1
|
Sadanala BD, Trivedi R. Ferrocenyl Azoles: Versatile N-Containing Heterocycles and their Anticancer Activities. CHEM REC 2024; 24:e202300347. [PMID: 38984727 DOI: 10.1002/tcr.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/04/2024] [Indexed: 07/11/2024]
Abstract
The medicinal chemistry of ferrocene has gained its momentum after the discovery of biological activities of ferrocifen and ferroquine. These ferrocenyl drugs have been designed by replacing the aromatic moiety of the organic drugs, tamoxifen and chloroquine respectively, with a ferrocenyl unit. The promising biological activities of these ferrocenyl drugs have paved a path to explore the medicinal applications of several ferrocenyl conjugates. In these conjugates, the ferrocenyl moiety has played a vital role in enhancing or imparting the anticancer activity to the molecule. The ferrocenyl conjugates induce the cytotoxicity by generating reactive oxygen species and thereby damaging the DNA. In medicinal chemistry, the five membered nitrogen heterocycles (azoles) play a significant role due to their rigid ring structure and hydrogen bonding ability with the biomolecules. Several potent drug candidates with azole groups have been in use as chemotherapeutics. Considering the importance of ferrocenyl moiety and azole groups, several ferrocenyl azole conjugates have been synthesized and screened for their biological activities. Hence, in the view of a wide scope in the development of potent drugs based on ferrocenyl azole conjugates, herein we present the details of synthesis and the anticancer activities of ferrocenyl compounds bearing azole groups such as imidazole, triazoles, thiazole and isoxazoles.
Collapse
Affiliation(s)
- Bhavya Deepthi Sadanala
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Present address, Department of Chemistry, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Rajiv Trivedi
- Catalysis and Fine Chemicals Department, CSIR-Indian Institute of Chemical Technology, Hyderabad, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research, AcSIR, Headquarters, CSIR-HRDC campus Sector 19, Kamala Nehru Nagar, Ghaziabad, U.P., 201 002, India
| |
Collapse
|
2
|
Alam MJ, Alam O, Naim MJ, Nawaz F, Manaithiya A, Imran M, Thabet HK, Alshehri S, Ghoneim MM, Alam P, Shakeel F. Recent Advancement in Drug Design and Discovery of Pyrazole Biomolecules as Cancer and Inflammation Therapeutics. Molecules 2022; 27:8708. [PMID: 36557840 PMCID: PMC9780894 DOI: 10.3390/molecules27248708] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Pyrazole, an important pharmacophore and a privileged scaffold of immense significance, is a five-membered heterocyclic moiety with an extensive therapeutic profile, viz., anti-inflammatory, anti-microbial, anti-anxiety, anticancer, analgesic, antipyretic, etc. Due to the expansion of pyrazolecent red pharmacological molecules at a quicker pace, there is an urgent need to put emphasis on recent literature with hitherto available information to recognize the status of this scaffold for pharmaceutical research. The reported potential pyrazole-containing compounds are highlighted in the manuscript for the treatment of cancer and inflammation, and the results are mentioned in % inhibition of inflammation, % growth inhibition, IC50, etc. Pyrazole is an important heterocyclic moiety with a strong pharmacological profile, which may act as an important pharmacophore for the drug discovery process. In the struggle to cultivate suitable anti-inflammatory and anticancer agents, chemists have now focused on pyrazole biomolecules. This review conceals the recent expansion of pyrazole biomolecules as anti-inflammatory and anticancer agents with an aim to provide better correlation among different research going around the world.
