1
|
Stehouwer JS, Huang G, Saturnino Guarino D, Debnath ML, Polu A, Geib SJ, Lopresti B, Ikonomovic MD, Mason N, Mach RH, Mathis CA. Structure-Activity Relationships and Evaluation of 2-(Heteroaryl-cycloalkyl)-1 H-indoles as Tauopathy Positron Emission Tomography Radiotracers. J Med Chem 2025; 68:6462-6492. [PMID: 40068019 PMCID: PMC11956013 DOI: 10.1021/acs.jmedchem.4c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025]
Abstract
Structure-activity relationship studies were performed on a library of synthesized compounds based on previously identified tau ligands. The top 13 new compounds had Ki values in the range of 5-14 nM in Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) post-mortem brain tissues. One of the more promising new compounds ([3H]75) bound with high affinity in AD, PSP, and CBD tissues (KD's = 1-1.5 nM) and Pick's disease tissue (KD = 3.8 nM). Autoradiography studies with [3H]75 demonstrated specific binding in AD, PSP, and CBD post-mortem tissues. Nonhuman primate brain PET imaging with [18F]75 demonstrated a peak standardized uptake value (SUV) of ∼5 in the cerebellum, ∼4.5 in the cortex, and ∼4 in whole brain with SUV 2-to-90 min ratios of 3.9 in whole brain, 4.9 in cortex, and 4.5 in cerebellum. Compound [18F]75 is a promising candidate for translation to human brain PET imaging studies.
Collapse
Affiliation(s)
- Jeffrey S. Stehouwer
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Guofeng Huang
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Dinahlee Saturnino Guarino
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Manik L. Debnath
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Ashok Polu
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Steven J. Geib
- X-ray
Crystallography Laboratory, Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Brian Lopresti
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Milos D. Ikonomovic
- Department
of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
- Geriatric
Research and Clinical Education, VA Pittsburgh
Healthcare System, Pittsburgh, Pennsylvania 15240, United States
| | - Neale Mason
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Robert H. Mach
- Department
of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United
States
| | - Chester A. Mathis
- Department
of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
2
|
García-Vázquez V, Hoteite L, Lakeland CP, Watson DW, Harrity JPA. A Pd-Catalyzed [4 + 2] Annulation Approach to Fluorinated N-Heterocycles. Org Lett 2021; 23:2811-2815. [PMID: 33759534 PMCID: PMC8041373 DOI: 10.1021/acs.orglett.1c00752] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3-Fluoro- and trifluoromethylthio-piperidines represent important building blocks for discovery chemistry. We report a simple and efficient method to access analogs of these compounds that are armed with rich functionality allowing them to be chemoselectively derivatized with high diastereocontrol.
Collapse
Affiliation(s)
| | - Larry Hoteite
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| | | | - David W Watson
- Medicinal Chemistry, Oncology R&D Research and Early Development, AstraZeneca Cambridge Science Park, Unit 310 Darwin Building, Cambridge, CB4 0WG, United Kingdom
| | - Joseph P A Harrity
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
3
|
Ugale V, Dhote A, Narwade R, Khadse S, Reddy PN, Shirkhedkar A. GluN2B/N-methyl-D-aspartate Receptor Antagonists: Advances in Design, Synthesis, and Pharmacological Evaluation Studies. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:822-862. [PMID: 33687902 DOI: 10.2174/1871527320666210309141627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/13/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Selective GluN2B/N-methyl-D-aspartate receptor (NMDAR) antagonists have exposed their clinical effectiveness in a cluster of neurodegenerative diseases, such as epilepsy, Alzheimer's disease, Parkinson's disease, pain, and depression. Hence, GluN2B/NMDARs are considered to be a prospective target for the management of neurodegenerative diseases. Here, we have discussed the current results and significance of subunit selective GluN2B/NMDAR antagonists to pave the way for the establishment of new, safe, and economical drug candidates in the near future. By using summarized data of selective GluN2B/NMDAR antagonists, medicinal chemists are certainly a step closer to the goal of improving the therapeutic and side effect profile of selective antagonists. Outlined summary of designing strategies, synthetic schemes, and pharmacological evaluation studies reinvigorate efforts to identify, modify, and synthesize novel GluN2B/NMDAR antagonists for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Vinod Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Ashish Dhote
