1
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Bakr RB. Review of the recent advances of pyrazole derivatives as selective COX-2 inhibitors for treating inflammation. Mol Divers 2025; 29:1789-1820. [PMID: 39014146 DOI: 10.1007/s11030-024-10906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Pyrazole heterocycle is regarded as an extremely significant agent for the therapy of inflammation. Celecoxib, lonazolac, deracoxib, and phenylbutazone are examples of commercially approved pyrazole drugs with COX-2 inhibitory potential for curing inflammation. There have been recently many reviews for the biological significance of pyrazole derivatives. This review talks about pyrazole derivatives with anti-inflammatory activity and also sheds the light on the recent updates on pyrazole research with an emphasis on some synthetic pathways utilized to construct this privileged scaffold and structure activity relationship that accounts for the anti-inflammatory activity in an attempt to pave the opportunity for medicinal chemists to develop novel anti-inflammatory agents with better COX-2 selectivity.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt.
| |
Collapse
|
2
|
Roshan M, Mirzazadeh R, Tajmir-Riahi A, Asgari MS. Rational design, synthesis, in vitro, and in-silico studies of pyrazole‑phthalazine hybrids as new α‑glucosidase inhibitors. Sci Rep 2025; 15:3744. [PMID: 39885319 PMCID: PMC11782499 DOI: 10.1038/s41598-025-87258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/17/2025] [Indexed: 02/01/2025] Open
Abstract
This paper describes the design, development, synthesis, in silico, and in vitro evaluation of fourteen novel heterocycle hybrids as inhibitors of the α-glucosidase enzyme. The primary aim of this study was to explore the potential of novel pyrazole-phthalazine hybrids as selective inhibitors of α-glucosidase, an enzyme involved in carbohydrate metabolism, which plays a key role in the management of type 2 diabetes. The rationale for this study stems from the need for new, more effective inhibitors of α-glucosidase with improved efficacy and safety profiles compared to currently available therapies like Acarbose. The synthesized compounds were tested against the yeast α-glucosidase enzyme and showed significantly higher activity than the standard drug Acarbose. The IC50 values ranged from 13.66 ± 0.009 to 494 ± 0.006 μM, compared to the standard drug Acarbose (IC50 = 720.18 ± 0.008). The most effective α-glucosidase inhibitor, 2-acetyl-1-(3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)-3-methyl-1H-pyrazolo[1,2-b]phthalazine-5,10-dione (8l), was identified through a kinetic binding study that yielded an inhibition constant, Ki, of 34.75 µM. All of the pharmacophoric features used in the hybrid design were found to be involved in the interaction with the enzyme's active site, as expected. Moreover, molecular dynamic simulation and the absorption, distribution, metabolism, and excretion (ADME) have been performed.
Collapse
Affiliation(s)
- Mehrdad Roshan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
- Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran
| | | | | | - Mohammad Sadegh Asgari
- Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 1684613114, Iran.
| |
Collapse
|
3
|
Enhancing the antidiabetic and antidyslipidemic activity of a 1,5-diarylpyrazole by solid dispersion pre-formulation. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Maruoka H, Masumoto E. Spiro Heterocycles: Synthesis and Application of Spiro Pyrazol-3-one Derivatives. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Synthesis, crystal structure, spectroscopic characterization, α-glucosidase inhibition and computational studies of (E)-5-methyl-N′-(pyridin-2-ylmethylene)-1H-pyrazole-3-carbohydrazide. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Azimi F, Azizian H, Najafi M, Khodarahmi G, Saghaei L, Hassanzadeh M, Ghasemi JB, Faramarzi MA, Larijani B, Hassanzadeh F, Mahdavi M. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole-benzofuran hybrids as new α-glucosidase inhibitor. Sci Rep 2021; 11:20776. [PMID: 34675367 PMCID: PMC8531348 DOI: 10.1038/s41598-021-99899-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
In this work, new derivatives of biphenyl pyrazole-benzofuran hybrids were designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2-164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 μM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features, used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Motahareh Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ramadan M, Aly AA, El-Haleem LEA, Alshammari MB, Bräse S. Substituted Pyrazoles and Their Heteroannulated Analogs-Recent Syntheses and Biological Activities. Molecules 2021; 26:4995. [PMID: 34443583 PMCID: PMC8401439 DOI: 10.3390/molecules26164995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pyrazoles are considered privileged scaffolds in medicinal chemistry. Previous reviews have discussed the importance of pyrazoles and their biological activities; however, few have dealt with the chemistry and the biology of heteroannulated derivatives. Therefore, we focused our attention on recent topics, up until 2020, for the synthesis of pyrazoles, their heteroannulated derivatives, and their applications as biologically active moieties. Moreover, we focused on traditional procedures used in the synthesis of pyrazoles.