Collapse
Affiliation(s)
- Md. Jahangir Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Javed Naim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Farah Nawaz
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hamdy Khamees Thabet
- Department of Chemistry, Faculty of Arts and Sciences, Northern Border University, Rafha 91911, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Dzedulionytė K, Veikšaitė M, Morávek V, Malinauskienė V, Račkauskienė G, Šačkus A, Žukauskaitė A, Arbačiauskienė E. Convenient Synthesis of N-Heterocycle-Fused Tetrahydro-1,4-diazepinones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248666. [PMID: 36557800 PMCID: PMC9783606 DOI: 10.3390/molecules27248666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
A general approach towards the synthesis of tetrahydro-4H-pyrazolo[1,5-a][1,4]diazepin-4-one, tetrahydro[1,4]diazepino[1,2-a]indol-1-one and tetrahydro-1H-benzo[4,5]imidazo[1,2-a][1,4]diazepin-1-one derivatives was introduced. A regioselective strategy was developed for synthesizing ethyl 1-(oxiran-2-ylmethyl)-1H-pyrazole-5-carboxylates from easily accessible 3(5)-aryl- or methyl-1H-pyrazole-5(3)-carboxylates. Obtained intermediates were further treated with amines resulting in oxirane ring-opening and direct cyclisation-yielding target pyrazolo[1,5-a][1,4]diazepin-4-ones. A straightforward two-step synthetic approach was applied to expand the current study and successfully functionalize ethyl 1H-indole- and ethyl 1H-benzo[d]imidazole-2-carboxylates. The structures of fused heterocyclic compounds were confirmed by 1H, 13C, and 15N-NMR spectroscopy and HRMS investigation.
Collapse
Affiliation(s)
- Karolina Dzedulionytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Melita Veikšaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Vít Morávek
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Vida Malinauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
| | - Greta Račkauskienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Asta Žukauskaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Correspondence: (A.Ž.); (E.A.)
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19A, LT-50254 Kaunas, Lithuania
- Correspondence: (A.Ž.); (E.A.)
| |
Collapse
|
4
|
Gupta A, Das R, Chamoli A, Choithramani A, Kumar H, Patel S, Khude D, Bothra G, Wangdale K, Ghosh Chowdhury M, Rathod R, Mandoli A, Shard A. A Series of Ferrocene-Containing Pyrazolo[1,5- a]pyrimidines Induce a Strong Antiproliferative Effect against Oral Cancer Cells. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Astha Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Ambika Chamoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Asmita Choithramani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Hansal Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Sagarkumar Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Datta Khude
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Gourav Bothra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Khushal Wangdale
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rajeshwari Rathod
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Amit Mandoli
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research−Ahmedabad, Opposite Airforce Station, Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
5
|
Laxmikeshav K, Himaja A, Shankaraiah N. Exploration of benzimidazoles as potential microtubule modulators: An insight in the synthetic and therapeutic evolution. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Synthesis of New 1-Aryl-2-(3,5-dimethylpyrazol-1-yl)ethanone Oxime Ether Derivatives and Investigation of Their Cytotoxic Effects. Processes (Basel) 2021. [DOI: 10.3390/pr9112019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this study, 12 new 1-aryl-2-(3,5-dimethylpyrazol-1-yl)ethanone oxime ether derivatives were designed and synthesized to investigate their cytotoxic effects. The in vitro cytotoxic activities of the compounds were evaluated against cervix, colon, breast, glioma, neuroblastoma, and lung cancer cell lines, as well as a healthy cell line using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide (MTT) assays with 5-fluorouracil (5-FU) as the reference compound. Compound 5f (IC50 = 5.13 µM) was found to be more effective than 5-FU (IC50 = 8.34 µM) in the C6 cancer cell line, and it had no cytotoxic effect on the L929 healthy cell line. Flow cytometry was used to investigate the mechanism of action of compound 5f on the cell cycle of the C6 cell line. The analysis showed that cell death was significantly due to apoptosis. These results indicate that compound 5f induces cell cycle arrest, and may be effective in treating glioma.
Collapse
|
8
|
Sharma T, Singh J, Singh B, Kataria R, Kumar V. Methyl linked pyrazoles: Synthetic and Medicinal Perspective. Mini Rev Med Chem 2021; 22:770-804. [PMID: 34521325 DOI: 10.2174/1389557521666210914124914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/07/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Pyrazoles, an important and well known class of the azole family, have been found to show a large number of applications in various fields specially of medicinal chemistry. Among pyrazole derivatives, particularly, methyl substituted pyrazoles have been reported as the potent medicinal scaffolds that exhibit a wide spectrum of biological activities. The present review is an attempt to highlight the detailed synthetic approaches for methyl substituted pyrazoles along with in depth analysis of their respective medical significances till March2021. It is hoped that literature sum-up in the form of present review article would certainly be a great tool to assist the medicinal chemists for generating new leads possessing pyrazole nucleus with high efficacy and less microbial resistance.
