1
|
Ruan W, Xie Z, Wang Y, Xia L, Guo Y, Qiao D. An Overview of Naphthylimide as Specific Scaffold for New Drug Discovery. Molecules 2024; 29:4529. [PMID: 39407459 PMCID: PMC11478049 DOI: 10.3390/molecules29194529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Naphthylimides play a pivotal role as aromatic heterocyclic compounds, serving as the foundational structures for numerous pharmacologically significant drugs. These drugs encompass antibacterial, antifungal, anticancer, antimalarial, antiviral, anti-inflammatory, antithrombotic, and antiprotozoal agents. The planar and heteroaromatic characteristics of naphthylimides grant them a strong ability to intercalate into DNA. This intercalation property renders naphthylimide derivatives highly valuable for various biological activities. The advantageous pharmacological activity and ease of synthesis associated with naphthylimides and their derivatives provide significant benefits in the design and development of new compounds within this class. Currently, only a few such molecules are undergoing preclinical and clinical evaluations. In this paper, we have compiled the literature on naphthylimides reported by researchers from 2006 to 2024. Our focus lies on exploring the pharmacological activities of their analogues from a drug development and discovery perspective, while examining their structure-activity relationship and mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | - Yuping Guo
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| | - Dan Qiao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, China; (W.R.); (Z.X.); (Y.W.); (L.X.)
| |
Collapse
|
2
|
Yadav P, Fatimah N, Sahoo SC, Kumari S, Berry S, Reenu, Kumar Pinnaka A, Bhalla A. Design, Synthesis and Biological Evaluation of C3‐Indolyl/(3‐chloro‐indolyl)‐ C4‐aryl/heteroaryl‐azetidin‐2‐ones. ChemMedChem 2024; 19. [DOI: 10.1002/cmdc.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 01/04/2025]
Abstract
AbstractHerein, trans‐ and cis‐azetidin‐2‐ones 3–6 were strategically synthesized, capitalizing on the bioactivity of azetidin‐2‐ones and indole pharmacophore, followed by a comprehensive characterization using a diverse array of spectroscopic techniques. The sixteen azetidin‐2‐ones were examined for antimicrobial activities against both Gram‐negative (P. aeruginosa, E. coli, A. baumannii) and Gram‐positive bacteria (S. aureus, E. faecium, B. cereus), as well as against C. albicans and C. tropicalis fungal strains. The highly potent compounds (5 a, 6 b, 6 d) demonstrated maximum inhibition against all multidrug‐resistant strains, with minimum inhibitory concentrations ranging from 0.97–3.9 μg/mL, surpassing the potency of standard ampicillin (MIC: 3.12–50 μg/mL). Moreover, 6 b and 6 d exhibited significant inhibitory effects on C. albicans (MIC: 0.97 μg/mL), comparable to fluconazole. The presence of C3‐(3‐chloro‐indolyl) scaffold, combined with diverse electronic effects at N1/C4‐centers, particularly the inclusion of thiophen‐2‐yl motif, greatly influenced the activity of target compounds. Assessment of 4 d, 4 i–k and 6 d on THLE‐2 cell lines revealed their preferential safety. Molecular docking studies revealed seven compounds with active dual targeting of DNA GyrB and PBP2a proteins, demonstrating a potent broad‐spectrum antibacterial effect. In silico ADME analysis affirms positive drug‐likeness and favorable pharmacokinetic characteristics of indole‐derived hybrids, indicating a promising potential for addressing challenges in evolving multidrug resistance.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Nasreen Fatimah
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - S. C. Sahoo
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Sumeeta Kumari
- Microbial Type Culture Collection and Gene Bank CSIR-Microbial Type Culture Collection and Gene Bank Chandigarh 160036 India
| | - Shiwani Berry
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
- Department of Chemistry and Chemical Sciences Central University of Himachal Pradesh Shahpur Kangra 176206 India
| | - Reenu
- Department of Chemistry Govt. Home Science College Chandigarh 160011 India
| | - Anil Kumar Pinnaka
- Microbial Type Culture Collection and Gene Bank CSIR-Microbial Type Culture Collection and Gene Bank Chandigarh 160036 India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
3
|
