1
|
Liu YH, Wang ZY, Du YF, Liu XH, Niu JB, Song J, Jin CY, Zhang SY. Thienopyrimidine: A promising scaffold in the development of kinase inhibitors with anticancer activities. Bioorg Med Chem 2025; 121:118109. [PMID: 39955801 DOI: 10.1016/j.bmc.2025.118109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Protein kinases represent a highly promising drug target, with over 80 drugs that target about two dozen different protein kinases have been approved by the US FDA, particularly in cancer treatment. Over the past decades, the unique structural characteristics of the thienopyrimidine ring system provide an adaptive platform for designing potent anticancer agents, especially various kinase inhibitors, which has attracted widespread attention. Some of these thienopyrimidines as anticancer kinase inhibitors have already been marketed or are currently undergoing clinical/preclinical studies for the treatment of cancers, such as Olmutinib, Pictilisib, SNS-314, PF-03758309, and Fimepinostat, highlighting the substantial advantages of the thienopyrimidine scaffold in the discovery of anticancer agents. This article reviews the discovery, activity, and structure-activity relationships of antitumor kinase inhibitors based on the thienopyrimidine scaffold, and partially discusses the binding modes between thienopyrimidine derivatives and their kinase targets. By elucidating the application of thienopyrimidine derivatives as anticancer kinase inhibitors, this review aims to provide new perspectives for the development of more effective and novel kinase inhibitors.
Collapse
Affiliation(s)
- Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Zi-Yue Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fei Du
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xuan-Han Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
2
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
3
|
Emerging Role of Plant-Based Dietary Components in Post-Translational Modifications Associated with Colorectal Cancer. Life (Basel) 2023; 13:life13020264. [PMID: 36836621 PMCID: PMC9962725 DOI: 10.3390/life13020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Its main modifiable risk factors are diet, alcohol consumption, and smoking. Thus, the right approach through lifestyle changes may lead to its prevention. In fact, some natural dietary components have exhibited chemopreventive activity through modulation of cellular processes involved in CRC development. Although cancer is a multi-factorial process, the study of post-translational modifications (PTMs) of proteins associated with CRC has recently gained interest, as inappropriate modification is closely related to the activation of cell signalling pathways involved in carcinogenesis. Therefore, this review aimed to collect the main PTMs associated with CRC, analyse the relationship between different proteins that are susceptible to inappropriate PTMs, and review the available scientific literature on the role of plant-based dietary compounds in modulating CRC-associated PTMs. In summary, this review suggested that some plant-based dietary components such as phenols, flavonoids, lignans, terpenoids, and alkaloids may be able to correct the inappropriate PTMs associated with CRC and promote apoptosis in tumour cells.
Collapse
|
4
|
Swamy P M G, Abbas N, Dhiwar PS, Singh E, Ghara A, Das A. Discovery of potential Aurora-A kinase inhibitors by 3D QSAR pharmacophore modeling, virtual screening, docking, and MD simulation studies. J Biomol Struct Dyn 2023; 41:125-146. [PMID: 34809538 DOI: 10.1080/07391102.2021.2004236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The Aurora-kinase family comprises of cell cycle-regulated serine/threonine kinases playing a vital role during mitosis. Aurora-A kinase is involved in multiple mitotic events in cell cycle and is a major regulator of centrosome function during mitosis. Aurora-A is overexpressed in breast, lung, colon, ovarian, glial, and pancreatic cancer. Hence, Aurora-A kinase is a promising target in cancer therapy. In our current study, a four-point 3D QSAR pharmacophore model has been generated using substituted pyrimidine class of Aurora-A kinase inhibitors. It had a fixed cost value 88.7429. The model mapped well to the external test set comprising of clinically active molecules, with a correlation coefficient r = 0.99. From the mapping, it was found that the hydrophobic features (HY) of a molecule play an important role for Aurora-A kinase inhibitory activity, whereas the ring aromatic feature provides geometric constraint for spatial alignment of different functional group. The hypothesis, with one hydrogen bond acceptor, two ring aromatic features, and one hydrophobic feature, was selected to screen miniMaybridge database. The screened ligands were filtered on the basis of activity, shape, and drug likeliness. This led to the identification of five top hits. These identified potential leads were further subjected to docking with the ATP-binding site of Aurora-A kinase. The molecular dynamic simulation studies of top lead molecules having diverse scaffolds endorsed that the identified molecules had distinctive ability to inhibit Aurora-A kinase. Thus, this study may facilitate the medicinal chemists to design promising ligands with various scaffolds to inhibit Aurora-A kinase. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gurubasavaraja Swamy P M
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Nahid Abbas
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Prasad Sanjay Dhiwar
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ekta Singh
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Abhishek Ghara
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Arka Das
- Integrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| |
Collapse
|
5
|
Ali EMH, Abdel-Maksoud MS, Oh CH. Thieno[2,3-d]pyrimidine as a promising scaffold in medicinal chemistry: Recent advances. Bioorg Med Chem 2019; 27:1159-1194. [PMID: 30826188 DOI: 10.1016/j.bmc.2019.02.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
Thienopyrimidine scaffold is a fused heterocyclic ring system that structurally can be considered as adenine, the purine base that is found in both DNA and RNA-bioisosteres. Thienopyrimidines exist in three distinct isomeric forms. The current review discusses thieno[2,3-d]pyrimidine as a one of the opulent heterocycles in drug discovery. Its broad range of medical applications such as anticancer, anti-inflammatory, anti-microbial, and CNS protective agents has inspired us to study its structure-activity relationship (SAR), along with its relevant synthetic strategies. The present review briefly summarizes synthetic approaches for the preparation of thieno[2,3-d]pyrimidine derivatives. In addition, the promising biological activities of this scaffold are also illustrated with explanatory diagrams for their SAR studies.