Collapse
Affiliation(s)
- Mohamed Ramadan
- Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assuit 71524, Egypt;
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
| | | | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, P.O. Box 83, Al-Kharij 11942, Saudi Arabia;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Teng Q, Sun G, Luo S, Wang K, Liang F. Design, syntheses and antitumor activities evaluation of 1,5‐diaryl substituted pyrazole secnidazole ester derivatives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Qing‐Hu Teng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Gui‐Xia Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Shu‐Ying Luo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Kai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Fu‐Pei Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
10
|
Maruoka H, Nagabuchi H, Masumoto E, Okabe-Nakahara F. Synthesis and Reaction of Novel Spiro Pyrazol-3-ones Containing Oxirane Moiety. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Azimi F, Ghasemi JB, Azizian H, Najafi M, Faramarzi MA, Saghaei L, Sadeghi-Aliabadi H, Larijani B, Hassanzadeh F, Mahdavi M. Design and synthesis of novel pyrazole-phenyl semicarbazone derivatives as potential α-glucosidase inhibitor: Kinetics and molecular dynamics simulation study. Int J Biol Macromol 2020; 166:1082-1095. [PMID: 33157144 DOI: 10.1016/j.ijbiomac.2020.10.263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/17/2023]
Abstract
A series of novel pyrazole-phenyl semicarbazone derivatives were designed, synthesized, and screened for in vitro α-glucosidase inhibitory activity. Given the importance of hydrogen bonding in promoting the α-glucosidase inhibitory activity, pharmacophore modification was established. The docking results rationalized the idea of the design. All newly synthesized compounds exhibited excellent in vitro yeast α-glucosidase inhibition (IC50 values in the range of 65.1-695.0 μM) even much more potent than standard drug acarbose (IC50 = 750.0 μM). Among them, compounds 8o displayed the most potent α-glucosidase inhibitory activity (IC50 = 65.1 ± 0.3 μM). Kinetic study of compound 8o revealed that it inhibited α-glucosidase in a competitive mode (Ki = 87.0 μM). Limited SAR suggested that electronic properties of substitutions have little effect on inhibitory potential of compounds. Cytotoxic studies demonstrated that the active compounds (8o, 8k, 8p, 8l, 8i, and 8a) compounds are also non-cytotoxic. The binding modes of the most potent compounds 8o, 8k, 8p, 8l and 8i was studied through in silico docking studies. Molecular dynamic simulations have been performed in order to explain the dynamic behavior and structural changes of the systems by the calculation of the root mean square deviation (RMSD) and root mean square fluctuation (RMSF).
