1
|
Santos‐Filho NA, Righetto GM, Pereira MR, Piccoli JP, Almeida LMT, Leal TC, Camargo ILBC, Cilli EM. Effect of C‐terminal and N‐terminal dimerization and alanine scanning on antibacterial activity of the analogs of the peptide
p‐BthTX‐I. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
2
|
Srivastava A, Pati S, Kaushik H, Singh S, Garg LC. Toxin-antitoxin systems and their medical applications: current status and future perspective. Appl Microbiol Biotechnol 2021; 105:1803-1821. [PMID: 33582835 DOI: 10.1007/s00253-021-11134-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Almost all bacteria synthesize two types of toxins-one for its survival by regulating different cellular processes and another as a strategy to interact with host cells for pathogenesis. Usually, "bacterial toxins" are contemplated as virulence factors that harm the host organism. However, toxins produced by bacteria, as a survival strategy against the host, also hamper its cellular processes. To overcome this, the bacteria have evolved with the production of a molecule, referred to as antitoxin, to negate the deleterious effect of the toxin against itself. The toxin and antitoxins are encoded by a two-component toxin-antitoxin (TA) system. The antitoxin, a protein or RNA, sequesters the toxins of the TA system for neutralization within the bacterial cell. In this review, we have described different TA systems of bacteria and their potential medical and biotechnological applications. It is of interest to note that while bacterial toxin-antitoxin systems have been well studied, the TA system in unicellular eukaryotes, though predicted by the investigators, have never been paid the desired attention. In the present review, we have also touched upon the TA system of eukaryotes identified to date. KEY POINTS: Bacterial toxins harm the host and also affect the bacterial cellular processes. The antitoxin produced by bacteria protect it from the toxin's harmful effects. The toxin-antitoxin systems can be targeted for various medical applications.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Soumya Pati
- Department of Life Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh, 201314, India
| | - Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
3
|
Sanches BCP, Rocha CA, Martin Bedoya JG, da Silva VL, da Silva PB, Fusco-Almeida AM, Chorilli M, Contiero J, Crusca E, Marchetto R. Rhamnolipid-Based Liposomes as Promising Nano-Carriers for Enhancing the Antibacterial Activity of Peptides Derived from Bacterial Toxin-Antitoxin Systems. Int J Nanomedicine 2021; 16:925-939. [PMID: 33603360 PMCID: PMC7882795 DOI: 10.2147/ijn.s283400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background Antimicrobial resistance poses substantial risks to human health. Thus, there is an urgent need for novel antimicrobial agents, including alternative compounds, such as peptides derived from bacterial toxin-antitoxin (TA) systems. ParELC3 is a synthetic peptide derived from the ParE toxin reported to be a good inhibitor of bacterial topoisomerases and is therefore a potential antibacterial agent. However, ParELC3 is inactive against bacteria due to its inability to cross the bacterial membranes. To circumvent this limitation we prepared and used rhamnolipid-based liposomes to carry and facilitate the passage of ParELC3 through the bacterial membrane to reach its intracellular target - the topoisomerases. Methods and Results Small unilamellar liposome vesicles were prepared by sonication from three formulations that included 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and cholesterol. ParELC3 was loaded with high efficiency into the liposomes. Characterization by DLS and TEM revealed the appropriate size, zeta potential, polydispersity index, and morphology. In vitro microbiological experiments showed that ParELC3 loaded-liposomes are more efficient (29 to 11 µmol·L−1) compared to the free peptide (>100 µmol·L−1) at inhibiting the growth of standard E. coli and S. aureus strains. RL liposomes showed high hemolytic activity but when prepared with POPC and Chol this activity had a significant reduction. Independently of the formulation, the vesicles had no detectable cytotoxicity to HepG2 cells, even at the highest concentrations tested (1.3 mmol·L−1 and 50 µmol·L−1 for rhamnolipid and ParELC3, respectively). Conclusion The present findings suggest the potential use of rhamnolipid-based liposomes as nanocarrier systems to enhance the bioactivity of peptides.
