first macrocyclic direct inhibitors of InhA enzyme able to bind into the substrate pocket. Furthermore, these biaryl ether compounds exhibited antitubercular activities comparable to that of triclosan against M. tuberculosis H37Rv strain.
Collapse
|
19
|
Facile synthesis of a luminescent copper(I) coordination polymer containing a flexible benzotriazole-based ligand: An effective catalyst for three-component azide-alkyne cycloaddition. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Mantoani SP, de Andrade P, Chierrito TPC, Figueredo AS, Carvalho I. Potential Triazole-based Molecules for the Treatment of Neglected Diseases. Curr Med Chem 2019; 26:4403-4434. [DOI: 10.2174/0929867324666170727103901] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Neglected Diseases (NDs) affect million of people, especially the poorest population
around the world. Several efforts to an effective treatment have proved insufficient
at the moment. In this context, triazole derivatives have shown great relevance in
medicinal chemistry due to a wide range of biological activities. This review aims to describe
some of the most relevant and recent research focused on 1,2,3- and 1,2,4-triazolebased
molecules targeting four expressive NDs: Chagas disease, Malaria, Tuberculosis
and Leishmaniasis.
Collapse
Affiliation(s)
- Susimaire Pedersoli Mantoani
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Peterson de Andrade
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | | | - Andreza Silva Figueredo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| | - Ivone Carvalho
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, 14040-903, SP, Brazil
| |
Collapse
|
21
|
Mali JK, Sutar YB, Pahelkar AR, Verma PM, Telvekar VN. Novel fatty acid-thiadiazole derivatives as potential antimycobacterial agents. Chem Biol Drug Des 2019; 95:174-181. [PMID: 31581353 DOI: 10.1111/cbdd.13634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/20/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022]
Abstract
The discovery of antibiotics around the middle twentieth century led to a decrease in the interest in antimycobacterial fatty acids. In order to re-establish the importance of naturally abundant fatty acid, a series of fatty acid-thiadiazole derivatives were designed and synthesized based on molecular hybridization approach. In vitro antimycobacterial potential was established by a screening of synthesized compounds against Mycobacterium tuberculosis H37Rv strain. Among them, compounds 5a, 5d, 5h, and 5j were the most active, with compound 5j exhibiting minimum inhibitory concentration of 2.34 μg/ml against M.tb H37Rv. Additionally, the compounds were docked to determine the probable binding interactions and understand the mechanism of action of most active molecules on enoyl-acyl carrier protein reductases (InhA), which is involved in the mycobacterium fatty acid biosynthetic pathway.
Collapse
Affiliation(s)
- Jaishree K Mali
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Yogesh B Sutar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Akshata R Pahelkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Preeti M Verma
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Vikas N Telvekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
22
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
23
|
Chemical synthesis, molecular modeling and pharmacophore mapping of new pyrrole derivatives as inhibitors of InhA enzyme and Mycobacterium tuberculosis growth. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Kaushik CP, Sangwan J, Luxmi R, Kumar K, Pahwa A. Synthetic Routes for 1,4-disubstituted 1,2,3-triazoles: A Review. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190514074146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
N-Heterocyclic compounds like 1,2,3-triazoles serve as a key scaffolds among organic compounds having diverse applications in the field of drug discovery, bioconjugation, material science, liquid crystals, pharmaceutical chemistry and solid phase organic synthesis. Various drugs containing 1,2,3-triazole ring which are commonly available in market includes Rufinamide, Cefatrizine, Tazobactam etc., Stability to acidic/basic hydrolysis along with significant dipole moment support triazole moiety for appreciable participation in hydrogen bonding and dipole-dipole interactions with biological targets. Huisgen 1,3-dipolar azide-alkyne cycloaddition culminate into a mixture of 1,4 and 1,5- disubstituted 1,2,3-triazoles. In 2001, Sharpless and Meldal came across with a copper(I) catalyzed regioselective synthesis of 1,4-disubstituted 1,2,3-triazoles by cycloaddition between azides and terminal alkynes. This azide-alkyne cycloaddition has been labelled as a one of the important key click reaction. Click synthesis describes chemical reactions that are simple to perform, gives high selectivity, wide in scope, fast reaction rate and high yields. Click reactions are not single specific reaction, but serve as a pathway for construction of simple to complex molecules from a variety of starting materials. In the last few decades, 1,2,3-triazoles attracted attention of researchers all over the world because of their broad spectrum of biological activities. Keeping in view the biological importance of 1,2,3-triazole, in this review we focus on the various synthetic routes for the syntheisis of 1,4-disubstituted 1,2,3-triazoles. This review involves various synthetic protocols which involves copper and non-copper catalysts, different solvents as well as substrates. It will boost synthetic chemists to explore new pathway for the development of newer biologically active 1,2,3-triazoles.
