1
|
Liashuk OS, Andriashvili VA, Tolmachev AO, Grygorenko OO. Chemoselective Reactions of Functionalized Sulfonyl Halides. CHEM REC 2024; 24:e202300256. [PMID: 37823680 DOI: 10.1002/tcr.202300256] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Chemoselective transformations of functionalized sulfonyl fluorides and chlorides are surveyed comprehensively. It is shown that sulfonyl fluorides provide an excellent selectivity control in their reactions. Thus, numerous conditions are tolerated by the SO2 F group - from amide and ester formation to directed ortho-lithiation and transition-metal-catalyzed cross-couplings. Meanwhile, sulfur (VI) fluoride exchange (SuFEx) is also compatible with numerous functional groups, thus confirming its title of "another click reaction". On the contrary, with a few exceptions, most transformations of functionalized sulfonyl chlorides typically occur at the SO2 Cl moiety.
Collapse
Affiliation(s)
- Oleksandr S Liashuk
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Andriy O Tolmachev
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd. (www.enamine.net), Winston Churchill Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
2
|
Cebeci YU, Ceylan S, Demirbas N, Karaoğlu ŞA. Microwave-assisted Synthesis of Novel Mannich Base and Conazole Derivatives Containing Biologically Active Pharmacological Groups. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/1570180817999201016154034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
The aim of this study was to synthesize new mannich bases and conazol
derivatives with biological activity by the microwave-assisted method.
Introduction:
1,2,4-Triazole-3-one (3) acquired from tryptamine was transformed to the corresponding
carbox(thio)amides (6a-c) via several steps. Compounds 6a-c were refluxed with sodium hydroxide
to yield 1,2,4-triazole derivatives (7a-c). Compounds 3 and 7a-c on treatment with different
heterocyclic secondary amines in an ambiance with formaldehyde afforded the mannich bases 8-15
having diverse pharmacophore units with biologically active sites. The reaction of compound 3 and
2-bromo-1-(4-chlorophenyl) ethanone in the presence of sodium ethoxide gave the corresponding
product 2-substituted-1,2,4-triazole-3-one, 16, which was reduced to 1,2,4-triazoles (17). Synthesis
of compounds 18, 19, and 20 was carried out starting from compounds 17 with 4-chlorobenzyl
chloride (for 18), 2,4-dichlorobenzyl chloride (for 19), and 2,6-dichlorobenzyl chloride (for 20).
Methods:
he conventional technique was utilized for the synthesis of compounds, 3-7, and microwave-
assisted technique for the compounds, 8-20. That is, green chemistry techniques were applied
during these reactions. The structures of molecules were elucidated on the foundation of 1H NMR,
13C NMR, FT-IR, EI-MS methods, and elemental analysis. Novel synthesized molecules were investigated
for their antimicrobial activity using MIC (minimum inhibitory concentration) method.
Results:
Aminoalkylation of triazole derivatives 3 and 7a-c with fluoroquinolones such as ciprofloxacin
and norfloxacin provided an enhancement to the bioactivity of mannich bases 8-11 against
the tested microorganisms. The MIC values ranged between <0.24 and 3.9 μg/mL. Moreover, molecules
10 and 11 exhibited more effects on M. smegmatis than the other compounds by the MIC
values of <1 μg/mL. They have shown very good antituberculosis activity.
Conclusion:
Most of the synthesized structures were observed to have excellent antimicrobial activity
against most microorganisms taken into account. These molecules have better activity than the
standard drug ampicillin and streptomycin.
Collapse
Affiliation(s)
- Yıldız Uygun Cebeci
- Department of Chemistry, Karadeniz Technical University, 61080, Trabzon,Turkey
| | - Sule Ceylan
- Artvin Çoruh University, Department of Occupational Health and Safety, 08000, Artvin,Turkey
| | - Neslihan Demirbas
- Department of Chemistry, Karadeniz Technical University, 61080, Trabzon,Turkey
| | | |
Collapse
|
3
|
Mermer A, Faiz O, Demirbas A, Demirbas N, Alagumuthu M, Arumugam S. Piperazine-azole-fluoroquinolone hybrids: Conventional and microwave irradiated synthesis, biological activity screening and molecular docking studies. Bioorg Chem 2019; 85:308-318. [PMID: 30654222 DOI: 10.1016/j.bioorg.2019.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/01/2019] [Accepted: 01/06/2019] [Indexed: 01/18/2023]
Abstract
A series of new 1,2,4-triazole and 1,3,4-oxadiazole derivatives was obtained via several steps sequential reactions of phenyl piperazine. Then, these compounds were converted to the corresponding fluoroquinolone hybrids via one pot three component Mannich reaction. All the reactions were examined under conventional and microwave mediated conditions, and optimum conditions were determined. The effect of different solvents and microwave power on microwave prompted reactions was investigated as well. All the newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR and EI MS spectral techniques. The antimicrobial activity, DNA gyrase and Topoisomerase IV inhibition potentials were performed. The results obtained showed that fluoroquinolone hybrids possess good antimicrobial activity. Moreover, Fluoroquinolone-azole-piperazine hybrids synthesized in the present study displayed excellent DNA gyrase inhibition. To unveil the interaction mode of compounds to receptor, a molecular docking study was performed. With an average least binding energy of -9.5 kcal/mol, all compounds were found to have remarkable inhibitory potentials against DNA gyrase (E. coli).