Collapse
Affiliation(s)
- Tulika Sharma
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana. India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana. India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, Haryana. India
| | - Ramesh Kataria
- Department of Chemistry and Centre of Advances Studies in Chemistry, Panjab University, Chandigarh 160014. India
| | - Vinod Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh 123031, Haryana. India
| |
Collapse
|
9
|
Zhang Z, Du G, Gong G, Sheng Y, Lu X, Cai W, Wang F, Zhao G. A novel ferrocene-palladium metal complex: synthesis, single crystal structure, in vitro cytotoxicity study and molecular docking. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Ghosh K, Nayek N, Das S, Biswas N, Sinha S. Design and synthesis of ferrocene‐tethered pyrazolines and pyrazoles: Photophysical studies, protein‐binding behavior with bovine serum albumin, and antiproliferative activity against MDA‐MB‐231 triple negative breast cancer cells. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Koena Ghosh
- Department of Chemistry Presidency University Kolkata India
| | - Nipa Nayek
- Department of Chemistry Presidency University Kolkata India
- Department of Chemistry Vivekananda College for Women Kolkata India
| | - Subhomoy Das
- Department of Chemistry Indian Institute of Technology Kanpur Kanpur India
- Department of Chemistry Bar‐Ilan University Ramat‐Gan Israel
| | - Nabendu Biswas
- Department of Life Sciences Presidency University Kolkata India
| | - Samraj Sinha
- Department of Life Sciences Presidency University Kolkata India
| |
Collapse
|
11
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
12
|
Matiadis D, Sagnou M. Pyrazoline Hybrids as Promising Anticancer Agents: An Up-to-Date Overview. Int J Mol Sci 2020; 21:E5507. [PMID: 32752126 PMCID: PMC7432644 DOI: 10.3390/ijms21155507] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Pyrazolines are five-membered heterocycles possessing two adjacent nitrogens. They have attracted significant attention from organic and medicinal chemists due to their potent biological activities and the numerous possibilities for structural diversification. In the last decade, they have been intensively studied as targets for potential anticancer therapeutics, producing a steady yearly rise in the number of published research articles. Many pyrazoline derivatives have shown remarkable cytotoxic activities in the form of heterocyclic or non-heterocyclic based hybrids, such as with coumarins, triazoles, and steroids. The enormous amount of related literature in the last 5 years prompted us to collect all these published data from screening against cancer cell lines, or protein targets like EGFR and structure activity relationship studies. Therefore, in the present review, a comprehensive account of the compounds containing the pyrazoline nucleus will be provided. The chemical groups and the structural modifications responsible for the activity will be highlighted. Moreover, emphasis will be given on recent examples from the literature and on the work of research groups that have played a key role in the development of this field.
Collapse
Affiliation(s)
- Dimitris Matiadis
- National Center for Scientific Research “Demokritos”, Institute of Biosciences & Applications, 153 10 Athens, Greece;
| | | |
Collapse
|
13
|
Wang R, Chen H, Yan W, Zheng M, Zhang T, Zhang Y. Ferrocene-containing hybrids as potential anticancer agents: Current developments, mechanisms of action and structure-activity relationships. Eur J Med Chem 2020; 190:112109. [PMID: 32032851 DOI: 10.1016/j.ejmech.2020.112109] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Cancer is one of the most fatal threatens to human health throughout the world. The major challenges in the control and eradication of cancers are the continuous emergency of drug-resistant cancer and the low specificity of anticancer agents, creating an urgent need to develop novel anticancer agents. Organometallic compounds especially ferrocene derivatives possess remarkable structural and mechanistic diversity, inherent stability towards air, heat and light, low toxicity, low cost, reversible redox, ligand exchange, and catalytic properties, making them promising drug candidates for cancer therapy. Ferrocifen, a ferrocene-phenol hybrid, has demonstrated promising anticancer properties on drug-resistant cancers. Currently, Ferrocifen is in pre-clinical trial against cancers. Obviously, ferrocene moiety is a useful template for the development of novel anticancer agents. This review will provide an overview of ferrocene-containing hybrids with potential application in the treatment of cancers covering articles published between 2010 and 2020. The mechanisms of action, the critical aspects of design and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Ruo Wang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Huahong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Weitao Yan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Mingwen Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Tesen Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yaohuan Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