Collapse
Affiliation(s)
- Chander P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Jyoti Sangwan
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Raj Luxmi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Krishan Kumar
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana-125001, India
| |
Collapse
|
25
|
In Silico Repositioning of Cannabigerol as a Novel Inhibitor of the Enoyl Acyl Carrier Protein (ACP) Reductase (InhA). Molecules 2019; 24:molecules24142567. [PMID: 31311157 PMCID: PMC6680637 DOI: 10.3390/molecules24142567] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 12/22/2022] Open
Abstract
Cannabigerol (CBG) and cannabichromene (CBC) are non-psychoactive cannabinoids that have raised increasing interest in recent years. These compounds exhibit good tolerability and low toxicity, representing promising candidates for drug repositioning. To identify novel potential therapeutic targets for CBG and CBC, an integrated ligand-based and structure-based study was performed. The results of the analysis led to the identification of CBG as a low micromolar inhibitor of the Enoyl acyl carrier protein (ACP) reductase (InhA) enzyme.
Collapse
|
26
|
Multicomponent click reaction catalyzed by organic surfactant-free copper sulfide (sf-CuS) nano/micro flowers. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Eisavi R, Karimi A. CoFe2O4/Cu(OH)2 magnetic nanocomposite: an efficient and reusable heterogeneous catalyst for one-pot synthesis of β-hydroxy-1,4-disubstituted-1,2,3-triazoles from epoxides. RSC Adv 2019; 9:29873-29887. [PMID: 35531545 PMCID: PMC9071911 DOI: 10.1039/c9ra06038c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/13/2019] [Indexed: 01/12/2023] Open
Abstract
A magnetically separable CoFe2O4/Cu(OH)2 nanocomposite was prepared and characterized by various techniques such as FESEM, EDS, TEM, XRD, VSM and FT-IR. This novel composite was used as a heterogeneous catalyst for the regioselective synthesis of β-hydroxy-1,4-disubstituted-1,2,3-triazoles from sodium azide, terminal alkynes and structurally different epoxides in water at 60 °C. The formation of the product proceeds in one pot through a mechanism that involves an in situ generated organic azide intermediate, followed by rapid ring closure with the alkyne component. The simple procedure, short reaction times, perfect regioselectivity, high product yields, and use of a benign solvent and nontoxic catalyst are among the considerable advantages of this protocol. Furthermore, the catalyst was easily separated using an external magnet and reused several times without any significant loss of catalytic activity or magnetic properties. Magnetically separable CoFe2O4/Cu(OH)2 nanocomposite was prepared and used as a novel heterogeneous catalyst for synthesis of β-hydroxy-1,4-disubstituted-1,2,3-triazoles from epoxides.![]()
Collapse
Affiliation(s)
- Ronak Eisavi
- Department of Chemistry
- Payame Noor University
- Tehran
- Iran
| | - Asmar Karimi
- Department of Chemistry
- Payame Noor University
- Tehran
- Iran
| |
Collapse
|
28
|
Khare SP, Deshmukh TR, Sangshetti JN, Krishna VS, Sriram D, Khedkar VM, Shingate BB. Design, Synthesis and Molecular Docking Studies of Novel Triazole‐Chromene Conjugates as Antitubercular, Antioxidant and Antifungal Agents. ChemistrySelect 2018. [DOI: 10.1002/slct.201801859] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Smita P. Khare