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Rushikesh Narwade
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| | - P Narayana Reddy
- Department of Chemistry, Gitam School of Technology, Gitam University, Hyderabad (T.S), India
| | - Atul Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist: Dhule (MS) 425405, India
| |
Collapse
|
4
|
Ahmed H, Haider A, Ametamey SM. N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present). Expert Opin Ther Pat 2020; 30:743-767. [PMID: 32926646 DOI: 10.1080/13543776.2020.1811234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION - The NMDA receptor is implicated in various diseases including neurodegenerative, neurodevelopmental and mood disorders. However, only a limited number of clinically approved NMDA receptor modulators are available. Today, apparent NMDA receptor drug development strategies entail 1) exploring the unknown chemical space to identify novel scaffolds; 2) using the clinically available NMDA receptor modulators to expand the therapeutic indication space; 3) and to trace physiological functions of the NMDA receptor. AREAS COVERED - The current review reflects on the functional and pharmacological facets of NMDA receptors and the current clinical status quo of NMDA receptor modulators. Patent literature covering 2015 till April 2020 is discussed with emphasis on new indications. EXPERT OPINION - Supporting evidence shows that subtype-selective NMDA receptor antagonists show an improved safety profile compared to broad-spectrum channel blockers. Although GluN2B-selective antagonists are by far the most extensively investigated subtype-selective modulators, they have shown only modest clinical efficacy so far. To overcome the limitations that have hampered the clinical development of previous subtype-selective NMDA receptor antagonists, future studies with improved animal models that better reflect human NMDA receptor pathophysiology are warranted. The increased availability of subtype-selective probes will allow target engagement studies and proper dose finding in future clinical trials.
Collapse
Affiliation(s)
- Hazem Ahmed
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| | - Ahmed Haider
- Department of Nuclear Medicine, University Hospital Zurich , Zurich, Switzerland.,Center for Molecular Cardiology, University of Zurich , Schlieren, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich , Zurich, Switzerland
| |
Collapse
|
5
|
A comprehensive description of GluN2B-selective N-methyl-D-aspartate (NMDA) receptor antagonists. Eur J Med Chem 2020; 200:112447. [DOI: 10.1016/j.ejmech.2020.112447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
6
|
Silva DR, Zeoly LA, Cormanich RA, Guerra CF, Freitas MP. Evaluation of the Alicyclic Gauche
Effect in 2-Fluorocyclohexanone Analogs: a Combined NMR and DFT Study. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Daniela Rodrigues Silva
- Departamento de Química; Universidade Federal de Lavras; 37200-900 Lavras - MG Brazil
- Theoretical Chemistry; Department of Chemistry and Pharmaceutical Sciences; AIMMS, Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Lucas A. Zeoly
- Chemistry Institute; University of Campinas; 13083- 970 Campinas - SP Brazil
| | | | - Célia Fonseca Guerra
- Theoretical Chemistry; Department of Chemistry and Pharmaceutical Sciences; AIMMS, Vrije Universiteit Amsterdam; De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Leiden Institute of Chemistry; Gorlaeus Laboratories; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Matheus P. Freitas
- Departamento de Química; Universidade Federal de Lavras; 37200-900 Lavras - MG Brazil
| |
Collapse
|
7
|