Collapse
Affiliation(s)
- Beatriz Cristina Pecoraro Sanches
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Camila Aguiar Rocha
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Jose Gregorio Martin Bedoya
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Vinicius Luiz da Silva
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
| | - Patrícia Bento da Silva
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Ana Marisa Fusco-Almeida
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, SP, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Drugs and Medicines, Araraquara, SP, Brazil
| | - Jonas Contiero
- São Paulo State University (UNESP), Institute of Biosciences, Department of General and Applied Biology, Rio Claro, SP, Brazil
| | - Edson Crusca
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| | - Reinaldo Marchetto
- São Paulo State University (UNESP), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Araraquara, SP, Brazil
| |
Collapse
|
4
|
Yi L, Lü X. New Strategy on Antimicrobial-resistance: Inhibitors of DNA Replication Enzymes. Curr Med Chem 2019; 26:1761-1787. [PMID: 29110590 DOI: 10.2174/0929867324666171106160326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antimicrobial resistance is found in all microorganisms and has become one of the biggest threats to global health. New antimicrobials with different action mechanisms are effective weapons to fight against antibiotic-resistance. OBJECTIVE This review aims to find potential drugs which can be further developed into clinic practice and provide clues for developing more effective antimicrobials. METHODS DNA replication universally exists in all living organisms and is a complicated process in which multiple enzymes are involved in. Enzymes in bacterial DNA replication of initiation and elongation phases bring abundant targets for antimicrobial development as they are conserved and indispensable. In this review, enzyme inhibitors of DNA helicase, DNA primase, topoisomerases, DNA polymerase and DNA ligase were discussed. Special attentions were paid to structures, activities and action modes of these enzyme inhibitors. RESULTS Among these enzymes, type II topoisomerase is the most validated target with abundant inhibitors. For type II topoisomerase inhibitors (excluding quinolones), NBTIs and benzimidazole urea derivatives are the most promising inhibitors because of their good antimicrobial activity and physicochemical properties. Simultaneously, DNA gyrase targeted drugs are particularly attractive in the treatment of tuberculosis as DNA gyrase is the sole type II topoisomerase in Mycobacterium tuberculosis. Relatively, exploitation of antimicrobial inhibitors of the other DNA replication enzymes are primeval, in which inhibitors of topo III are even blank so far. CONCLUSION This review demonstrates that inhibitors of DNA replication enzymes are abundant, diverse and promising, many of which can be developed into antimicrobials to deal with antibioticresistance.
Collapse
Affiliation(s)
- Lanhua Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
5
|
Barbosa LCB, Dos Santos Carrijo R, da Conceição MB, Campanella JEM, Júnior EC, Secches TO, Bertolini MC, Marchetto R. Characterization of an OrtT-like toxin of Salmonella enterica serovar Houten. Braz J Microbiol 2019; 50:839-848. [PMID: 31055774 DOI: 10.1007/s42770-019-00085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/25/2019] [Indexed: 01/09/2023] Open
Abstract
The Escherichia coli GhoT/GhoS system is a type V toxin-antitoxin system in which the antitoxin GhoS cleaves the GhoT mRNA, controlling its translation. GhoT is a small hydrophobic protein that damages bacterial membranes. OrtT is a GhoT-like toxin, but it apparently lacks a corresponding antitoxin and serves a different physiologic role. Using a profile hidden Markov model approach, a Salmonella enterica serovar Houten genome was screened to obtain homologs of GhoT/OrtT. We only found one protein (referred to here as OrtT-Sal) that shared more sequence identity with OrtT than GhoT. The chromosomal region around the coding sequence of OrtT-Sal suggests that it is an orphan toxin and can be under RpoH activation. To study OrtT-Sal, we chemically synthesized and expressed in E. coli the whole toxin and its N- and C-terminal regions (OrtT-Sal1-29 and OrtT-Sal29-57, respectively). Our findings have shown that the overproduction of the polypeptides resulted in severe growth inhibition and cell lysis. Using circular dichroism, we found that OrtT-Sal, OrtT-Sal1-29, and OrtT-Sal29-57 form an alpha-helical structure in the presence of SDS micelles or TFE. Finally, using carboxyfluorescein-loaded lipid vesicles, we determined that the polypeptides damage lipid membrane directly.