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, Maharashtra India
| | - Tejshri R. Deshmukh
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, Maharashtra India
| | - Jaiprakash N. Sangshetti
- Department of Pharmaceutical ChemistryY. B. Chavan College of PharmacyDr. Rafiq Zakaria Campus, Aurangabad 431 001, Maharashtra India
| | - Vagolu S. Krishna
- Department of PharmacyBirla Institute of Technology & Science-Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana India
| | - Dharmarajan Sriram
- Department of PharmacyBirla Institute of Technology & Science-Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, Telangana India
| | - Vijay M. Khedkar
- Department of Pharmaceutical ChemistryShri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424 001, Maharashtra India
| | - Bapurao B. Shingate
- Department of ChemistryDr. Babasaheb Ambedkar Marathwada University, Aurangabad 431 004, Maharashtra India
| |
Collapse
|
29
|
Joshi SD, Dixit SR, Basha J, Kulkarni V, Aminabhavi TM, Nadagouda MN, Lherbet C. Pharmacophore mapping, molecular docking, chemical synthesis of some novel pyrrolyl benzamide derivatives and evaluation of their inhibitory activity against enoyl-ACP reductase (InhA) and Mycobacterium tuberculosis. Bioorg Chem 2018; 81:440-453. [DOI: 10.1016/j.bioorg.2018.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
|
30
|
Swatko-Ossor M, Klimek K, Belcarz A, Kaczor AA, Pitucha M, Ginalska G. Do new N-substituted 3-amino-4-phenyl-5-oxo-pyrazolinecarboxamide derivatives exhibit antitubercular potential? Eur J Pharm Sci 2018; 121:155-165. [PMID: 29802898 DOI: 10.1016/j.ejps.2018.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
As a continuation of previous tests concerning new N-substituted 3-amino-4-phenyl-5-oxo-pyrazolinecarboxamide derivatives (R3, R4 and R8) of notable antibacterial activity, their antitubercular potential against different mycobacterial strains was estimated. Tests performed on virulent (reference and clinical) strains of Mycobacterium bovis and Mycobacterium tuberculosis revealed the highest therapeutic potential of R8 derivative: MIC within the range 7.8-15.6 μg/ml and TI (therapeutic index) within the range 46.5-93. Moreover, the synergistic interaction was found between R3, R4 and R8 derivatives and rifampicin, one of the front-line antitubercular drugs. R8/rifampicin mixture in concentrations effective in inhibition of Mycobacterium tuberculosis strain was non-cytotoxic against GMK cells, displaying cell viability approximately 88-97% when compared to control. Molecular docking study enabled to conclude that enoyl acyl carrier protein reductase (InhA) can be considered as a potential molecular target of tested pyrazole derivatives. Although further modifications of chemical structure of the investigated pyrazole derivatives is required, in order to increase their antitubercular efficacy and therapeutic safety, these compounds, in particular R8 compound, can be promising for the treatment of human and bovine tuberculosis.
Collapse
Affiliation(s)
- Marta Swatko-Ossor
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland.