Aye M, Jarrahpour A, Haghighijoo Z, Heiran R, Pournejati R, Karbalaei-Heidari HR, Sinou V, Brunel JM, Akkurt M, Özdemir N, Turos E. Novel Benzotriazole-β-lactam Derivatives as Antimalarial Agents: Design, Synthesis, Biological Evaluation and Molecular Docking Studies. Chem Biodivers 2024; 21:e202301745. [PMID: 38192127 DOI: 10.1002/cbdv.202301745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Many people around the world suffer from malaria, especially in tropical or subtropical regions. While malaria medications have shown success in treating malaria, there is still a problem with resistance to these drugs. Herein, we designed and synthesized some structurally novel benzotriazole-β-lactams using 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid as a key intermediate. To synthesize the target molecules, the ketene-imine cycloaddition reaction was employed. First, The reaction of 1H-benzo[d][1,2,3]triazole with 2-bromoacetic acid in aqueous sodium hydroxide yielded 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid. Then, the treatment of 2-(1H-benzo[d][1,2,3]triazol-1-yl)acetic acid with tosyl chloride, triethyl amine, and Schiff base provided new β-lactams in good to moderate yields.The formation of all cycloadducts was confirmed by elemental analysis, FT-IR, NMR and mass spectral data. Moreover, X-ray crystallography was used to determine the relative stereochemistry of 4a compound. The in vitro antimalarial activity test was conducted for each compound against P. falciparum K1. The IC50 values ranged from 5.56 to 25.65 μM. A cytotoxicity profile of the compounds at 200 μM final concentration revealed suitable selectivity of the compounds for malaria treatment. Furthermore, the docking study was carried out for each compound into the P. falciparum dihydrofolate reductase enzyme (PfDHFR) binding site to analyze their possible binding orientation in the active site.
Collapse
Affiliation(s)
- Malihe Aye
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran
- Department of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
| | - Aliasghar Jarrahpour
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, 71946-84795, Iran
| | - Zahra Haghighijoo
- Department of pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Roghayeh Heiran
- Estahban Higher Education Center- Shiraz University, Estahban, Iran
| | - Roya Pournejati
- Department of Biology, College of Sciences, Shiraz University, PO Box: 71467-13565, Shiraz, 71454, Iran
| | | | - Veronique Sinou
- Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385, Marseille, France
| | - Jean Michel Brunel
- Aix Marseille Univ, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385, Marseille, France
| | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
| | - Namık Özdemir
- Division of Physics Education, Department of Mathematics and Science Education, Faculty of Education, Ondokuz Mayıs University, TR-55139, Samsun, Turkey
| | - Edward Turos
- Center for Molecular Diversity in Drug Design, Discovery, and Delivery, Department of Chemistry, CHE 207, 4202 East Fowler Avenue, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
4
|
Ibraheim HK, Madhi KS, Baqer GK, Gharban HAJ. Effectiveness of raw bacteriocin produced from lactic acid bacteria on biofilm of methicillin-resistant Staphylococcus aureus. Vet World 2023; 16:491-499. [PMID: 37041833 PMCID: PMC10082751 DOI: 10.14202/vetworld.2023.491-499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/18/2023] [Indexed: 04/13/2023] Open
Abstract
Background and Aim Probiotics are proven beneficial to health since they enhance immunity against dangerous pathogens and increase resistance to illness. Bacteriocin produced by lactic acid bacteria (LAB), demonstrates a broad inhibitory spectrum and therapeutic potential. This study aimed to isolate LAB-producing bacteriocin and investigate the effect of crude bacteriocin on biofilm from methicillin-resistant Staphylococcus aureus (MRSA). Materials and Methods This study used randomly collected 80 white soft local cheeses (40 each from cows and sheep) from different supermarkets in Basrah Province. The obtained samples were cultured and the bacterial suspension of S. aureus was prepared at 1.5 × 108 cells/mL. The crude bacteriocin extracted from LAB was obtained, and the tube was dried and inverted to detect the biofilm loss at the bottom. Results There were 67 (83.75%) LAB isolates. Among 40 milk samples collected directly and indirectly, there were 36 (83.33%). Staphylococcus aureus isolates based on conventional bacteriological analysis and biochemical tests. Molecular testing was conducted to identify LAB and MRSA. Depending on genotypic results, the effect of white soft local cheese (cows and sheep) and the amplification results of the 16S rRNA gene were detected in 46 LAB isolates from white soft local cheese from cows and sheep. Based on the molecular identification of the mecA, results on Staphylococcus determined that only 2 of 36 isolates of S. aureus carried the mecA. Moreover, there were 26 (86.66%) isolates (MRSA) from samples of raw milk from local markets and subclinical mastitis in cows. The ability of LAB isolates was tested. The effects of bacteriocin production on preventing biofilm growth and formation were investigated. Results demonstrated that bacteriocin has high activity. Microtiter plates applied to investigate the ability of S. aureus to produce biofilms revealed that all isolates were either weak or moderate biofilm producers, with neither non-biofilm nor strong biofilm producers found among the tested isolates. Conclusion Lactic acid bacteria demonstrate a high ability to produce bacteriocin. Crude bacteriocin from LAB has a restrictive effect on biofilms produced by MRSA; thus, it can be used to reduce the pathogenicity of this bacterium.