Fu H, Tang W, Chen Z, Belov VV, Zhang G, Shao T, Zhang X, Yu Q, Rong J, Deng X, Han W, Myers SJ, Giffenig P, Wang L, Josephson L, Shao Y, Davenport AT, Daunais JB, Papisov M, Yuan H, Li Z, Traynelis SF, Liang SH. Synthesis and Preliminary Evaluations of a Triazole-Cored Antagonist as a PET Imaging Probe ([ 18F]N2B-0518) for GluN2B Subunit in the Brain. ACS Chem Neurosci 2019; 10:2263-2275. [PMID: 30698943 PMCID: PMC6727982 DOI: 10.1021/acschemneuro.8b00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
GluN2B is the most studied subunit of N-methyl-d-aspartate receptors (NMDARs) and implicated in the pathologies of various central nervous system disorders and neurodegenerative diseases. As pan NMDAR antagonists often produce debilitating side effects, new approaches in drug discovery have shifted to subtype-selective NMDAR modulators, especially GluN2B-selective antagonists. While positron emission tomography (PET) studies of GluN2B-selective NMDARs in the living brain would enable target engagement in drug development and improve our understanding in the NMDAR signaling pathways between normal and disease conditions, a suitable PET ligand is yet to be identified. Herein we developed an 18F-labeled potent antagonist, 2-((1-(4-[18F]fluoro-3-methylphenyl)-1 H-1,2,3-triazol-4-yl)methoxy)-5-methoxypyrimidine ([18F]13; also called [18F]N2B-0518) as a PET tracer for imaging the GluN2B subunit. The radiofluorination of [18F]13 was efficiently achieved by our spirocyclic iodonium ylide (SCIDY) method. In in vitro autoradiography studies, [18F]13 displayed highly region-specific binding in brain sections of rat and nonhuman primate, which was in accordance with the expression of GluN2B subunit. Ex vivo biodistribution in mice revealed that [18F]13 could penetrate the blood-brain barrier with moderate brain uptake (3.60% ID/g at 2 min) and rapid washout. Altogether, this work provides a GluN2B-selective PET tracer bearing a new chemical scaffold and shows high specificity to GluN2B subunit in vitro, which may pave the way for the development of a new generation of GluN2B PET ligands.
Collapse
Affiliation(s)
- Hualong Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Weiting Tang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Vasily V. Belov
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts 02114, United States
| | - Genwei Zhang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Xiaofei Zhang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Qingzhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Xiaoyun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Wei Han
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
- Department of Neurology, Children’s Hospital of Chongqing Medical University, Chongqing, 400014, P. R. China
| | - Scott J. Myers
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Pilar Giffenig
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts 02114, United States
| | - Lu Wang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine and PET/CT-MRI Center, the First Affiliated Hospital of Jinan University & Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, P. R. China
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - April T. Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B. Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Mikhail Papisov
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, and the Shriners Burns Hospital, Boston, Massachusetts 02114, United States
| | - Hongjie Yuan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Steven H. Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
8
|
Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 2019; 62:403-419. [PMID: 30110164 PMCID: PMC6393217 DOI: 10.1021/acs.jmedchem.8b00714] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission within the mammalian central nervous system. iGluRs exist as three main groups: N-methyl-d-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate receptors. The past decades have witnessed a remarkable development of PET tracers targeting different iGluRs including NMDARs and AMPARs, and several of the tracers have advanced to clinical imaging studies. Here, we assess the recent development of iGluR PET probes, focusing on tracer design, brain kinetics, and performance in PET imaging studies. Furthermore, this review will not only present challenges in the tracer development but also provide novel approaches in conjunction with most recent drug discovery efforts on these iGluRs, including subtype-selective NMDAR and transmembrane AMPAR regulatory protein modulators and positive allosteric modulators (PAMs) of AMPARs. These approaches, if successful as PET tracers, may provide fundamental knowledge to understand the roles of iGluR receptors under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| |