| | - Agnieszka Anna Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modelling Lab, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland; University of Eastern Finland, School of Pharmacy, Department of Pharmaceutical Chemistry, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Monika Pitucha
- Independent Radiopharmacy Unit Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland
| |
Collapse
|
31
|
Bhattacharyya S, Hatua K. Theoretical investigation of Banert cascade reaction. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171075. [PMID: 29765623 PMCID: PMC5936888 DOI: 10.1098/rsos.171075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
Computational inside of Banert cascade reaction for triazole formation is studied with B3LYP/6-31G(d,p) level of theory. The reaction proceeds mainly by SN2 initial chloride displacement rather than SN2'-type attack. Furthermore, according to the rate of reaction calculation, SN2 displacement is much faster than SN2' displacement in the order of 8. The [3,3]-sigmatropic rearrangement for the conversion of propargyl azide into triazafulvene has been proved as the rate-determining step having highest activation energy parameter. Solvent effect on total course of reaction has been found negligible. Furthermore, effects of different density functional theory functionals and functional groups on activation energies of [3,3]-sigmatropic rearrangement of propargyl azide were also studied. BHHLYP, ωB97XD, M062X and BMK calculated ΔG‡ are consistent with B3LYP.
Collapse
Affiliation(s)
- S. Bhattacharyya
- Chemistry of Interfaces, Luleå University of Technology, Luleå 97187, Sweden
| | - K. Hatua
- Department of Chemistry, IIEST, Shibpur 711103, India
| |
Collapse
|
32
|
Yu JY, Cheng HJ, Wu HR, Wu WS, Lu JW, Cheng TJ, Wu YT, Fang JM. Structure-based design of bacterial transglycosylase inhibitors incorporating biphenyl, amine linker and 2-alkoxy-3-phosphorylpropanoate moieties. Eur J Med Chem 2018; 150:729-741. [PMID: 29574202 DOI: 10.1016/j.ejmech.2018.03.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 01/28/2023]
Abstract
Transglycosylase (TGase) is essential to biosynthesis of peptidoglycan for formation of bacterial cell wall. Moenomycin is a potent TGase inhibitor, but not used in clinic treatment due to its poor pharmacokinetics. The E-F disaccharide, phosphoglycerate and lipid tail in moenomycin are crucial elements for TGase inhibition and antibacterial activity. Based on this scaffold, a series of truncated mimics comprising biphenyl, amine linker and 2-alkoxy-3-phosphorylpropanoate moieties were designed to test their TGase inhibitory activity. In this design, the phosphorylpropanoate group is a surrogate of phosphoglycerate with improved stability. A library of lipid tails can be constructed by a straightforward approach using Cu(I)-catalyzed (3 + 2) cycloaddition reactions, and the as-synthesized triazole ring can provide additional hydrogen bonds in the TGase active site. Our molecular docking experiments reveal that the biphenyl group provides π-π and π-cation interactions to act as a simplified alternative of the C-E disaccharide in moenomycin. To play the role of the oxonium transition state in transglycosylation, the amine linker exists as a positively charged species in physiological condition to attain electrostatic interactions with acidic residues. In this study, two biphenyl-linked 2-alkoxy-3-phosphorylpropanoate compounds (8 and 10) are found to exhibit modest inhibitory activity (IC50 ≈ 150 μM) against the TGase of Acinetobacter baumannii and good antibacterial activity against Staphylococcus aureus (MIC = 6.3 μM).