Collapse
Affiliation(s)
- Fateme Azimi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran 1417614411, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Panasenko N, Bratenko M, Zvarych V, Stasevych M, Vovk M. Synthesis and Evaluation of Hypoglycemic Activity of New Pyrazolothiazolidine Hybrid Structures. CHEMISTRY & CHEMICAL TECHNOLOGY 2020. [DOI: 10.23939/chcht14.03.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Neuroprotective effect of novel celecoxib derivatives against spinal cord injury via attenuation of COX-2, oxidative stress, apoptosisand inflammation. Bioorg Chem 2020; 101:104044. [PMID: 32629287 DOI: 10.1016/j.bioorg.2020.104044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
A novel series of celecoxib derivatives were synthesized and evaluated for cyclooxygenase (COX-1/COX-2) inhibitory activities for benefit in spinal cord injury (SCI). The title compounds were synthesized by conventional methods in good yields and subsequently tested for inhibitory activity against COX-1/COX-2. The most potent COX-2 inhibitor among the tested derivatives was further assayed for protective effect against experimental SCI of Sprague-Dawley rats. The designed compounds showed considerable inhibition of COX-2 as compared to COX-1 revealing compound 7m as most potent inhibitor of COX-2 isoenzyme (IC50 = 0.04 µM). The expression of mitochondrial apoptotic genes (Bcl-2 and Bax) together with COX-2 and iNOS was restored near to normal as evidenced by western blot analysis in SCI rats. Taken altogether, compound 7m was identified as most potent inhibitor of COX-2. It also showed protective action against SCI via attenuation of COX-2, oxidative stress and apoptosis and inflammation in Male Sprague-Dawley rats.
Collapse
|
14
|
Yang Y, Zhao Y, Li W, Wu Y, Wang X, Wang Y, Liu T, Ye T, Xie Y, Cheng Z, He J, Bai P, Zhang Y, Ouyang L. Emerging targets and potential therapeutic agents in non-alcoholic fatty liver disease treatment. Eur J Med Chem 2020; 197:112311. [PMID: 32339855 DOI: 10.1016/j.ejmech.2020.112311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is the most common chronic liver disease in the world, which is characterized by liver fat accumulation unrelated to excessive drinking. Indeed, it attracts growing attention and becomes a global health problem. Due to the complexity of the NAFLD pathogenic mechanism, no related drugs were approved by Food and Drug Administration (FDA) till now. However, it is encouraging that a series of candidate drugs have entered the clinical trial stage with expectation to treat NAFLD. In this review, we summarized the main pathways and pathogenic mechanisms of NAFLD, as well as introduced the main potential therapeutic targets and the corresponding compounds involved in metabolism, inflammation and fibrosis. Furthermore, we also discuss the progress of these compounds, such as drug design and optimization, the choice of pharmacological properties and druglikeness, and the analysis of structure-activity relationship. This review offers a medium on future drug design and development, to be beneficial to relevant studies.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yu Zhao
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenzhen Li
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yuyao Wu
- West China School of Public Health/No.4 West China Teaching Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yijie Wang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tingmei Liu
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| |
Collapse
|
15
|
Structural characterization of benzoyl-1H-pyrazole derivatives obtained in lemon juice medium: Experimental and theoretical approach. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Şener N, Gür M, Çavuş MS, Zurnaci M, Şener İ. Synthesis, Characterization, and Theoretical Calculation of New Azo Dyes Derived from [1,5‐
a
]Pyrimidine‐5‐one Having Solvatochromic Properties. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nesrin Şener
- Department of Chemistry, Faculty of Science‐ArtsKastamonu University 37200 Kastamonu Turkey
| | - Mahmut Gür
- Department of Forest Industrial Engineering, Faculty of ForestryKastamonu University 37200 Kastamonu Turkey
| | - M. Serdar Çavuş
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureKastamonu University 37200 Kastamonu Turkey