Collapse
|
9
|
Krämer SD, Betzel T, Mu L, Haider A, Herde AM, Boninsegni AK, Keller C, Szermerski M, Schibli R, Wünsch B, Ametamey SM. Evaluation of 11C-Me-NB1 as a Potential PET Radioligand for Measuring GluN2B-Containing NMDA Receptors, Drug Occupancy, and Receptor Cross Talk. J Nucl Med 2018; 59:698-703. [PMID: 29191857 DOI: 10.2967/jnumed.117.200451] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023] Open
Abstract
Clinical and preclinical research with modulators at the N-methyl-d-aspartate (NMDA) receptor GluN2B N-terminal domain (NTD) aims for the treatment of various neurologic diseases. The interpretation of the results is hampered by the lack of a suitable NMDA PET tracer for assessing the receptor occupancy of potential drugs. We have developed 11C-Me-NB1 as a PET tracer for imaging GluN1/GluN2B-containing NMDA receptors and used it to investigate in rats the dose-dependent receptor occupancy of eliprodil, a GluN2B NTD modulator. Methods:11C-Me-NB1 was synthesized and characterized by in vitro displacement binding experiments with rat brain membranes, in vitro autoradiography, and blocking and displacement experiments by PET and PET kinetic modeling. Receptor occupancy by eliprodil was studied by PET with 11C-Me-NB1. Results:11C-Me-NB1 was synthesized at 290 ± 90 GBq/μmol molar activity, 7.4 ± 1.9 GBq total activity at the end of synthesis (n = 17), and more than 99% radiochemical purity. 11C-Me-NB1 binding in rat brain was blocked in vitro and in vivo by the NTD modulators Ro-25-6981 and eliprodil. Half-maximal receptor occupancy by eliprodil occurred at 1.5 μg/kg. At 1 mg/kg of eliprodil, a dose with reported neuroprotective effects, more than 99.5% of binding sites were occupied. In vitro, 11C-Me-NB1 binding was independent of the σ-1 receptor (Sigma1R), and the Sigma1R agonist (+)-pentazocine did not compete for high-affinity binding. In vivo, a 2.5 mg/kg dose of (+)-pentazocine abolished 11C-Me-NB1-specific binding, indicating an indirect effect of Sigma1R on 11C-Me-NB1 binding. Conclusion:11C-Me-NB1 is suitable for the in vivo imaging of NMDA GluN1/GluN2B receptors and the assessment of receptor occupancy by NTD modulators. GluN1/GluN2B NMDA receptors are fully occupied at neuroprotective doses of eliprodil. Furthermore, 11C-Me-NB1 enables imaging of GluN1/GluN2B NMDA receptor cross talk.
Collapse
Affiliation(s)
- Stefanie D Krämer
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Thomas Betzel
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; and
| | - Achi Haider
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Adrienne Müller Herde
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Anna K Boninsegni
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Claudia Keller
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Marina Szermerski
- Institute for Pharmaceutical and Medicinal Chemistry, University of Munster, Munster, Germany
| | - Roger Schibli
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Bernhard Wünsch
- Institute for Pharmaceutical and Medicinal Chemistry, University of Munster, Munster, Germany
| | - Simon M Ametamey
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Kassenbrock A, Vasdev N, Liang SH. Selected PET Radioligands for Ion Channel Linked Neuroreceptor Imaging: Focus on GABA, NMDA and nACh Receptors. Curr Top Med Chem 2017; 16:1830-42. [PMID: 26975506 DOI: 10.2174/1568026616666160315142457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/11/2022]
Abstract
Positron emission tomography (PET) neuroimaging of ion channel linked receptors is a developing area of preclinical and clinical research. The present review focuses on recent advances with radiochemistry, preclinical and clinical PET imaging studies of three receptors that are actively pursued in neuropsychiatric drug discovery: namely the γ-aminobutyric acid-benzodiazapine (GABA) receptor, nicotinic acetylcholine receptor (nAChR), and N-methyl-D-aspartate (NMDA) receptor. Recent efforts to develop new PET radioligands for these targets with improved brain uptake, selectivity, stability and pharmacokinetics are highlighted.