Collapse
Affiliation(s)
- Jui-Yin Yu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Hsiu-Jung Cheng
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Huei-Ru Wu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Wei-Shen Wu
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Jui-Wen Lu
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Ting-Jen Cheng
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Ying-Ta Wu
- The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan, ROC; The Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
33
|
Suresh A, Srinivasarao S, Agnieszka N, Ewa AK, Alvala M, Lherbet C, Chandra Sekhar KVG. Design and synthesis of 9H-fluorenone based 1,2,3-triazole analogues asMycobacterium tuberculosisInhA inhibitors. Chem Biol Drug Des 2018; 91:1078-1086. [DOI: 10.1111/cbdd.13127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Amaroju Suresh
- Department of Chemistry; Birla Institute of Technology and Science; Hyderabad Telangana India
| | - Singireddi Srinivasarao
- Department of Chemistry; Birla Institute of Technology and Science; Hyderabad Telangana India
| | - Napiórkowska Agnieszka
- Microbiology Department; National Tuberculosis and Lung Diseases Research Institute; Warsaw Poland
| | - Augustynowicz-Kopeć Ewa
- Microbiology Department; National Tuberculosis and Lung Diseases Research Institute; Warsaw Poland
| | - Mallika Alvala
- National Institute of Pharmaceutical Education and Research-Hyderabad; Hyderabad Telangana India
| | - Christian Lherbet
- Laboratoire SPCMIB (UMR CNRS 5068); Université Paul Sabatier; Université de Toulouse; Toulouse Cedex France
- ITAV-USR3505, CNRS, UPS; Université de Toulouse; Toulouse France
| | | |
Collapse
|
34
|
An insight into the biological activities of heterocyclic–fatty acid hybrid molecules. Eur J Med Chem 2017; 141:113-137. [DOI: 10.1016/j.ejmech.2017.09.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/02/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
35
|
Joshi SD, More UA, Dixit SR, Balmi SV, Kulkarni BG, Ullagaddi G, Lherbet C, Aminabhavi TM. Chemical synthesis and in silico molecular modeling of novel pyrrolyl benzohydrazide derivatives: Their biological evaluation against enoyl ACP reductase (InhA) and Mycobacterium tuberculosis. Bioorg Chem 2017; 75:181-200. [DOI: 10.1016/j.bioorg.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 09/09/2017] [Accepted: 09/11/2017] [Indexed: 11/29/2022]
|
36
|
Aruna Kumari M, Triloknadh S, Harikrishna N, Vijjulatha M, Venkata Rao C. Synthesis, Antibacterial Activity, and Docking Studies of 1,2,3-triazole-tagged Thieno[2,3-d
]pyrimidinone Derivatives. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M. Aruna Kumari
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - S. Triloknadh
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - N. Harikrishna
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| | - M. Vijjulatha
- Department of Chemistry; University College of Science, Osmania University; Telangana India
| | - C. Venkata Rao
- Department of Chemistry; Sri Venkateswara University; Tirupati 517 502 Andhra Pradesh India
| |
Collapse
|
37
|
Kaushik C, Luxmi R. Synthesis and Antimicrobial Activity of 2-(4-(Hydroxyalkyl)-1H
-1,2,3-triazol-1-yl)-N
-substituted propanamides. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C.P. Kaushik
- Department of Chemistry; Guru Jambheshwar University of Science & Technology; Hisar Haryana 125001 India
| | - Raj Luxmi
- Department of Chemistry; Guru Jambheshwar University of Science & Technology; Hisar Haryana 125001 India
| |
Collapse
|
38
|
Lone MY, Manhas A, Athar M, Jha PC. Identification of InhA inhibitors: A combination of virtual screening, molecular dynamics simulations and quantum chemical studies. J Biomol Struct Dyn 2017; 36:2951-2965. [DOI: 10.1080/07391102.2017.1372313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohsin Y. Lone
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Anu Manhas
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Mohd. Athar
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Prakash C. Jha
- Centre for Applied Chemistry, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| |
Collapse
|
39
|
Oliveira PFM, Guidetti B, Chamayou A, André-Barrès C, Madacki J, Korduláková J, Mori G, Orena BS, Chiarelli LR, Pasca MR, Lherbet C, Carayon C, Massou S, Baron M, Baltas M. Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity. Molecules 2017; 22:molecules22091457. [PMID: 28862683 PMCID: PMC6151834 DOI: 10.3390/molecules22091457] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/26/2022] Open
Abstract
A series of isoniazid derivatives bearing a phenolic or heteroaromatic coupled frame were obtained by mechanochemical means. Their pH stability and their structural (conformer/isomer) analysis were checked. The activity of prepared derivatives against Mycobacterium tuberculosis cell growth was evaluated. Some compounds such as phenolic hydrazine 1a and almost all heteroaromatic ones, especially 2, 5 and 7, are more active than isoniazid, and their activity against some M. tuberculosis MDR clinical isolates was determined. Compounds 1a and 7 present a selectivity index >1400 evaluated on MRC5 human fibroblast cells. The mechanism of action of selected hydrazones was demonstrated to block mycolic acid synthesis due to InhA inhibition inside the mycobacterial cell.