14
|
Zalaru C, Dumitrascu F, Draghici C, Tarcomnicu I, Tatia R, Moldovan L, Chifiriuc MC, Lazar V, Marinescu M, Nitulescu MG, Ferbinteanu M. Synthesis, spectroscopic characterization, DFT study and antimicrobial activity of novel alkylaminopyrazole derivatives. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 493] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
16
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
17
|
Atmaca H, Özkan AN, Zora M. Novel ferrocenyl pyrazoles inhibit breast cancer cell viability via induction of apoptosis and inhibition of PI3K/Akt and ERK1/2 signaling. Chem Biol Interact 2017; 263:28-35. [DOI: 10.1016/j.cbi.2016.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 12/14/2016] [Indexed: 11/25/2022]
|
18
|
Cetin A, Gündüz B, Menges N, Bildirici I. Unsymmetrical pyrazole-based new semiconductor oligomer: synthesis and optical properties. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1846-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
20
|
Driowya M, Saber A, Marzag H, Demange L, Bougrin K, Benhida R. Microwave-Assisted Syntheses of Bioactive Seven-Membered, Macro-Sized Heterocycles and Their Fused Derivatives. Molecules 2016; 21:E1032. [PMID: 27517892 PMCID: PMC6273266 DOI: 10.3390/molecules21081032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022] Open
Abstract
This review describes the recent advances in the microwave-assisted synthesis of 7-membered and larger heterocyclic compounds. Several types of reaction for the cyclization step are discussed: Ring Closing Metathesis (RCM), Heck and Sonogashira reactions, Suzuki-Miyaura cross-coupling, dipolar cycloadditions, multi-component reactions (Ugi, Passerini), etc. Green syntheses and solvent-free procedures have been introduced whenever possible. The syntheses discussed herein have been selected to illustrate the huge potential of microwave in the synthesis of highly functionalized molecules with potential therapeutic applications, in high yields, enhanced reaction rates and increased chemoselectivity, compared to conventional methods. More than 100 references from the recent literature are listed in this review.
Collapse
Affiliation(s)
- Mohsine Driowya
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Aziza Saber
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Hamid Marzag
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Luc Demange
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
- Département de Chimie, Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Pharmaceutiques, 4 avenue de l'Observatoire & UFR Biomédicale des Saints Pères, 45 Rue des Saints Pères, Paris Fr-75006, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Faculté des Sciences, Université Mohammed V, B.P. 1014 Rabat, Maroc.
| | - Rachid Benhida
- Institut de Chimie de Nice, ICN UMR UNS CNRS 7272, Université Nice-Sophia Antipolis-Université Côte d'Azur, Parc Valrose, 06108 Nice Cedex 2, France.
| |
Collapse
|
21
|
Sun A, Lin J, Pi C, Xu R, Cui X. Biological Evaluation of Ferrocenyl Olefins: Cancer Cell Growth Inhibition, ROS Production, and Apoptosis Activity. Arch Pharm (Weinheim) 2016; 349:186-92. [PMID: 26841261 DOI: 10.1002/ardp.201500314] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 12/23/2022]
Abstract
The antiproliferative effects of various ferrocenyl olefins were evaluated against the cell lines MCF-7 (human breast cancer cells), DLD-1 (human colon adenocarcinoma cells), HUVEC (human umbilical vein endothelial cells), and A549 (human lung carcinoma cells), using the MTT test. IC50 values were determined. Compounds 8, 9, 11, and 12 with high antiproliferative activity were tested for their reactive oxygen species (ROS) production, and cell cycle analysis was performed on A549 cells. The results show that these compounds might perform their antiproliferative activity through inducing ROS generation, apoptosis induction, and cell cycle arrest.
