1
|
Xu C, Gou Y, Zhang W, Tian R, Duan Z. Synthesis of Chalcogen-Substituted Phosphiranes: A Privileged Phosphinidene Precursor. Org Lett 2025; 27:1691-1695. [PMID: 39928330 DOI: 10.1021/acs.orglett.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
A simple and convenient method for synthesizing chalcogen-substituted (Ch = S or Se) phosphiranes was achieved through the reaction of a phosphiranide complex with sulfur (or selenium). The presented approach shows a good functional group compatibility. The ring strain and stability of the lone pair of S (or Se) on phosphinidenes enable these phosphiranes to be privileged phosphinidene precursors. The synthetic potentials of these chalcogen-substituted phosphiranes were demonstrated through P-S (Se) bond transfer reactions with various phosphinidene trapping reagents.
Collapse
Affiliation(s)
- Chenyong Xu
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiman Gou
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenxin Zhang
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Rongqiang Tian
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, International Phosphorus Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Huang J, Ma C, Sun J, Gao W, Lv Y, Yue H, Yi D, Wei W. Oxyphosphorodithiolation of Vinyl Azides with P 4S 10 and Alcohols Leading to β-Keto Phosphorodithioates. J Org Chem 2024; 89:18384-18392. [PMID: 39654500 DOI: 10.1021/acs.joc.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
A simple strategy for the synthesis of β-keto phosphorodithioates has been developed through the direct oxyphosphorodithiolation of vinyl azides with P4S10 and alcohols in the presence of water. The reaction is conducted at room temperature to provide a number of β-keto phosphorodithioates in moderate to good yields. This methodology has the advantages of simple operation, mild condition, broad substrate scope, and favorable group compatibility.
Collapse
Affiliation(s)
- Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Chao Ma
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Jian Sun
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Wenhui Gao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, P. R.China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China
| |
Collapse
|
3
|
Shannon A, Chazot A, Feracci M, Falcou C, Fattorini V, Selisko B, Good S, Moussa A, Sommadossi JP, Ferron F, Alvarez K, Canard B. An exonuclease-resistant chain-terminating nucleotide analogue targeting the SARS-CoV-2 replicase complex. Nucleic Acids Res 2024; 52:1325-1340. [PMID: 38096103 PMCID: PMC10853775 DOI: 10.1093/nar/gkad1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 02/10/2024] Open
Abstract
Nucleotide analogues (NA) are currently employed for treatment of several viral diseases, including COVID-19. NA prodrugs are intracellularly activated to the 5'-triphosphate form. They are incorporated into the viral RNA by the viral polymerase (SARS-CoV-2 nsp12), terminating or corrupting RNA synthesis. For Coronaviruses, natural resistance to NAs is provided by a viral 3'-to-5' exonuclease heterodimer nsp14/nsp10, which can remove terminal analogues. Here, we show that the replacement of the α-phosphate of Bemnifosbuvir 5'-triphosphate form (AT-9010) by an α-thiophosphate renders it resistant to excision. The resulting α-thiotriphosphate, AT-9052, exists as two epimers (RP/SP). Through co-crystallization and activity assays, we show that the Sp isomer is preferentially used as a substrate by nucleotide diphosphate kinase (NDPK), and by SARS-CoV-2 nsp12, where its incorporation causes immediate chain-termination. The same -Sp isomer, once incorporated by nsp12, is also totally resistant to the excision by nsp10/nsp14 complex. However, unlike AT-9010, AT-9052-RP/SP no longer inhibits the N-terminal nucleotidylation domain of nsp12. We conclude that AT-9052-Sp exhibits a unique mechanism of action against SARS-CoV-2. Moreover, the thio modification provides a general approach to rescue existing NAs whose activity is hampered by coronavirus proofreading capacity.