Collapse
Affiliation(s)
- Luiz Carlos Bertucci Barbosa
- Institute of Natural Resources, Federal University of Itajubá, BPS, 1303, Bairro Pinheirinho, Itajubá, MG, 37500-903, Brazil.
| | | | | | | | | | - Thais Oliveira Secches
- Institute of Natural Resources, Federal University of Itajubá, BPS, 1303, Bairro Pinheirinho, Itajubá, MG, 37500-903, Brazil
| | | | - Reinaldo Marchetto
- Institute of Chemistry, São Paulo State University, Araraquara, SP, Brazil
| |
Collapse
|
6
|
Gao X, Mu Z, Qin B, Sun Y, Cui S. Structure-Based Prototype Peptides Targeting the Pseudomonas aeruginosa Type VI Secretion System Effector as a Novel Antibacterial Strategy. Front Cell Infect Microbiol 2017; 7:411. [PMID: 28979890 PMCID: PMC5611513 DOI: 10.3389/fcimb.2017.00411] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
The type VI secretion system (T6SS) secretes numerous toxins for bacteria-bacteria competition. TplE is a newly identified trans-kingdom toxin secreted by the T6SS in Pseudomonas aeruginosa, while TplEi neutralizes the toxic effect of TplE to protect bacteria autointoxication. Blocking the interaction of TplE-TplEi could unleash the toxin, causing bacterial cell death. In this study, we applied a crystallographic approach to design a structural-based antimicrobial peptides targeting the interaction of TplE and TplEi. We found that a peptide (designed as “L” peptide based on its shape) derived from TplE can form a crystal complex with TplEi after subtilisin treatment and the crystal structure was solved at 2.2Å. The “L” peptide displays strong binding affinity to TplEi in vitro and can release the TplE toxin to induce bacteria death in vivo. Our findings suggest that as a toxin activator, the “L” peptide could be a possible drug lead for treating P. aeruginosa infection. Our findings provide an example that the T6SS effector and immunity protein could be a potential drug target against bacteria infection.
Collapse
Affiliation(s)
- Xiaopan Gao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zhixia Mu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Bo Qin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Yicheng Sun
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Sheng Cui
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
7
|
Effect of dimerization on the mechanism of action of aurein 1.2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1129-38. [DOI: 10.1016/j.bbamem.2016.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 11/20/2022]
|
8
|
Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat Chem Biol 2016; 12:208-14. [DOI: 10.1038/nchembio.2044] [Citation(s) in RCA: 477] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/09/2016] [Indexed: 02/04/2023]
|
9
|
Santos-Filho NA, Lorenzon EN, Ramos MAS, Santos CT, Piccoli JP, Bauab TM, Fusco-Almeida AM, Cilli EM. Synthesis and characterization of an antibacterial and non-toxic dimeric peptide derived from the C-terminal region of Bothropstoxin-I. Toxicon 2015; 103:160-8. [PMID: 26160494 DOI: 10.1016/j.toxicon.2015.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/28/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022]
Abstract
Infectious diseases are among the leading global causes of death, increasing the search for novel antibacterial agents. Among these, biologically active peptides are an excellent research tool. Using solid-phase peptide synthesis (SPPS), this work aimed to synthesize the peptide derived from the C-terminal region of Bothropstoxin-I (BthTX-I) (p-BthTX-I, sequence: KKYRYHLKPFCKK), and its disulfide-linked dimeric form, obtained via air oxidation (p-BthTX-I)2. Two other peptides were synthesized to evaluate the dimerization effect on antimicrobial activity. In both sequences, the cysteine (Cys) residue was replaced by the serine (Ser) residue, differing, however, in their C-terminus position. The antimicrobial activity of the peptides against gram-negative (Escherichia (E.) coli) and gram-positive (Staphylococcus (S.) aureus) bacteria and yeast (Candida (C.) albicans) was evaluated. Interestingly, only peptides containing the Cys residue showed antimicrobial activity, suggesting the importance of Cys residue and its dimerization for the observed activity. Apparently, p-BthTX-I and (p-BthTX-I)2 did not promote lysis or form pores and were not able to interact with membranes. Furthermore, they neither showed antifungal activity against C. albicans nor toxicity against erythrocytes, epithelial cells, or macrophages, indicating a potential specificity against prokaryotic cells.