Collapse
Affiliation(s)
| | | | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Development of PET and SPECT probes for glutamate receptors. ScientificWorldJournal 2015; 2015:716514. [PMID: 25874256 PMCID: PMC4385697 DOI: 10.1155/2015/716514] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/29/2014] [Indexed: 01/16/2023] Open
Abstract
l-Glutamate and its receptors (GluRs) play a key role in excitatory neurotransmission within the mammalian central nervous system (CNS). Impaired regulation of GluRs has also been implicated in various neurological disorders. GluRs are classified into two major groups: ionotropic GluRs (iGluRs), which are ligand-gated ion channels, and metabotropic GluRs (mGluRs), which are coupled to heterotrimeric guanosine nucleotide binding proteins (G-proteins). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of GluRs could provide a novel view of CNS function and of a range of brain disorders, potentially leading to the development of new drug therapies. Although no satisfactory imaging agents have yet been developed for iGluRs, several PET ligands for mGluRs have been successfully employed in clinical studies. This paper reviews current progress towards the development of PET and SPECT probes for GluRs.
Collapse
|
12
|
Christiaans JA, Klein PJ, Metaxas A, Kooijman EJ, Schuit RC, Leysen JE, Lammertsma AA, van Berckel BN, Windhorst AD. Synthesis and preclinical evaluation of carbon-11 labelled N-((5-(4-fluoro-2-[11C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamine as a PET tracer for NR2B subunit-containing NMDA receptors. Nucl Med Biol 2014; 41:670-80. [DOI: 10.1016/j.nucmedbio.2014.04.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/11/2014] [Accepted: 04/26/2014] [Indexed: 12/19/2022]
|
13
|
Shaw SJ, Goff DA, Boralsky LA, Irving M, Singh R. Enantioselective Synthesis of cis-3-Fluoropiperidin-4-ol, a Building Block for Medicinal Chemistry. J Org Chem 2013; 78:8892-7. [DOI: 10.1021/jo401352z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Simon J. Shaw
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Dane A. Goff
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Luke A. Boralsky
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Mark Irving
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| | - Rajinder Singh
- Rigel, Inc., 1180 Veterans
Boulevard, South San Francisco, California, 94080, United States
| |
Collapse
|
14
|
Koudih R, Gilbert G, Dhilly M, Abbas A, Barré L, Debruyne D, Sobrio F. Radiolabelling of 1,4-disubstituted 3-[18F]fluoropiperidines and its application to new radiotracers for NR2B NMDA receptor visualization. Org Biomol Chem 2012; 10:8493-500. [PMID: 23007637 DOI: 10.1039/c2ob26378e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to develop a novel and useful building block for the development of radiotracers for positron emission tomography (PET), we studied the radiolabelling of 1,4-disubstituted 3-[(18)F]fluoropiperidines. Indeed, 3-fluoropiperidine became a useful building block in medicinal chemistry for the pharmacomodulation of piperidine-containing compounds. The radiofluorination was studied on substituted piperidines with electron-donating and electron-withdrawing N-substituents. In the instance of electron-donating N-substituents such as benzyl or butyl, configuration retention and satisfactory fluoride-18 incorporation yields up to 80% were observed. In the case of electron-withdrawing N-substituents leading to carbamate or amide functions, the incorporation yields depend on the 4-susbtitutent (2 to 63%). The radiolabelling of this building block was applied to the automated radiosynthesis of NR2B NMDA receptor antagonists and effected by a commercially available radiochemistry module. The in vivo evaluation of three radiotracers demonstrated minimal brain uptakes incompatible with the imaging of NR2B NMDA receptors in the living brain. Nevertheless, moderate radiometabolism was observed and, in particular, no radiodefluorination was observed which demonstrates the stability of the 3-position of the fluorine-18 atom. In conclusion, the 1,4-disubstituted 3-[(18)F]fluoropiperidine moiety could be of value in the development of other radiotracers for PET even if the evaluation of the NR2B NMDA receptor antagonists failed to demonstrate satisfactory properties for PET imaging of this receptor.
Collapse
Affiliation(s)
- Radouane Koudih
- CEA, I2BM, LDM-TEP, UMR 6302 ISTCT, GIP Cyceron, BP5229, F-14074 Caen, France
| | | | | | | | | | | | | |
Collapse
|