1
|
Kushwaha P. Quinoline as a Privileged Structure: A Recent Update on Synthesis and Biological Activities. Curr Top Med Chem 2024; 24:2377-2419. [PMID: 39313876 DOI: 10.2174/0115680266314303240830074056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Among heterocyclic compounds, quinoline is one of the best ubiquitous heterocyclic rings for medicinal chemistry purposes. Quinoline appears to be a powerful chemical structure to develop new drug entities. The quinoline derivatives own a wide array of biological activities such as anticancer, antimalarial, antimicrobial, anti-inflammatory, anti-leishmanial, etc. Because of the wide spectrum of bioactivities, the scientific communities are still looking for more efficient synthetic routes to form quinoline derivatives. Therefore, the primary focus of this review is to provide a thorough and inclusive, updated report on quinoline analogs that may pave the way for more efficient drug development.
Collapse
Affiliation(s)
- Pragati Kushwaha
- Department of Chemistry, University of Lucknow, Lucknow-226007, UP, India
| |
Collapse
|
2
|
Thakare PP, Dakhane S, Shikh AN, Modak M, Patil A, Bobade VD, Mhaske PC. Design, Synthesis, Antimicrobial and Ergosterol Inhibition Activity of New 4-(Imidazo[1,2-a]Pyridin-2-yl)Quinoline Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1933107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Prashant P. Thakare
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| | - Sagar Dakhane
- Department of Chemistry, Abasaheb Garware College, Pune, Maharashtra, India
| | - Abdullatif N. Shikh
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
- Department of Chemistry, Jijamata College of Science and Arts, Bhende, Ahmednagar, Pune, Maharashtra, India
| | - Manisha Modak
- Department of Zoology, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| | - Ashiwini Patil
- Department of Biotechnology, Viva College, Mumbai, Maharashtra, India
| | - Vivek D. Bobade
- Post-Graduate Department of Chemistry, H. P. T. Arts and R. Y. K. Science College, Nashik, Maharashtra, India
| | - Pravin C. Mhaske
- Post-Graduate Department of Chemistry, S. P. Mandali’s Sir Parashurambhau College, Pune, Maharashtra, India
| |
Collapse
|
3
|
Li ZW, Zhong CY, Wang XR, Li SN, Pan CY, Wang X, Sun XY. Synthesis and Evaluation of the Antitumor Activity of Novel 1-(4-Substituted phenyl)-2-ethyl Imidazole Apoptosis Inducers In Vitro. Molecules 2020; 25:E4293. [PMID: 32962127 PMCID: PMC7570620 DOI: 10.3390/molecules25184293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 01/10/2023] Open
Abstract
Novel imidazole derivatives were designed, prepared, and evaluated in vitro for antitumor activity. The majority of the tested derivatives showed improved antiproliferative activity compared to the positive control drugs 5-FU and MTX. Among them, compound 4f exhibited outstanding antiproliferative activity against three cancer cell lines and was considerably more potent than both 5-FU and MTX. In particular, the selectivity index indicated that the tolerance of normal L-02 cells to 4f was 23-46-fold higher than that of tumor cells. This selectivity was significantly higher than that exhibited by the positive control drugs. Furthermore, compound 4f induced cell apoptosis by increasing the protein expression levels of Bax and decreasing those of Bcl-2 in a time-dependent manner. Therefore, 4f could be a potential candidate for the development of a novel antitumor agent.
Collapse
Affiliation(s)
- Zhen-Wang Li
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Chun-Yan Zhong
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xiao-Ran Wang
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Shi-Nian Li
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Chun-Yuan Pan
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xin Wang
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
| | - Xian-Yu Sun
- College of Animal Science and Technique, Heilongjiang Bayi Agriculture University, Daqing 163319, Heilongjiang, China; (Z.-W.L.); (C.-Y.Z.); (X.-R.W.); (S.-N.L.); (C.-Y.P.); (X.W.)
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, China
| |
Collapse
|
4
|
Tukhtaev DB, Saidov AS, Turgunov KK, Vinogradova VI, Tashkhodzhaev B. Synthesis of N-Containing Heterocycles Based on α-Amino Acids. 1. 8,9-Dimethoxy-5,6-Dihydro-3-Phenyl-1-Alkylimidazo[5,1-a]Isoquinolines. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Haiba ME, Al-Abdullah ES, Ahmed NS, Ghabbour HA, Awad HM. Efficient and easy synthesis of new Benzo[h]chromene and Benzo[h]quinoline derivatives as a new class of cytotoxic agents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Kumari L, Salahuddin, Mazumder A, Pandey D, Yar MS, Kumar R, Mazumder R, Sarafroz M, Ahsan MJ, Kumar V, Gupta S. Synthesis and Biological Potentials of Quinoline Analogues: A Review of Literature. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x16666190213105146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterocyclic compounds are well known for their different biological activity. The heterocyclic analogs are the building blocks for synthesis of the pharmaceutical active compounds in the organic chemistry. These derivatives show various type of biological activity like anticancer, antiinflammatory, anti-microbial, anti-convulsant, anti-malarial, anti-hypertensive, etc. From the last decade research showed that the quinoline analogs plays a vital role in the development of newer medicinal active compounds for treating various type of disease. Quinoline reported for their antiviral, anticancer, anti-microbial and anti-inflammatory activity. This review will summarize the various synthetic approaches for synthesis of quinoline derivatives and to check their biological activity. Derivatives of quinoline moiety plays very important role in the development of various types of newer drugs and it can be used as lead compounds for future investigation in the field of drug discovery process.