| | - Merve Zurnaci
- Institute of ScienceKastamonu University 37200 Kastamonu Turkey
| | - İzzet Şener
- Department of Food Engineering, Faculty of Engineering and ArchitectureKastamonu University 37200 Kastamonu Turkey
| |
Collapse
|
17
|
Maruoka H, Masumoto E, Nagabuchi H, Kashige N, Okabe-Nakahara F, Miake F, Yamagata K. Synthesis and DNA Cleavage Activity of Novel Spiro[cyclobutathiazole-4,4’-pyrazole] Derivatives. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Hernández-Vázquez E, Young-Peralta S, Cerón-Romero L, García-Jiménez S, Estrada-Soto S. Acute and subacute antidiabetic studies of ENP-9, a new 1,5-diarylpyrazole derivative. J Pharm Pharmacol 2018; 70:1031-1039. [PMID: 29774523 DOI: 10.1111/jphp.12933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To explore the antihyperglycaemic and antidiabetic effects and to determine the acute toxicity of 5-(4-chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (ENP-9). METHODS The antihyperglycaemic effect of ENP-9 (50 mg/kg) was determined by oral glucose tolerance test (OGTT). Also, the acute (16, 50 and 160 mg/kg) and subacute (50 mg/kg/day for 10 days) antidiabetic effects of ENP-9 were determined. After subacute treatment, blood samples were analysed to determine glucose and lipid profiles. Also, an acute toxicity determination of ENP-9 was conducted followed the OECD recommendation. Molecular docking was performed using AutoDock 4.2.6 at human cannabinoid receptor 1 (PDB code 5TGZ). KEY FINDINGS Acute Administration of ENP-9 showed significant antidiabetic effect and decreased the maximum OGTT peak, compared to the control group (P < 0.05). Moreover, the 10 days treatment induced a decrease in plasma glucose levels, being significant at the end of the experiments (P < 0.05); however, triacylglycerols and cholesterol were not modified. Finally, LD50 of ENP-9 was estimated to be greater than 2000 mg/kg. Molecular docking suggests that ENP-9 may act as rimonabant does. CONCLUSIONS ENP-9 showed significant antihyperglycaemic and antidiabetic properties and also was demonstrated to be safety in the studied doses, which might allow future studies for its potential development as antidiabetic agent.
Collapse
Affiliation(s)
- Eduardo Hernández-Vázquez
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, México, México
| | - Sandra Young-Peralta
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Litzia Cerón-Romero
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Sara García-Jiménez
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Samuel Estrada-Soto
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
19
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
20
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
21
|
Maruoka H, Shirouzu E, Masumoto E, Okabe-Nakahara F, Yamagata K. One-Pot Three-Component Synthesis of Novel Pyrazole-2,3-pyrroledicarboxylic Acid 2,3-Diesters. HETEROCYCLES 2018. [DOI: 10.3987/com-17-13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Mushtaque M, Avecilla F, Haque A, Perwez A, Khan MS, Rizvi MMA. Experimental and theoretical studies of a pyrazole-thiazolidin-2,4-di-one hybrid. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.03.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
23
|
Hernández-Vázquez E, Ocampo-Montalban H, Cerón-Romero L, Cruz M, Gómez-Zamudio J, Hiriart-Valencia G, Villalobos-Molina R, Flores-Flores A, Estrada-Soto S. Antidiabetic, antidyslipidemic and toxicity profile of ENV-2: A potent pyrazole derivative against diabetes and related diseases. Eur J Pharmacol 2017; 803:159-166. [DOI: 10.1016/j.ejphar.2017.03.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/11/2023]
|
24
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
25
|
Synthesis of 3-(2-nitrovinyl)-4H-chromones: useful scaffolds for the construction of biologically relevant 3-(pyrazol-5-yl)chromones. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Hernández-Vázquez E, Salgado-Barrera S, Ramírez-Espinosa JJ, Estrada-Soto S, Hernández-Luis F. Synthesis and molecular docking of N′-arylidene-5-(4-chlorophenyl)-1-(3,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carbohydrazides as novel hypoglycemic and antioxidant dual agents. Bioorg Med Chem 2016; 24:2298-306. [DOI: 10.1016/j.bmc.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/23/2016] [Accepted: 04/01/2016] [Indexed: 01/05/2023]