Collapse
Affiliation(s)
- Ashleigh Shannon
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Aurélie Chazot
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Mikael Feracci
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Camille Falcou
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Véronique Fattorini
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Barbara Selisko
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Steven Good
- ATEA Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA 02110, USA
| | - Adel Moussa
- ATEA Pharmaceuticals, Inc., 225 Franklin St., Suite 2100, Boston, MA 02110, USA
| | | | - François Ferron
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Karine Alvarez
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
| | - Bruno Canard
- AFMB, CNRS, Aix-Marseille University, UMR 7257, Case 925, 163 Avenue de Luminy, 13288, Marseille Cedex 09, France
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
4
|
Luo H, Li M, Wang XC, Quan ZJ. Direct synthesis of phosphorotrithioates from [TBA][P(SiCl 3) 2] and disulfides. Org Biomol Chem 2023; 21:2499-2503. [PMID: 36880434 DOI: 10.1039/d2ob02285k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Sulfur-containing organophosphorus molecules have played a pivotal role in organic synthesis, pharmaceutical pesticides and functional materials, thereby motivating researchers worldwide to establish S-P bonds from more environmentally friendly phosphorus sources. In this study, a novel method was developed for constructing S-P bonds, specifically by reacting the inorganic phosphorus derivative TBA[P(SiCl3)2] with sulfur-containing compounds under mild conditions. This method demonstrates the advantages of low energy consumption, mild reaction conditions and environmental friendliness. Moreover, this protocol-as a green synthesis method to replace the use of white phosphorus in the production of organophosphorus compounds (OPCs)-achieved the functional conversion of "inorganic phosphorus to organic phosphorus", in line with the national green development strategy.
Collapse
Affiliation(s)
- Hui Luo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
5
|
Synthesis of thiophosphates by visible-light Daual photoredox/nickel catalysis. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
6
|
Zhang Z, Lao T, Deng L, Zhang C, Liu J, Fu M, Su Z, Yu Y, Cao H. Mechanochemical Electrophilic Mono- or Disulfur Transfer: Construction of P(O)-S or P(O)-S-S Bonds. Org Lett 2022; 24:7222-7226. [PMID: 36169201 DOI: 10.1021/acs.orglett.2c03018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Under mechanochemically induced conditions, a wide range of diarylphosphine oxides or H-phosphonates react with trisulfide dioxides to afford various thiophosphate derivatives in good yields. Selective S-S bond cleavage of trisulfide dioxides determined by connecting groups is proposed as the key step in the construction of P(O)-S or P(O)-S-S bonds, which is supported by calculations.
Collapse
Affiliation(s)
- Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jubin Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Min Fu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
7
|
Wang J, Han F, Hao S, Tang YJ, Xiong C, Xiong L, Li X, Lu J, Zhou Q. Metal-Free Regioselective Hydrophosphorodithioation of Spirovinylcyclopropyl Oxindoles: Rapid Access to Allyl Dialkylphosphorodithioates. J Org Chem 2022; 87:12844-12853. [PMID: 36166737 DOI: 10.1021/acs.joc.2c01435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorodithioates are important substructures due to their great use in bioactive compounds and functional materials. A metal-free 1,5-addition of spirovinylcyclopropyl oxindoles have been developed by choosing P4S10 and alcohol as nucleophiles through the regioselective ring-opening of spirovinylcyclopropyl oxindoles. This method provides access to allylic organothiophosphates with high efficiency, wide functional group tolerance, good chemo- and regioselectivity, and E-selectivity. 1,3-Addition products were also prepared in high yield. Furthermore, the resulting organothiophosphates could be readily transformed into other allylic derivatives.