Collapse
Affiliation(s)
- Paulo F M Oliveira
- Department of Process Engineering, Université de Toulouse, Mines-Albi, CNRS UMR 5302, Centre RAPSODEE, Campus Jarlard, 81013 Albi, France.
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Brigitte Guidetti
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Alain Chamayou
- Department of Process Engineering, Université de Toulouse, Mines-Albi, CNRS UMR 5302, Centre RAPSODEE, Campus Jarlard, 81013 Albi, France.
| | - Christiane André-Barrès
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Jan Madacki
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Jana Korduláková
- Department of Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Giorgia Mori
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia; via Ferrata 1, 27100 Pavia, Italy.
| | - Beatrice Silvia Orena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia; via Ferrata 1, 27100 Pavia, Italy.
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia; via Ferrata 1, 27100 Pavia, Italy.
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia; via Ferrata 1, 27100 Pavia, Italy.
| | - Christian Lherbet
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Chantal Carayon
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Stéphane Massou
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
| | - Michel Baron
- Department of Process Engineering, Université de Toulouse, Mines-Albi, CNRS UMR 5302, Centre RAPSODEE, Campus Jarlard, 81013 Albi, France.
| | - Michel Baltas
- Department of Chemistry, Université de Toulouse, UPS, CNRS UMR 5068, LSPCMIB, 118 Route de Narbonne, 31062 Toulouse, France.
- CNRS, Laboratoire de Synthèse et Physico-Chimie de Molécules d'Intérêt Biologique, LSPCMIB, UMR-5068, 118 Route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
40
|
Chirke SS, Krishna JS, Rathod BB, Bonam SR, Khedkar VM, Rao BV, Sampath Kumar HM, Shetty PR. Synthesis of Triazole Derivatives of 9-Ethyl-9H-carbazole and Dibenzo[b,d]furan and Evaluation of Their Antimycobacterial and Immunomodulatory Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201701377] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sahadev S. Chirke
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic and Biomolecular Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Jattuboyina Siva Krishna
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic and Biomolecular Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Balaji B. Rathod
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Medicinal Chemistry & Biotechnology Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Srinivasa Reddy Bonam
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Vaccine Immunology lab, Natural Product Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Vijay M. Khedkar
- Shri Vile Parle Kelavani Mandal's Institute of Pharmacy; Mumbai Agra Road, Dhule Maharashtra- 424 001 India
| | - Batchu Venkateswara Rao
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Organic and Biomolecular Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Halmuthur Mahabalarao Sampath Kumar
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Vaccine Immunology lab, Natural Product Chemistry Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| | - Prakasham Reddy Shetty
- Academy of Scientific and Innovative Research (AcSIR); New Delhi India
- Medicinal Chemistry & Biotechnology Division; CSIR-Indian Institute of Chemical Technology, Tarnaka; Hyderabad- 500 007 India
| |
Collapse
|
41
|
Esmaeili-Shahri H, Eshghi H, Lari J, Rounaghi SA. Click approach to the three-component synthesis of novel β-hydroxy-1,2,3-triazoles catalysed by new (Cu/Cu2
O) nanostructure as a ligand-free, green and regioselective nanocatalyst in water. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3947] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hadi Esmaeili-Shahri
- Department of Chemistry, Faculty of Science; Payame Noor University; PO Box 19395-3697 Tehran Iran
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Sciences; Ferdowsi University of Mashhad; Mashhad Iran
| | - Jalil Lari
- Department of Chemistry, Faculty of Science; Payame Noor University; PO Box 19395-3697 Tehran Iran
| | - Seyyed Amin Rounaghi
- Department of Materials Engineering; Birjand University of Technology; Birjand 9719866981-236 Iran
| |
Collapse
|
42
|
Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 138:501-513. [PMID: 28692915 DOI: 10.1016/j.ejmech.2017.06.051] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/20/2017] [Accepted: 06/25/2017] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) remains one of the most widespread and leading deadliest diseases, threats one-third of the world's population. Although numerous efforts have been undertaken to develop new anti-TB agents, only a handful of compounds have entered human trials in the past 5 decades. Triazoles including 1,2,3-triazole and 1,2,4-triazole are one of the most important classes of nitrogen containing heterocycles that exhibited various biological activities. Triazole derivatives are regarded as a new class of effective anti-TB candidates owing to their potential anti-TB potency. Thus, molecules containing triazole moiety may show promising in vitro and in vivo anti-TB activities and might be able to prevent the drug resistant to certain extent. This review outlines the advances in the application of triazole-containing hybrids as anti-TB agents, and discusses the structure-activity relationship of these derivatives.