Collapse
Affiliation(s)
- Hanaa Khaleel Ibraheim
- Department of Microbiology, College of Veterinary Medicine, University of Basrah, Basrah, Iraq
- Corresponding author: Hanaa Khaleel Ibraheim, e-mail: Co-authors: KSM: , GKB: , HAJG:
| | - Khadeeja S. Madhi
- Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
| | - Gaida K. Baqer
- Department of Microbiology, College of Medicine, University of Basrah, Basrah, Iraq
| | - Hasanain A. J. Gharban
- Department of Internal and Preventive Veterinary Medicine, College of Veterinary Medicine, University of Wasit, Wasit, Iraq
| |
Collapse
|
5
|
Zhang PL, Gopala L, Zhang SL, Cai GX, Zhou CH. An unanticipated discovery towards novel naphthalimide corbelled aminothiazoximes as potential anti-MRSA agents and allosteric modulators for PBP2a. Eur J Med Chem 2021; 229:114050. [PMID: 34922190 DOI: 10.1016/j.ejmech.2021.114050] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022]
Abstract
Available therapeutic strategies are urgently needed to conquer multidrug resistance of MRSA. A visible effort was guided towards the advancement of novel antibacterial framework of naphthalimide corbelled aminothiazoximes, and desired to assert some insight on the conjunction of individual pharmacophore with distinct biological activities and unique action mechanism. Preliminary assessment displayed that dimethylenediamine derivative 13d presented a wonderful inhibition on MRSA (MIC = 0.5 μg/mL), and showed excellent membrane selectivity (HC50 > 200 μg/mL) from an electrostatic distinction of the electronegative bacterial membranes and the electroneutral mammalian membranes. Moreover, 13d could effectually relieve the development of MRSA resistance. Investigations into explaining the mechanism of anti-MRSA disclosed that 13d displayed strong lipase affinity, which facilitated its permeation into cell membrane, causing membrane depolarization, leakage of cytoplasmic contents and lactate dehydrogenase (LDH) inhibition. Meanwhile, 13d could exert interaction with DNA to hinder biological function of DNA, and disrupt the antioxidant defense system of MRSA through up-regulation of ROS subjected the strain to oxidative stress. In particular, the unanticipated mechanism for naphthalimide corbelled aminothiazoximes that 13d could suppress the expression of PBP2a by inducing allosteric modulation of PBP2a and triggering the open of the active site, was discovered for the first time. These findings of naphthalimide corbelled aminothiazoximes as a small-molecule class of anti-MRSA agents held promise in strategies for treatment of MRSA infections.
Collapse
Affiliation(s)
- Peng-Li Zhang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
De Rosa M, Verdino A, Soriente A, Marabotti A. The Odd Couple(s): An Overview of Beta-Lactam Antibiotics Bearing More Than One Pharmacophoric Group. Int J Mol Sci 2021; 22:E617. [PMID: 33435500 PMCID: PMC7826672 DOI: 10.3390/ijms22020617] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/15/2023] Open
Abstract
β-lactam antibiotics are among the most important and widely used antimicrobials worldwide and are comprised of a large family of compounds, obtained by chemical modifications of the common scaffolds. Usually these modifications include the addition of active groups, but less frequently, molecules were synthesized in which either two β-lactam rings were joined to create a single bifunctional compound, or the azetidinone ring was joined to another antibiotic scaffold or another molecule with a different activity, in order to create a molecule bearing two different pharmacophoric functions. In this review, we report some examples of these derivatives, highlighting their biological properties and discussing how this strategy can lead to the development of innovative antibiotics that can represent either novel weapons against the rampant increase of antimicrobial resistance, or molecules with a broader spectrum of action.