Collapse
Affiliation(s)
| | - Esteban N Lorenzon
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Matheus A S Ramos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Claudia T Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Julia P Piccoli
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Tais M Bauab
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil
| | - Eduardo M Cilli
- Instituto de Química, UNESP - Univ. Estadual Paulista, Araraquara, SP, Brazil.
| |
Collapse
|
10
|
Barbosa LCB, Garrido SS, Marchetto R. BtoxDB: a comprehensive database of protein structural data on toxin-antitoxin systems. Comput Biol Med 2015; 58:146-53. [PMID: 25656309 DOI: 10.1016/j.compbiomed.2015.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 11/28/2022]
Abstract
PURPOSE Toxin-antitoxin (TA) systems are diverse and abundant genetic modules in prokaryotic cells that are typically formed by two genes encoding a stable toxin and a labile antitoxin. Because TA systems are able to repress growth or kill cells and are considered to be important actors in cell persistence (multidrug resistance without genetic change), these modules are considered potential targets for alternative drug design. In this scenario, structural information for the proteins in these systems is highly valuable. In this report, we describe the development of a web-based system, named BtoxDB, that stores all protein structural data on TA systems. METHODS The BtoxDB database was implemented as a MySQL relational database using PHP scripting language. Web interfaces were developed using HTML, CSS and JavaScript. The data were collected from the PDB, UniProt and Entrez databases. These data were appropriately filtered using specialized literature and our previous knowledge about toxin-antitoxin systems. RESULTS The database provides three modules ("Search", "Browse" and "Statistics") that enable searches, acquisition of contents and access to statistical data. Direct links to matching external databases are also available. CONCLUSIONS The compilation of all protein structural data on TA systems in one platform is highly useful for researchers interested in this content. BtoxDB is publicly available at http://www.gurupi.uft.edu.br/btoxdb.
Collapse
Affiliation(s)
- Luiz Carlos Bertucci Barbosa
- UFT - Federal University of Tocantins, Department of Biotechnology, Caixa Postal 66, Gurupi 77402-970, Tocantins, Brazil.
| | - Saulo Santesso Garrido
- UNESP - Universidade Estadual Paulista, Institute of Chemistry, Department of Biochemistry and Technological Chemistry, Araraquara 14800-000, São Paulo, Brazil
| | - Reinaldo Marchetto
- UNESP - Universidade Estadual Paulista, Institute of Chemistry, Department of Biochemistry and Technological Chemistry, Araraquara 14800-000, São Paulo, Brazil
| |
Collapse
|
11
|
Verma S, Kumar S, Gupta VP, Gourinath S, Bhatnagar S, Bhatnagar R. Structural basis of Bacillus anthracis MoxXT disruption and the modulation of MoxT ribonuclease activity by rationally designed peptides. J Biomol Struct Dyn 2014; 33:606-24. [PMID: 24650157 DOI: 10.1080/07391102.2014.899924] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Bacillus anthracis MoxXT is a Type II proteic Toxin-Antitoxin (TA) module wherein MoxT is a ribonuclease that cleaves RNA specifically while MoxX interacts with MoxT and inhibits its activity. Disruption of the TA interaction has been proposed as a novel antibacterial strategy. Peptides, either based on antitoxin sequence or rationally designed, have previously been reported to disrupt the MoxXT interaction but cause a decrease in MoxT ribonuclease activity. In the present study, we report the crystal structure of MoxT, and the effect of several peptides in disrupting the MoxXT interaction as well as augmentation of MoxT ribonuclease activity by binding to MoxT in vitro. Docking studies on the peptides were carried out in order to explain the observed structure activity relationships. The peptides with ribonuclease augmentation activity possess a distinct structure and are proposed to bind to a distinct site on MoxT. The docking of the active peptides with MoxT showed that they possess an aromatic group that occupies a conserved hydrophobic pocket. Additionally, the peptides inducing high ribonuclease activity were anchored by a negatively charged group near a cluster of positively charged residues present near the pocket. Our study provides a structural basis and rationale for the observed properties of the peptides and may aid the development of small molecules to disrupt the TA interaction.