Collapse
Affiliation(s)
- Arif Mermer
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey
| | - Ozlem Faiz
- Recep Tayyip Erdogan University, Department of Chemistry, 53100 Rize, Turkey
| | - Ahmet Demirbas
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey
| | - Neslihan Demirbas
- Karadeniz Technical University, Department of Chemistry 61080 Trabzon, Turkey.
| | - Manikandan Alagumuthu
- Dept. of Biotechnology, School of Bio-Sciences and Technology, VIT, Vellore 632014, India
| | - Sivakumar Arumugam
- Dept. of Biotechnology, School of Bio-Sciences and Technology, VIT, Vellore 632014, India
| |
Collapse
|
4
|
Demirci S, Demirbaş N, Menteşe M, Özdemir S, Karaoğlu ŞA. Synthesis and antimicrobial activity evaluation of new norfloxacine-azole hybrids. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2018-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Norfloxacin-azole hybrids 3 and 6a,b were synthesized starting from norfloxacin. The treatment of these compounds with amines as a one-pot three-component reaction produced the corresponding amino derivatives 4a,b, 7a–g and 8a,b in good yields. The conventional and microwave-assisted methods were used with the latter method being more efficient. The structures of the synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR and MS. All compounds were screened for their antimicrobial activities. Most of them exhibit excellent antibacterial activity but are not active against selected fungi.
Collapse
|
5
|
Basoglu Ozdemir S, Demirbas N, Demirbas A, Ayaz FA, Çolak N. Microwave‐Assisted Synthesis, Antioxidant, and Antimicrobial Evaluation of Piperazine‐Azole‐Fluoroquinolone Based 1,2,4‐Triazole Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3336] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Serap Basoglu Ozdemir
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of Chemistry, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Faik Ahmet Ayaz
- Department of Biology, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| | - Nesrin Çolak
- Department of Biology, Faculty of ScienceKaradeniz Technical University Trabzon Turkey
| |
Collapse
|
6
|
Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorg Chem 2018; 78:236-248. [DOI: 10.1016/j.bioorg.2018.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/09/2018] [Accepted: 03/18/2018] [Indexed: 11/22/2022]
|
7
|
Conventional and microwave irradiated synthesis, biological activity evaluation and molecular docking studies of highly substituted piperazine-azole hybrids. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.12.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Demirci S, Mermer A, Ak G, Aksakal F, Colak N, Demirbas A, Ayaz FA, Demirbas N. Conventional and Microwave‐assisted Total Synthesis, Antioxidant Capacity, Biological Activity, and Molecular Docking Studies of New Hybrid Compounds. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Serpil Demirci
- Department of Crop Production and Technology, Bulancak Kadir Karabas School of Applied ScienceGiresun University 28000 Giresun Turkey
| | - Arif Mermer
- Department of ChemistryKaradeniz Technical University 61080 Trabzon Turkey
| | - Gokhan Ak
- Department of BiologyRecep Tayyip Erdoğan University 53100 Rize Turkey
| | - Fatma Aksakal
- Department of ChemistryGebze Technical University 41400 Kocaeli Turkey
| | - Nesrin Colak
- Department of BiologyKaradeniz Technical University 61080 Trabzon Turkey
| | - Ahmet Demirbas
- Department of ChemistryKaradeniz Technical University 61080 Trabzon Turkey
| | - Faik Ahmet Ayaz
- Department of BiologyKaradeniz Technical University 61080 Trabzon Turkey
| | - Neslihan Demirbas
- Department of ChemistryKaradeniz Technical University 61080 Trabzon Turkey
| |
Collapse
|
9
|
Synthesis and biological evaluation of new Mannich and Schiff bases containing 1,2,4-triazole and 1,3,4-oxadiazole nucleus. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1640-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Ceylan S, Bayrak H, Basoglu Ozdemir S, Uygun Y, Mermer A, Demirbas N, Ulker S. Microwave-assisted and conventional synthesis of novel antimicrobial 1,2,4-triazole derivatives containing nalidixic acid skeleton. HETEROCYCL COMMUN 2016. [DOI: 10.1515/hc-2016-0019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AbstractCarbothioamides
Collapse
|