|
27
|
Microwave-assisted green approach toward the unexpected synthesis of pyrazole-4-carboxylates. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2016. [DOI: 10.1007/s13738-016-0855-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
28
|
Méndez-Díaz M, Amancio-Belmont O, Hernández-Vázquez E, Ruiz-Contreras AE, Hernández-Luis F, Prospéro-García O. ENP11, a potential CB1R antagonist, induces anorexia in rats. Pharmacol Biochem Behav 2015; 135:177-81. [DOI: 10.1016/j.pbb.2015.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/12/2015] [Accepted: 06/10/2015] [Indexed: 11/29/2022]
|
29
|
1,5-Diarylpyrazole and vanillin hybrids: Synthesis, biological activity and DFT studies. Eur J Med Chem 2015; 100:106-18. [DOI: 10.1016/j.ejmech.2015.06.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 01/11/2023]
|
30
|
Recent advances in bioactive pyrazoles. Eur J Med Chem 2015; 97:786-815. [DOI: 10.1016/j.ejmech.2014.11.059] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 01/09/2023]
|
31
|
Sangepu B, Gandu B, Anupoju G, Jetti V. Synthesis of Isoxazole, 1, 2, 4-Oxadiazole and (1H-Pyrazol-4-yl)-methanone Oxime Derivatives fromN-Hydroxy-1H-pyrazole-4-carbimidoyl Chloride and their Biological Activity. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Bhavanarushi Sangepu
- Fluoroorganic Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| | - Bharath Gandu
- Bioengineering and Environmental Sciences; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| | - Gangagnirao Anupoju
- Bioengineering and Environmental Sciences; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| | - Vatsalarani Jetti
- Fluoroorganic Division; CSIR-Indian Institute of Chemical Technology; Tarnaka Hyderabad 500607 India
| |
Collapse
|
32
|
Wang HX, Wu LL, Wang YM, Zhou ZH. Organocatalyzed asymmetric tandem Michael-cyclization reaction of 4-benzylidene-3-methylpyrazol-5-ones and malononitrile: stereocontrolled construction of pyrano[2,3-c]pyrazole scaffold. RSC Adv 2015. [DOI: 10.1039/c5ra04356e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stereocontrolled construction of pyrano[2,3-c]pyrazole scaffold has been realized via chiral squaramide catalyzed asymmetric tandem Michael addition/cyclization reaction of 4-benzylidenepyrazol-5(4H)-ones and malononitrile.
Collapse
Affiliation(s)
- H.-X. Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Institute of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - L.-L. Wu
- State Key Laboratory of Elemento-Organic Chemistry
- Institute of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Y.-M. Wang
- State Key Laboratory of Elemento-Organic Chemistry
- Institute of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| | - Z.-H. Zhou
- State Key Laboratory of Elemento-Organic Chemistry
- Institute of Elemento-Organic Chemistry
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin 300071
| |
Collapse
|
33
|
Synthesis and antihyperglycemic evaluation of new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids having pyrazolyl pharmacophores. Bioorg Med Chem Lett 2014; 24:2651-4. [PMID: 24813740 DOI: 10.1016/j.bmcl.2014.04.064] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/15/2014] [Accepted: 04/17/2014] [Indexed: 11/22/2022]
Abstract
In the search of new antihyperglycemic agents and following rational approach of drug designing here new 2-hydrazolyl-4-thiazolidinone-5-carboxylic acids (4a-g) with pyrazolyl pharmacophore have been synthesized via thia Michael addition reaction of 1-((3-(4-substituted phenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)thiosemicarbazides (3a-g) with maleic anhydride. The required precursors, (3a-g) were obtained by condensing known 3-(4-substituted phenyl)-1-phenyl-1H-pyrazole-4-carbaldehydes (1a-g) with thiosemicarbazide in ethanol. The newly synthesized compounds (4a-g) have been evaluated for the antihyperglycemic activity in sucrose loaded rat model and among these compounds 4d, 4f and 4g have displayed significant antihyperglycemic activity.
Collapse
|
34
|
Type II diabetes-related enzyme inhibition and molecular modeling study of a novel series of pyrazolone derivatives. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0846-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|