Collapse
Affiliation(s)
- Shashikala Verma
- a Laboratory of Genetic Engineering and Molecular Biology, School of Biotechnology , Jawaharlal Nehru University , Room No. 102, New Delhi 110067 , India
| | | | | | | | | | | |
Collapse
|
12
|
Hayes F, Kędzierska B. Regulating toxin-antitoxin expression: controlled detonation of intracellular molecular timebombs. Toxins (Basel) 2014; 6:337-58. [PMID: 24434949 PMCID: PMC3920265 DOI: 10.3390/toxins6010337] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022] Open
Abstract
Genes for toxin-antitoxin (TA) complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.
Collapse
Affiliation(s)
- Finbarr Hayes
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Barbara Kędzierska
- Faculty of Life Sciences and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
13
|
Mayer C, Janin YL. Non-quinolone inhibitors of bacterial type IIA topoisomerases: a feat of bioisosterism. Chem Rev 2013; 114:2313-42. [PMID: 24313284 DOI: 10.1021/cr4003984] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Claudine Mayer
- Unité de Microbiologie Structurale, Département de Biologie Structurale et Chimie, Institut Pasteur , 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
14
|
Toxin-antitoxin genes of the Gram-positive pathogen Streptococcus pneumoniae: so few and yet so many. Microbiol Mol Biol Rev 2013. [PMID: 23204366 DOI: 10.1128/mmbr.00030-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pneumococcal infections cause up to 2 million deaths annually and raise a large economic burden and thus constitute an important threat to mankind. Because of the increase in the antibiotic resistance of Streptococcus pneumoniae clinical isolates, there is an urgent need to find new antimicrobial approaches to triumph over pneumococcal infections. Toxin-antitoxin (TA) systems (TAS), which are present in most living bacteria but not in eukaryotes, have been proposed as an effective strategy to combat bacterial infections. Type II TAS comprise a stable toxin and a labile antitoxin that form an innocuous TA complex under normal conditions. Under stress conditions, TA synthesis will be triggered, resulting in the degradation of the labile antitoxin and the release of the toxin protein, which would poison the host cells. The three functional chromosomal TAS from S. pneumoniae that have been studied as well as their molecular characteristics are discussed in detail in this review. Furthermore, a meticulous bioinformatics search has been performed for 48 pneumococcal genomes that are found in public databases, and more putative TAS, homologous to well-characterized ones, have been revealed. Strikingly, several unusual putative TAS, in terms of components and genetic organizations previously not envisaged, have been discovered and are further discussed. Previously, we reported a novel finding in which a unique pneumococcal DNA signature, the BOX element, affected the regulation of the pneumococcal yefM-yoeB TAS. This BOX element has also been found in some of the other pneumococcal TAS. In this review, we also discuss possible relationships between some of the pneumococcal TAS with pathogenicity, competence, biofilm formation, persistence, and an interesting phenomenon called bistability.
Collapse
|