Collapse
Affiliation(s)
- Aijing Sun
- School of Biomedical Sciences, Huaqiao University and Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou, P. R. China
| | - Junsheng Lin
- School of Biomedical Sciences, Huaqiao University and Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou, P. R. China
| | - Chao Pi
- Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, P. R. China
| | - Ruian Xu
- School of Biomedical Sciences, Huaqiao University and Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou, P. R. China
| | - Xiuling Cui
- School of Biomedical Sciences, Huaqiao University and Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou, P. R. China.,Department of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
22
|
Du K, Xia C, Wei M, Chen X, Zhang P. Microwave-assisted rapid synthesis of sugar-based pyrazole derivatives with anticancer activity in water. RSC Adv 2016. [DOI: 10.1039/c6ra05284c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A rapid, efficient and green method has been developed for the synthesis of some novel sugar-based pyrazole derivatives in eco-friendly water under microwave irradiation in good yields.
Collapse
Affiliation(s)
- Kui Du
- Zhejiang University
- China
- Hangzhou Normal University
- China
| | | | | | | | | |
Collapse
|
23
|
Guillén E, González A, López C, Basu PK, Ghosh A, Font-Bardía M, Calvis C, Messeguer R. Heterodi- (Fe, Pd/Pt) and Heterotrimetallic (Fe2, Pd) Complexes Derived from 4-(Ferrocenylmethyl)-N-(2-methoxyethyl)-3,5-diphenylpyrazole as Potential Antitumoral Agents. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Synthesis of arylpyrazole linked benzimidazole conjugates as potential microtubule disruptors. Bioorg Med Chem 2015; 23:1082-95. [DOI: 10.1016/j.bmc.2015.01.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|
25
|
Experimental and Theoretical Studies of the Factors Affecting the Cycloplatination of the Chiral Ferrocenylaldimine (SC)-[(η5-C5H5)Fe{(η5-C5H4)–C(H)=N–CH(Me)(C6H5)}]. INORGANICS 2014. [DOI: 10.3390/inorganics2040620] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Karad SC, Purohit VB, Raval DK. Design, synthesis and characterization of fluoro substituted novel pyrazolylpyrazolines scaffold and their pharmacological screening. Eur J Med Chem 2014; 84:51-8. [DOI: 10.1016/j.ejmech.2014.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 02/05/2023]
|
27
|
Li H, Gao A, Feng D, Wang Y, Zhang L, Cui Y, Li B, Wang Z, Chen G. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res 2014; 5:618-26. [PMID: 25070048 DOI: 10.1007/s12975-014-0354-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/20/2014] [Accepted: 06/11/2014] [Indexed: 12/22/2022]
Abstract
Brain microvascular endothelial cell (BMVEC) injury induced by ischemia-reperfusion (I/R) is the initial phase of blood-brain barrier (BBB) disruption, which results in a poor prognosis for ischemic stroke patients. Autophagy occurs in ischemic brain and has been shown to exhibit protective effects on endothelial cell against stress. However, the potential effects of BMVEC autophagy on BBB permeability during I/R and the mechanisms underlying these effects have yet to be elucidated. In the current study, we answered these questions by using chemical modulators of autophagy, including rapamycin and lithium carbonate acting, respectively, as mammalian target of rapamycin (mTOR)-dependent and mTOR-independent autophagy inducers and 3-methyladenine (3-MA) as an autophagy inhibitor. To mimic I/R injury, BMVECs were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), and a rat transient middle cerebral artery occlusion/reperfusion (MCAO/R) model was performed. All the drugs were given at 0.5 h before OGD/R or MCAO/R. First, enhancement of autophagy by rapamycin and lithium carbonate attenuated, whereas suppression of autophagy by 3-MA intensified BMVEC apoptosis and the high level of ROS induced by OGD/R. In addition, rapamycin and lithium carbonate pretreatments significantly reversed the decreased level of tight junction protein zonula occludens-1 (ZO-1) induced by OGD/R and promoted the distribution of ZO-1 on cell membranes. Finally, pretreatments with rapamycin and lithium carbonate reduced evans blue extravasation and brain water content in the ischemic hemisphere of the rat. In contrast, 3-MA pretreatment exerted opposite effects both in vitro and in vivo. These results may indicate a beneficial effect of BMVEC autophagy on BBB integrity during I/R injury.