Collapse
|
43
|
Kumar V, Patel S, Jain R. New structural classes of antituberculosis agents. Med Res Rev 2017; 38:684-740. [DOI: 10.1002/med.21454] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
- Present address: Department of Chemistry; Akal University; Talwandi Sabo Punjab 151 302 India
| | - Sanjay Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| |
Collapse
|
44
|
In vitro and in vivo assessments of two novel hydrazide compounds against breast cancer as well as mammary tumor cells. Cancer Chemother Pharmacol 2017; 79:1195-1203. [PMID: 28451832 DOI: 10.1007/s00280-017-3318-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 02/26/2017] [Indexed: 01/27/2023]
Abstract
PURPOSE The hydrazide backbone is a well-known structural core system found in a broad range of biologically activated compounds. Among which, the compounds with anticancer activity have been cited in a number of studies. With this object in mind, we focused on the in vitro and in vivo anticancer potential of two novel hydrazide derivatives bearing furan or thiophen substituents (compounds 1 and 2). METHODS The cytotoxic property was evaluated using MTT assay against MCF-7 human breast adenocarcinoma cell line, while the in vivo antitumor activity was investigated in BALB/c mice bearing 4T1 mammary carcinoma cells. Flow cytometry was used for cell cycle analysis, and detection of apoptosis was examined by Annexin-V-FLUOS/PI assay. Protein expression of Bax, Bcl-2 and procaspase-3 was estimated by Western blotting. RESULTS Compounds 1 and 2 were found to be cytotoxic towards breast cancer cells presenting IC50 values of 0.7 and 0.18 µM, respectively, and selectivity over normal fibroblast cells. Our findings further indicated that 2 × IC50 concentrations of both compounds induce early stage apoptosis and increase percentage of sub-G1 population in MCF-7 cells at 48 h. An elevation in Bax/Bcl-2 ratio and caspase-3 cleavage suggested that apoptosis induced by the two compounds is through a caspase- and mitochondrial-dependent pathway. In the in vivo study, compounds 1 and 2 at doses of 10 and 1 mg/Kg/day, respectively, significantly hindered the growth of tumor after 3 weeks of i.p. administration, when compared to vehicle-treated mice. CONCLUSION Collectively, the great potential exhibited by compound 2 could make it a promising chemotherapeutic candidate for human cancers, especially for breast cancer.