Collapse
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Fang Han
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Siyuan Hao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yu-Jiang Tang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiancheng Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jinrong Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
8
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
9
|
Wang B, Liu S, Huang W, Ma M, Chen X, Zeng W, Liang K, Wang H, Bi Y, Li X. Design, synthesis, and biological evaluation of hederagenin derivatives with improved aqueous solubility and tumor resistance reversal activity. Eur J Med Chem 2020; 211:113107. [PMID: 33360797 DOI: 10.1016/j.ejmech.2020.113107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 01/11/2023]
Abstract
Multidrug resistance (MDR) has become a major obstacle to malignancies treatment by chemotherapeutic drugs, therefore, it is important to develop MDR reversal agents with high activity. We have previously found that the hederagenin (HD) derivative HBQ showed good tumor MDR reversal activity in vitro and in vivo but had poor solubility. In this study, to enhance the aqueous solubility and tumor MDR reversal activity of HBQ, three series of HD derivatives were designed and synthesized. Nitrogen-containing heterocyclic-substituted, PEGylated, and ring-A substituted derivatives significantly reversed the MDR phenotype of KBV (multidrug-resistant oral epidermoid carcinoma) cells toward paclitaxel at a concentration of 10 μM in MTT assays. The PEGylated derivatives 10c-10e had increased aqueous solubility compared with HBQ by 18-657 fold, while maintaining tumor MDR reversal activity. The most in vitro active compound 10c possessed good chemical stability to an esterase over 24 h and enhanced the sensitivity of KBV cells to paclitaxel and vincristine with IC50 values of 4.58 and 0.79 nM, respectively. Mechanism studies indicated that compound 10c increased the accumulation of P-glycoprotein (P-gp) substrates rhodamine 123 and Flutax1 in KBV cells and MCF-7T (paclitaxel-resistant breast carcinoma) cells, that is to say, compound 10c exerted the reversal effect of tumor MDR by inhibiting the efflux function of P-gp. Finally, the structure-activity relationships were further investigated by analyzing the relationship between structure and tumor MDR reversal activity of HD derivatives. This study highlights the potential of PEGylated HD derivatives such as compound 10c for the development of tumor MDR reversal agents and provides information for the further improvement of the aqueous solubility and tumor MDR reversal activity of HD derivatives in the future.
Collapse
Affiliation(s)
- Binghua Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Shuqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wentao Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Mengxin Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Xiaoqian Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Wenxuan Zeng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Kaicheng Liang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China.
| | - Xiaopeng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| |
Collapse
|
10
|
Wiemer AJ. Metabolic Efficacy of Phosphate Prodrugs and the Remdesivir Paradigm. ACS Pharmacol Transl Sci 2020; 3:613-626. [PMID: 32821882 PMCID: PMC7409933 DOI: 10.1021/acsptsci.0c00076] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/08/2023]
Abstract
![]()
Drugs that contain phosphates (and
phosphonates or phosphinates)
have intrinsic absorption issues and are therefore often delivered
in prodrug forms to promote their uptake. Effective prodrug forms
distribute their payload to the site of the intended target and release
it efficiently with minimal byproduct toxicity. The ability to balance
unwanted payload release during transit with desired release at the
site of action is critical to prodrug efficacy. Despite decades of
research on prodrug forms, choosing the ideal prodrug form remains
a challenge which is often solved empirically. The recent emergency
use authorization of the antiviral remdesivir for COVID-19 exemplifies
a new approach for delivery of phosphate prodrugs by parenteral dosing,
which minimizes payload release during transit and maximizes tissue
payload distribution. This review focuses on the role of metabolic
activation in efficacy during oral and parenteral dosing of phosphate,
phosphonate, and phosphinate prodrugs. Through examining prior structure–activity
studies on prodrug forms and the choices that led to development of
remdesivir and other clinical drugs and drug candidates, a better
understanding of their ability to distribute to the planned site of
action, such as the liver, plasma, PBMCs, or peripheral tissues, can
be gained. The structure–activity relationships described here
will facilitate the rational design of future prodrugs.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States.,Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Jones DJ, O'Leary EM, O'Sullivan TP. Modern Synthetic Approaches to Phosphorus‐Sulfur Bond Formation in Organophosphorus Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|
12
|
Kuwabara K, Maekawa Y, Murai T. P-stereogenic phosphinothioic acids, phosphonothioic acids and their esters: Syntheses, reactions, and applications. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Jones DJ, O'Leary EM, O'Sullivan TP. A Robust Methodology for the Synthesis of Phosphorothioates, Phosphinothioates and Phosphonothioates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|
14
|
Jones DJ, O'Leary EM, O'Sullivan TP. An improved synthesis of adefovir and related analogues. Beilstein J Org Chem 2019; 15:801-810. [PMID: 30992729 PMCID: PMC6444443 DOI: 10.3762/bjoc.15.77] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
An improved synthesis of the antiviral drug adefovir is presented. Problems associated with current routes to adefovir include capricious yields and a reliance on problematic reagents and solvents, such as magnesium tert-butoxide and DMF, to achieve high conversions to the target. A systematic study within our laboratory led to the identification of an iodide reagent which affords higher yields than previous approaches and allows for reactions to be conducted up to 10 g in scale under milder conditions. The use of a novel tetrabutylammonium salt of adenine facilitates alkylations in solvents other than DMF. Additionally, we have investigated how regioselectivity is affected by the substitution pattern of the nucleobase. Finally, this chemistry was successfully applied to the synthesis of several new adefovir analogues, highlighting the versatility of our approach.