Collapse
Affiliation(s)
- Margherita De Rosa
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| | | | | | - Anna Marabotti
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, 84084 Fisciano (SA), Italy; (A.V.); (A.S.)
| |
Collapse
|
7
|
Gatadi S, Madhavi YV, Chopra S, Nanduri S. Promising antibacterial agents against multidrug resistant Staphylococcus aureus. Bioorg Chem 2019; 92:103252. [PMID: 31518761 DOI: 10.1016/j.bioorg.2019.103252] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Rapid emergence of multidrug resistant Staphylococcus aureus infections has created a critical health menace universally. Resistance to all the available chemotherapeutics has been on rise which led to WHO to stratify Staphylococcus aureus as high tier priorty II pathogen. Hence, discovery and development of new antibacterial agents with new mode of action is crucial to address the multidrug resistant Staphylococcus aureus infections. The egressing understanding of new antibacterials on their biological target provides opportunities for new therapeutic agents. This review underlines on various aspects of drug design, structure activity relationships (SARs) and mechanism of action of various new antibacterial agents and also covers the recent reports on new antibacterial agents with potent activity against multidrug resistant Staphylococcus aureus. This review provides attention on in vitro and in vivo pharmacological activities of new antibacterial agents in the point of view of drug discovery and development.
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
8
|
Zarei M, Maaqooli F. Preparation of 2-azetidinones by cyclocondensation of carboxylic acids and imines via diphosphorustetraiodide. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1148165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Glycosyltransferases and Transpeptidases/Penicillin-Binding Proteins: Valuable Targets for New Antibacterials. Antibiotics (Basel) 2016; 5:antibiotics5010012. [PMID: 27025527 PMCID: PMC4810414 DOI: 10.3390/antibiotics5010012] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 12/29/2022] Open
Abstract
Peptidoglycan (PG) is an essential macromolecular sacculus surrounding most bacteria. It is assembled by the glycosyltransferase (GT) and transpeptidase (TP) activities of multimodular penicillin-binding proteins (PBPs) within multiprotein complex machineries. Both activities are essential for the synthesis of a functional stress-bearing PG shell. Although good progress has been made in terms of the functional and structural understanding of GT, finding a clinically useful antibiotic against them has been challenging until now. In contrast, the TP/PBP module has been successfully targeted by β-lactam derivatives, but the extensive use of these antibiotics has selected resistant bacterial strains that employ a wide variety of mechanisms to escape the lethal action of these antibiotics. In addition to traditional β-lactams, other classes of molecules (non-β-lactams) that inhibit PBPs are now emerging, opening new perspectives for tackling the resistance problem while taking advantage of these valuable targets, for which a wealth of structural and functional knowledge has been accumulated. The overall evidence shows that PBPs are part of multiprotein machineries whose activities are modulated by cofactors. Perturbation of these systems could lead to lethal effects. Developing screening strategies to take advantage of these mechanisms could lead to new inhibitors of PG assembly. In this paper, we present a general background on the GTs and TPs/PBPs, a survey of recent issues of bacterial resistance and a review of recent works describing new inhibitors of these enzymes.
Collapse
|
10
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2013. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Tang SS, Apisarnthanarak A, Hsu LY. Mechanisms of β-lactam antimicrobial resistance and epidemiology of major community- and healthcare-associated multidrug-resistant bacteria. Adv Drug Deliv Rev 2014; 78:3-13. [PMID: 25134490 DOI: 10.1016/j.addr.2014.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/07/2014] [Accepted: 08/11/2014] [Indexed: 12/14/2022]
Abstract
Alexander Fleming's discovery of penicillin heralded an age of antibiotic development and healthcare advances that are premised on the ability to prevent and treat bacterial infections both safely and effectively. The resultant evolution of antimicrobial resistant mechanisms and spread of bacteria bearing these genetic determinants of resistance are acknowledged to be one of the major public health challenges globally, and threatens to unravel the gains of the past decades. We describe the major mechanisms of resistance to β-lactam antibiotics - the most widely used and effective antibiotics currently - in both Gram-positive and Gram-negative bacteria, and also briefly detail the existing and emergent pharmacological strategies to overcome such resistance. The global epidemiology of the four major types of bacteria that are responsible for the bulk of antimicrobial-resistant infections in the healthcare setting - methicillin-resistant Staphylococcus aureus, vancomycin-resistant enterococci, Enterobactericeae, and Acinetobacter baumannii - are also briefly described.
Collapse
Affiliation(s)
- Sarah S Tang
- Singapore General Hospital, Outram Road, Singapore 169608, Singapore.
| | | | - Li Yang Hsu
- National University Health System, 1E Kent Ridge Road, NUHS Tower Block Level 10, Singapore 119228, Singapore.
| |
Collapse
|
12
|
2-Nitrobenzyl Esters of Penam and Cephem Derivatives as Inhibitors of Penicillin-Binding Proteins. ASIAN J ORG CHEM 2013. [DOI: 10.1002/ajoc.201300108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|