Collapse
Affiliation(s)
- Leena Kumari
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| | - Salahuddin
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| | - Daman Pandey
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard University, Hamdard Nagar, New Delhi-110062, India
| | - Rajnish Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| | - Mohammad Sarafroz
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, City Dammam, Saudi Arabia
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Vivek Kumar
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| | - Sushma Gupta
- Noida Institute of Engineering and Technology (Pharmacy Institute), Plot No. 19, Knowledge Park-2, Greater Noida, Utter Pardesh-201306, India
| |
Collapse
|
7
|
He QX, Liang YF, Xu C, Yao XK, Cao H, Yao HG. Highly Regioselective, Acid-Catalyzed, Three-Component Cascade Reaction for the Synthesis of 2-aminopyridine-Decorated Imidazo[1,2- a]pyridine. ACS COMBINATORIAL SCIENCE 2019; 21:149-153. [PMID: 30653293 DOI: 10.1021/acscombsci.8b00149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A highly regioselective acid-catalyzed three-component reaction of 2-aminopyridine and 3-phenylpropiolaldehyde for the construction of imidazo[1,2- a]pyridine has been developed. This strategy provides a broad range of substrates and represents an efficient approach to give various 2-aminopyridine-decorated imidazo[1,2- a]pyridine in good yields.
Collapse
Affiliation(s)
- Qiu-Xing He
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yao-Feng Liang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Chang Xu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Xiao-Kun Yao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Hua-Gang Yao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|
8
|
Bazin HG, Bess LS, Livesay MT. Synthesis and Applications of Imidazoquinolines: A Review. ORG PREP PROCED INT 2018. [DOI: 10.1080/00304948.2018.1433427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hélène G. Bazin
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Laura S. Bess
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| | - Mark T. Livesay
- Biomedical & Pharmaceutical Science, University of Montana, 32 Campus Drive #1552, Missoula, MT 59812, USA
| |
Collapse
|
9
|
Design and synthesis of some novel 7-substituted thiosemicarbazinyl-quinolines via Ullmann coupling reaction and examination of their antimicrobial activities. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3136-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Recent synthetic scenario on imidazo[1,2-a]pyridines chemical intermediate. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2216-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
|
12
|
Sashidhara KV, Avula SR, Mishra V, Palnati GR, Singh LR, Singh N, Chhonker YS, Swami P, Bhatta RS, Palit G. Identification of quinoline-chalcone hybrids as potential antiulcer agents. Eur J Med Chem 2014; 89:638-53. [PMID: 25462272 DOI: 10.1016/j.ejmech.2014.10.068] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 12/15/2022]
Abstract
Antiulcer activity of novel quinoline-chalcone hybrids (13-37) was investigated. Among them, eight compounds (14, 16, 17, 23, 29, 31, 32 and 35) were found to be active in various ulcer models in Sprague-Dawley (SD) rats. To understand the mechanism of action of these hybrids, the effects of the compounds on antisecretory and cytoprotective activities were studied. All these active hybrids improved the depleted levels of mucin and consequently inhibited the formation of erosions in a pyloric ligated ulcer model. In addition, they also significantly increased the gastric PGE2 content in an aspirin induced ulcer model. The additional experiments including the in vitro metabolic stability and in vivo pharmacokinetics led to the identification of compound 17 as an orally active and safe candidate that is worthy of further investigation to be developed as an antiulcer agent.
Collapse
Affiliation(s)
- Koneni V Sashidhara
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Srinivasa Rao Avula
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Vaibhav Mishra
- Pharmacology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Gopal Reddy Palnati
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - L Ravithej Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Neetu Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Yashpal S Chhonker
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Priyanka Swami
- Medicinal Chemistry Division, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli 229 010, India
| | - R S Bhatta
- Pharmacokinetics and Metabolism Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Gautam Palit
- Pharmacology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| |
Collapse
|
13
|
Design, synthesis and evaluation of the antidepressant and anticonvulsant activities of triazole-containing quinolinones. Eur J Med Chem 2014; 73:217-24. [DOI: 10.1016/j.ejmech.2013.12.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/22/2022]
|