Collapse
Affiliation(s)
- David J Jones
- School of Chemistry, University College Cork, Cork, Ireland.,Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Eileen M O'Leary
- Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | - Timothy P O'Sullivan
- School of Chemistry, University College Cork, Cork, Ireland.,Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.,School of Pharmacy, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Jones DJ, O'Leary EM, O'Sullivan TP. Synthesis and application of phosphonothioates, phosphonodithioates, phosphorothioates, phosphinothioates and related compounds. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
16
|
Pasquier A, Alais S, Roux L, Thoulouze MI, Alvarez K, Journo C, Dutartre H, Mahieux R. How to Control HTLV-1-Associated Diseases: Preventing de Novo Cellular Infection Using Antiviral Therapy. Front Microbiol 2018; 9:278. [PMID: 29593659 PMCID: PMC5859376 DOI: 10.3389/fmicb.2018.00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Five to ten million individuals are infected by Human T-cell Leukemia Virus type 1 (HTLV-1). HTLV-1 is transmitted through prolonged breast-feeding, by sexual contacts and by transmission of infected T lymphocytes through blood transfusion. One to ten percent of infected carriers will develop a severe HTLV-1-associated disease: Adult-T-cell leukemia/lymphoma (ATLL), or a neurological disorder named Tropical Spastic Paraparesis/HTLV-1 Associated Myelopathy (TSP/HAM). In vivo, HTLV-1 is mostly detected in CD4+ T-cells, and to a lesser extent in CD8+ T cells and dendritic cells. There is a strong correlation between HTLV-1 proviral load (PVL) and clinical status of infected individuals. Thus, reducing PVL could be part of a strategy to prevent or treat HTLV-1-associated diseases among carriers. Treatment of ATLL patients using conventional chemotherapy has very limited benefit. Some chronic and acute ATLL patients are, however, efficiently treated with a combination of interferon α and zidovudine (IFN-α/AZT), to which arsenic trioxide is added in some cases. On the other hand, no efficient treatment for TSP/HAM patients has been described yet. It is therefore crucial to develop therapies that could either prevent the occurrence of HTLV-1-associated diseases or at least block the evolution of the disease in the early stages. In vivo, reverse transcriptase (RT) activity is low in infected cells, which is correlated with a clonal mode of viral replication. This renders infected cells resistant to nucleoside RT inhibitors such as AZT. However, histone deacetylase inhibitors (HDACi) associated to AZT efficiently induces viral expression and prevent de novo cellular infection. In asymptomatic STLV-1 infected non-human primates, HDACi/AZT combination allows a strong decrease in the PVL. Unfortunately, rebound in the PVL occurs when the treatment is stopped, highlighting the need for better antiviral compounds. Here, we review previously used strategies targeting HTLV-1 replication. We also tested a series of HIV-1 RT inhibitors in an in vitro anti-HTLV-1 screen, and report that bis-POM-PMEA (adefovir dipivoxil) and bis-POC-PMPA (tenofovir disoproxil) are much more efficient compared to AZT to decrease HTLV-1 cell-to-cell transmission in vitro. Our results suggest that revisiting already established antiviral drugs is an interesting approach to discover new anti-HTLV-1 drugs.