Collapse
Affiliation(s)
- Eslam M H Ali
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul, Seongbuk-gu 02792, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea
| | - Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science & Technology (KIST), Seoul, Seongbuk-gu 02792, Republic of Korea; Department of Biomolecular Science, University of Science & Technology (UST), Daejeon, Yuseong-gu 34113, Republic of Korea.
| |
Collapse
|
6
|
Amawi H, Karthikeyan C, Pathak R, Hussein N, Christman R, Robey R, Ashby CR, Trivedi P, Malhotra A, Tiwari AK. Thienopyrimidine derivatives exert their anticancer efficacy via apoptosis induction, oxidative stress and mitotic catastrophe. Eur J Med Chem 2017; 138:1053-1065. [PMID: 28759878 DOI: 10.1016/j.ejmech.2017.07.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 07/14/2017] [Accepted: 07/16/2017] [Indexed: 11/17/2022]
Abstract
In this study, a series of 13 structural variants of thieno[2,3d]pyrimidine derivatives (6a-6m) were synthesized and screened for cytotoxicity in a panel of colorectal, ovarian, and brain cancer cell lines. The selectivity of the compounds was assessed by determining the cytotoxicity in normal epithelial cell line (CHO). The most potent compound, 6j, was efficacious (with IC50 range of 0.6-1.2 μM) in colon (HCT116 and HCT15), brain (LN-229 and GBM-10) and ovarian (A2780 and OV2008) cancer cell lines. In contrast, in the normal cell line (CHO), the IC50 values for 6j were 14 ± 1.3 μM. Compound 6j significantly inhibited the clonogenic potential of HCT116, OV2008 and A2780 cell lines in concentration - dependent (0.5-4 μM) manner. Also, 6j induced 1) formation of reactive oxygen species; 2) apoptosis and 3) mitotic catastrophe in HCT116 and OV2008 cells (IC50 = 0.5-2 μM). Furthermore, apoptosis was the predominant mechanism of death in A2780 cells. The cytotoxicity of 6j in wild type HCT116 cells was similar to that in HCT116 cells lacking the apoptotic genes for Bax, Bak, or Bak and Bax, indicating that 6j induces mitotic catastrophe as alternative mechanism of death when when certain apoptotic proteins are absent. In summary, this study has identified a lead molecule, 6j, that selectively induces oxidative stress, apoptosis and mitotic catastrophe in specific cancer (colon and ovarian) cell lines.
Collapse
Affiliation(s)
- Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India.
| | - Rekha Pathak
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India
| | - Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Ryann Christman
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Robert Robey
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Charles R Ashby
- Pharmaceutical Sciences, College of Pharmacy, St. John's University Queens, NY, USA
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal MP, India
| | - Ashim Malhotra
- School of Pharmacy, Pacific University, 222 SE 8th Ave, Hillsboro, OR, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA.