Collapse
|
45
|
QSAR and pharmacophore modeling of anti-tubercular 6-Fluoroquinolone compounds utilizing calculated structural descriptors. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1882-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Joshi SD, Dixit SR, Kulkarni VH, Lherbet C, Nadagouda MN, Aminabhavi TM. Synthesis, biological evaluation and in silico molecular modeling of pyrrolyl benzohydrazide derivatives as enoyl ACP reductase inhibitors. Eur J Med Chem 2017; 126:286-297. [PMID: 27889632 DOI: 10.1016/j.ejmech.2016.11.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/09/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
In efforts to develop lead anti-TB compounds, a novel series of 19 pyrrolyl benzohydrazides were synthesized and screened to target enoyl-ACP reductase enzyme, which is one of the important enzymes involved in type II fatty acid biosynthetic pathway of M. tuberculosis. Pharmacophores were constructed using GALAHAD to generate alignment of data sets and calculated by Pareto ranking. The pharmacophore features were then filtered by Surflex-dock study using enoyl ACP reductase from M. tuberculosis. Compounds 5b and 5d showed H-bonding interactions with Tyr158, Thr196 and co-factor NAD+ that fitted well within the binding pocket of InhA. All the synthesized compounds were screened for preliminary antibacterial activities against Gram-positive S. aureus and Gram-negative E. coli and M. tuberculosis H37Rv to evaluate their antitubercular activities. Some representative compounds were further tested for mammalian cell toxicity using human lung cancer cell-line (A549) that was found to be nontoxic. These compounds exhibited moderate inhibition activities against InhA.
Collapse
Affiliation(s)
- Shrinivas D Joshi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, 580 002, India.
| | - Sheshagiri R Dixit
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, 580 002, India
| | - Venkatarao H Kulkarni
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, 580 002, India
| | - Christian Lherbet
- Universite de Toulouse, UPS, Laboratoire de Synthese et Physico-chimie de Molecules d'Interet Biologique, LSPCMIB, 118 Roote de Narbonne, F-31062, Toulouse Cedex 9, France; ITAV-USR3505, Université de Toulouse, CNRS, UPS, F-31106 Toulouse, France
| | - Mallikarjuna N Nadagouda
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, 580 002, India
| | - Tejraj M Aminabhavi
- Novel Drug Design and Discovery Laboratory, Department of Pharmaceutical Chemistry, S.E.T's College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, 580 002, India
| |
Collapse
|
47
|
Abdu-Allah HHM, Youssif BGM, Abdelrahman MH, Abdel-Hamid MK, Reshma RS, Yogeeswari P, Aboul-Fadl T, Sriram D. Synthesis and anti-mycobacterial activity of 4-(4-phenyl-1H-1,2,3-triazol-1-yl)salicylhydrazones: revitalizing an old drug. Arch Pharm Res 2016; 40:168-179. [DOI: 10.1007/s12272-016-0882-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022]
|
48
|
Kaushik CP, Luxmi R, Singh D, Kumar A. Synthesis and antimicrobial evaluation of ester-linked 1,4-disubstituted 1,2,3-triazoles with a furyl/thienyl moiety. Mol Divers 2016; 21:137-145. [DOI: 10.1007/s11030-016-9710-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/14/2016] [Indexed: 02/07/2023]
|
49
|
Joshi SD, Kumar D, Dixit SR, Tigadi N, More UA, Lherbet C, Aminabhavi TM, Yang KS. Synthesis, characterization and antitubercular activities of novel pyrrolyl hydrazones and their Cu-complexes. Eur J Med Chem 2016; 121:21-39. [DOI: 10.1016/j.ejmech.2016.05.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
|
50
|
Antitubercular activity of 1,2,3-triazolyl fatty acid derivatives. Eur J Med Chem 2016; 125:842-852. [PMID: 27750201 DOI: 10.1016/j.ejmech.2016.09.086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
Abstract
A collection of 1,2,3-triazoles unsaturated fatty acid mimics were efficiently synthesized by click chemistry. The 1,4-disubstituted analogs prepared covered different alkyl chain lengths and triazole positions. The compounds were subsequently tested against Mycobacterium tuberculosis, being most of them active with some of the analogs displaying activity at micromolar concentration. The most potent member of the series has the triazole moiety on the C-2 position with a carbon chain of eight or ten carbon atoms. The 1,5-isomers of the most active analog were significantly less active than the original isomer. The activity of the selected hit was assayed on several clinical MTB multi-drug resistant strains providing the same MIC.
Collapse
|