Collapse
Affiliation(s)
- Amandine Pasquier
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France.,Ecole Pratique des Hautes Etudes, Paris, France
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Loic Roux
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Maria-Isabel Thoulouze
- "Biofilm and Viral Transmission" Team, Structural Virology Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, Paris, France
| | - Karine Alvarez
- CNRS UMR 7257, Architecture et Fonction des Macromolecules Biologiques, Aix-Marseille Université, Marseille, France
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Equipe Labellisée Ligue Nationale Contre le Cancer, Paris, France
| |
Collapse
|
17
|
Kuwabara K, Maekawa Y, Minoura M, Murai T. Hydrolysis of Phosphonothioates with a Binaphthyl Group: P-Stereogenic O-Binaphthyl Phosphonothioic Acids and Their Use as Optically Active Ligands and Chiral Discriminating Agents. Org Lett 2018; 20:1375-1379. [PMID: 29431445 DOI: 10.1021/acs.orglett.8b00147] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hydrolysis of phosphonothioates with a binaphthyl group afforded the first example of O-(2'-hydroxy)binaphthyl phosphonothioic acids in good to high yields and >95:5 diastereoselectivity. The reaction proceeds via an axis-to-center chirality-transfer reaction. The ability of these acids to act as chiral molecular auxiliaries was demonstrated by using them as optically active ligands for the asymmetric ethylation of benzaldehyde and as a chiral discriminating agent for chiral aliphatic amines.
Collapse
Affiliation(s)
- Kazuma Kuwabara
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University , Yanagido, Gifu 501-1193, Japan
| | - Yuuki Maekawa
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University , Yanagido, Gifu 501-1193, Japan
| | - Mao Minoura
- Department of Chemistry, Graduate School of Science, Rikkyo University , Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University , Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
18
|
Petrescu AM, Ilia G. Molecular docking study to evaluate the carcinogenic potential and mammalian toxicity of thiophosphonate pesticides by cluster and discriminant analysis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 47:62-78. [PMID: 27636985 DOI: 10.1016/j.etap.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In this paper, the carcinogenic potential and mammalian toxicity on rodents, based on the quantitative relationship models between structure and biological activity (QSAR), were evaluated. The carcinogenicity and acute toxicity were evaluated by docking molecular physicochemical descriptors, on a series of 33 thiophosphonates. These properties, mainly hydrophobicity, electronic distribution, hydrogen bonding characteristics, molecule size and flexibility, and the presence of various pharmacophoric features, influence the behavior of molecule in a living organism, including bioavailability, transport properties, affinity to proteins, reactivity, toxicity, metabolic stability and many others. The model was validated using linear regression methods: principal component analysis (PCA), partial least squares (PLS) and multiple linear regression (MLR); non-linear regression methods: cluster analysis (CA) and discriminant analysis (DA); and neural network analysis: probabilistic neural network (PNN), identifying the best predictor.
Collapse
Affiliation(s)
- Alina-Maria Petrescu
- West University of Timisoara, Faculty of Chemistry, Biology, Geography, Dept. of Biology-Chemistry, 16 Pestalozzi Street, 300115 Timisoara, Romania
| | - Gheorghe Ilia
- West University of Timisoara, Faculty of Chemistry, Biology, Geography, Dept. of Biology-Chemistry, 16 Pestalozzi Street, 300115 Timisoara, Romania; Institute of Chemistry Timisoara of Romanian Academy, 24 Mihai Viteazu Bvd., 300223 Timisoara, Romania.
| |
Collapse
|
19
|
Zhou P, Xie MS, Qu GR, Li RL, Guo HM. Synthesis of Acyclic Nucleoside Analogues through the Insertion of Carbenoids into N−H Bond of Nucleobases. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Peng Zhou
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Ming-Sheng Xie
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Gui-Rong Qu
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Ren-Long Li
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| | - Hai-Ming Guo
- Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 China
| |
Collapse
|
20
|
Imoto S, Kohgo S, Tokuda R, Kumamoto H, Aoki M, Amano M, Kuwata-Higashi N, Mitsuya H, Haraguchi K. Design, Synthesis, and Evaluation of Anti-HBV Activity of Hybrid Molecules of Entecavir and Adefovir: Exomethylene Acycloguanine Nucleosides and Their Monophosphate Derivatives. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:590-602. [PMID: 26167667 DOI: 10.1080/15257770.2015.1037456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exomethylene acycloguanine nucleosides 4, 6 and its monophosphate derivatives 5, 7, and 8 have been synthesized. Mitsunobu-type coupling of 2-N-acetyl-6-O-diphenylcarbamoylguanine (11) with primary alcohols proceeded regioselectively to furnish the desired N(9)-substituted products in moderate yield. Evaluation of 4-8 for anti-HBV activity in HepG2 cells revealed that the phosphonate derivative 8 was found to exhibit moderated activity (EC50 value of 0.29 μM), but cytotoxicity (CC50 value of 39 μM) against the host cells was also observed.