Collapse
Affiliation(s)
- Haiying Li
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kumar V, Kaur K, Karelia DN, Beniwal V, Gupta GK, Sharma AK, Gupta AK. Synthesis and biological evaluation of some 2-(3,5-dimethyl-1H-pyrazol-1-yl)-1-arylethanones: Antibacterial, DNA photocleavage, and anticancer activities. Eur J Med Chem 2014; 81:267-76. [DOI: 10.1016/j.ejmech.2014.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/04/2014] [Accepted: 05/01/2014] [Indexed: 11/26/2022]
|
29
|
Ferrocene-based sulfonyl dihydropyrazole derivatives: Synthesis, structure, electrochemistry and effect on thermal decomposition of NH4ClO4. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Ge YQ, Jia J, Wang T, Sun HW, Duan GY, Wang JW. The synthesis, characterization and optical properties of novel 5-(3-aryl-1H-pyrazol-5-yl)-2-(3-butyl-1-chloroimidazo[1,5-a]pyridin-7-yl)-1,3,4-oxadiazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 123:336-341. [PMID: 24412786 DOI: 10.1016/j.saa.2013.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 11/25/2013] [Accepted: 12/05/2013] [Indexed: 06/03/2023]
Abstract
A series of novel 5-(3-aryl-1H-pyrazol-5-yl)-2-(3-butyl-1-chloroimidazo[1,5-a]- pyridin-7-yl)-1,3,4-oxadiazole derivatives has been synthesized from 3-butyl-1-chloroimidazo[1,5-a]pyridine-7-carboxylic acid and ethyl 3-aryl-1H-pyrazole-5-carboxylate. The compounds were characterized using IR, (1)H NMR, HRMS and UV-vis absorption. The fluorescence spectral characteristics of the compounds in dichloromethane were investigated. The results showed that absorption λmax and emission λmax was less correlated with substituent groups on N-1 position of pyrazole moiety and para position of benzene moiety. The calculated molecular orbital correlates well with their absorption.
Collapse
Affiliation(s)
- Yan Qing Ge
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, PR China; School of Chemical Engineering, Taishan Medical University, Taian, Shandong 271016, PR China
| | - Jiong Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, PR China
| | - Teng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, PR China
| | - Hong Wei Sun
- School of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Gui Yun Duan
- School of Chemical Engineering, Taishan Medical University, Taian, Shandong 271016, PR China
| | - Jian Wu Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
31
|
Yong J, Lu C, Wu X. Synthesis of isoxazole moiety containing ferrocene derivatives and preliminarily in vitro anticancer activity. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00151f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
|
33
|
Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur J Med Chem 2013; 70:248-58. [DOI: 10.1016/j.ejmech.2013.10.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/28/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022]
|
34
|
Affiliation(s)
- Susana S. Braga
- QOPNA, Department
of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- QOPNA, Department
of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
35
|
Shen SL, Shao JH, Luo JZ, Liu JT, Miao JY, Zhao BX. Novel chiral ferrocenylpyrazolo[1,5-a][1,4]diazepin-4-one derivatives – Synthesis, characterization and inhibition against lung cancer cells. Eur J Med Chem 2013; 63:256-68. [DOI: 10.1016/j.ejmech.2013.02.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/19/2013] [Accepted: 02/13/2013] [Indexed: 01/21/2023]
|
36
|
Lv HS, Ding XL, Zhao BX. Synthesis and X-ray Structure Characterisation of Novel Pyrazole Carboxamide Derivatives. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751913x13633729862156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A series of novel pyrazole carboxamide derivatives containing piperazine moiety was synthesised and determined by IR, 1H NMR and HRMS spectroscopy. Especially, the structure was confirmed by the X-ray crystal analysis of [1-(4- tert-butylbenzyl)-4-chloro-3-(4-chlorophenyl)-1 H-pyrazol-5-yl](4-phenylpiperazin-1-yl)methanone.
Collapse
Affiliation(s)
- Hong-Shui Lv
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xiao-Ling Ding
- College of Advanced Professional Technology, Qingdao University, Qingdao 266061, P. R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
37
|
Liu YR, Luo JZ, Duan PP, Shao J, Zhao BX, Miao JY. Synthesis of pyrazole peptidomimetics and their inhibition against A549 lung cancer cells. Bioorg Med Chem Lett 2012; 22:6882-7. [DOI: 10.1016/j.bmcl.2012.09.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 08/20/2012] [Accepted: 09/11/2012] [Indexed: 01/11/2023]
|