| |
Collapse
|
7
|
Elrazaz EZ, Serya RA, Ismail NS, Abou El Ella DA, Abouzid KA. Thieno[2,3-d]pyrimidine based derivatives as kinase inhibitors and anticancer agents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2015. [DOI: 10.1016/j.fjps.2015.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Repich H, Orysyk S, Bon V, Savytskyi P, Pekhnyo V. Mono- and binuclear Pd(II) complexes with 2-(5,6-dimethyl-4-oxo-3,4-dihydrothieno[2,3-d]pyrimidin-2-yl)-N-phenylhydrazinecarbothioamide: Synthesis, crystal structure and spectroscopic characterization. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Identification of a thienopyrimidine derivatives target by a kinome and chemical biology approach. Arch Pharm Res 2015; 38:1575-81. [DOI: 10.1007/s12272-015-0634-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/06/2015] [Indexed: 01/08/2023]
|
10
|
Qin WW, Sang CY, Zhang LL, Wei W, Tian HZ, Liu HX, Chen SW, Hui L. Synthesis and biological evaluation of 2,4-diaminopyrimidines as selective Aurora A kinase inhibitors. Eur J Med Chem 2015; 95:174-84. [DOI: 10.1016/j.ejmech.2015.03.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/25/2022]
|
11
|
Xie F, Zhu H, Zhang H, Lang Q, Tang L, Huang Q, Yu L. In vitro and in vivo characterization of a benzofuran derivative, a potential anticancer agent, as a novel Aurora B kinase inhibitor. Eur J Med Chem 2014; 89:310-9. [PMID: 25462247 DOI: 10.1016/j.ejmech.2014.10.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023]
Abstract
Aurora B is a serine/threonine kinase that has a key role in mitosis and is overexpressed in cancer cells. Aberrations in Aurora B are highly correlated with tumorigenesis and cancer development, so many studies have focused on the development of Aurora B kinase inhibitors. Based on one of our previous high-throughput screening studies, we identified lead compound S6, a small-molecule benzofuran derivative that binds Aurora B and inhibits its kinase activity in vitro. S6 also displayed high selectivity for Aurora B inhibition. The cytotoxicity of S6 was assessed against a panel of 21 cancer cell lines. The cervical cancer cell line HeLa, liver cancer cell line HepG2 and colon cancer cell line SW620 were the most sensitive to S6 treatment. We found that S6 decreased the proliferation and colony formation of these three cell lines and elevated their percentages of cells in the G2/M phase of the cell cycle. S6 also inhibited phospho-histone H3 on Ser 10, a natural biomarker of endogenous Aurora B activity. The growth suppression of liver cancer QGY-7401 xenograft tumors was observed in nude mice after S6 administration, and this effect was accompanied by the in vivo inhibition of phospho-histone H3 (Ser 10). Taken together, we conclude that targeting Aurora B with compound S6 may be a novel strategy for cancer treatment, and additional studies are warranted.
Collapse
Affiliation(s)
- Fang Xie
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Hengrui Zhu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China; Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
| | - Haoxing Zhang
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA; College of Life Sciences, Southwest University, Chongqing, PR China
| | - Qingyu Lang
- Abbott Shanghai R&D Center, Shanghai, PR China
| | - Lisha Tang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
12
|
Luo Y, Deng YQ, Wang J, Long ZJ, Tu ZC, Peng W, Zhang JQ, Liu Q, Lu G. Design, synthesis and bioevaluation of N-trisubstituted pyrimidine derivatives as potent aurora A kinase inhibitors. Eur J Med Chem 2014; 78:65-71. [DOI: 10.1016/j.ejmech.2014.03.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/18/2014] [Accepted: 03/09/2014] [Indexed: 11/30/2022]
|
13
|
Zhu XP, Liu ZL, Peng AF, Zhou YF, Long XH, Luo QF, Huang SH, Shu Y. Inhibition of Aurora-B suppresses osteosarcoma cell migration and invasion. Exp Ther Med 2014; 7:560-564. [PMID: 24520245 PMCID: PMC3919923 DOI: 10.3892/etm.2014.1491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 01/08/2014] [Indexed: 12/26/2022] Open
Abstract
Previous studies have suggested that Aurora-B may be involved in cancer metastasis. However, its role has been poorly evaluated in osteosarcoma (OS). The aim of this study was to investigate the correlation between Aurora-B expression and metastasis in human OS. The human OS cell line, U2-OS, and OS biopsy specimens were used in the study. The expression of Aurora-B protein was examined using immunohistochemistry and western blotting in OS tissues and U2-OS cells, respectively. AZD1152-hydroxyquinazoline-pyrazol-anilide, an inhibitor of Aurora-B, was used to inhibit Aurora-B expression in U2-OS cells. The effect of Aurora-B inhibition on U2-OS cell proliferation, invasion and migration was assessed using MTT, colony formation, wound healing and Transwell assays. The results showed that positive expression of the Aurora-B protein was observed in the nucleus, and that Aurora-B expression levels in the cases with pulmonary metastases were significantly higher than in those without metastasis. In vitro, the proliferation, invasion and migration of U2-OS cells were suppressed by the inhibition of Aurora-B. These results suggest that Aurora-B may be involved in OS metastasis, and may be a promising target in the treatment of OS metastasis.
Collapse
Affiliation(s)
- Xiao Ping Zhu
- Department of Anesthesia, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhi Li Liu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ai Fen Peng
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| | - Yun Fei Zhou
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Hua Long
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Feng Luo
- Department of Pathology, Cancer Hospital of Jiangxi Province, Nanchang, Jiangxi 330029, P.R. China
| | - Shan Hu Huang
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Shu
- Department of Orthopedics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|