Collapse
Affiliation(s)
- Shuhei Imoto
- a Faculty of Pharmaceutical Sciences, Sojo University , Nishi-ku , Kumamoto , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rivera NR, Moore J, Schenk DJ, Wang H, Hesk D, Mergelsberg I. Enzymatic approach toward the synthesis of isotopically labeled ( R )-9-(2-hydroxypropyl)adenine. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Enzymatic synthesis of acyclic nucleoside thiophosphonate diphosphates: Effect of the α-phosphorus configuration on HIV-1 RT activity. Antiviral Res 2015; 117:122-31. [DOI: 10.1016/j.antiviral.2015.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/08/2023]
|
23
|
Liu S, Wei W, Li Y, Liu X, Cao X, Lei K, Zhou M. Design, synthesis, biological evaluation and molecular docking studies of phenylpropanoid derivatives as potent anti-hepatitis B virus agents. Eur J Med Chem 2015; 95:473-82. [DOI: 10.1016/j.ejmech.2015.03.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/31/2022]
|
24
|
Intestinal behavior of the ester prodrug tenofovir DF in humans. Int J Pharm 2015; 485:131-7. [PMID: 25747454 DOI: 10.1016/j.ijpharm.2015.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 11/23/2022]
Abstract
Tenofovir-disoproxil-fumarate (TDF) is a double ester prodrug which enables intestinal uptake of tenofovir (TFV) after oral administration in humans. In this study, prodrug stability was monitored in situ in the human intestine and in vitro using biorelevant media. In fasted state human intestinal fluids, the prodrug was completely degraded within 90 min, resulting in the formation of the mono-ester intermediate and TFV; in fed state intestinal fluids, the degradation rate of TDF was slightly reduced and no TFV was formed. Intestinal fluid samples aspirated after administration of TDF confirmed extensive intraluminal degradation of TDF in fasted state conditions; a relatively fast absorption of TDF partly compensated for the degradation. Although food intake reduced intestinal degradation, the systemic exposure was not proportionally increased. The lower degradation in fed state conditions may be attributed to competing esterase substrates present in food, lower chemical degradation in the slightly more acidic environment and micellar entrapment, delaying exposure to the "degrading" intestinal environment. The results of this study demonstrate premature intestinal degradation of TDF and suggest that TFV may benefit from a more stable prodrug approach; however, fast absorption may compensate for fast degradation, indicating that prodrug selection should not be limited to stability assays.
Collapse
|
25
|
Roux L, Canard B, Alvarez K. (R)-9-[2-(Hydroxyphosphinylmethoxy)propyl]adenine as the precursor molecule for antivirals. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Zhang Q, Ma BW, Wang QQ, Wang XX, Hu X, Xie MS, Qu GR, Guo HM. The Synthesis of Tenofovir and Its Analogues via Asymmetric Transfer Hydrogenation. Org Lett 2014; 16:2014-7. [DOI: 10.1021/ol500583d] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qian Zhang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Bai-Wei Ma
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Qian-Qian Wang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xing-Xing Wang
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xia Hu
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Ming-Sheng Xie
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Gui-Rong Qu
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Hai-Ming Guo
- Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
Key Laboratory of Green Chemical Media and Reactions, Ministry of
Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
27
|
Specific features of HIV-1 integrase inhibition by bisphosphonate derivatives. Eur J Med Chem 2014; 73:73-82. [DOI: 10.1016/j.ejmech.2013.11.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 12/31/2022]
|