1
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
2
|
Sahu G, Patra SA, Lima S, Das S, Görls H, Plass W, Dinda R. Ruthenium(II)-Dithiocarbazates as Anticancer Agents: Synthesis, Solution Behavior, and Mitochondria-Targeted Apoptotic Cell Death. Chemistry 2023; 29:e202202694. [PMID: 36598160 DOI: 10.1002/chem.202202694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
The reaction of the Ru(PPh3 )3 Cl2 with HL1-3 -OH (-OH stands for the oxime hydroxyl group; HL1 -OH=diacetylmonoxime-S-benzyldithiocarbazonate; HL2 -OH=diacetylmonoxime-S-(4-methyl)benzyldithiocarbazonate; and HL3 -OH=diacetylmonoxime-S-(4-chloro)benzyl-dithiocarbazonate) gives three new ruthenium complexes [RuII (L1-3 -H)(PPh3 )2 Cl] (1-3) (-H stands for imine hydrogen) coordinated with dithiocarbazate imine as the final products. All ruthenium(II) complexes (1-3) have been characterized by elemental (CHNS) analyses, IR, UV-vis, NMR (1 H, 13 C, and 31 P) spectroscopy, HR-ESI-MS spectrometry and also, the structure of 1-2 was further confirmed by single crystal X-ray crystallography. The solution/aqueous stability, hydrophobicity, DNA interactions, and cell viability studies of 1-3 against HeLa, HT-29, and NIH-3T3 cell lines were performed. Cell viability results suggested 3 being the most cytotoxic of the series with IC50 6.9±0.2 μM against HeLa cells. Further, an apoptotic mechanism of cell death was confirmed by cell cycle analysis and Annexin V-FITC/PI double staining techniques. In this regard, the live cell confocal microscopy results revealed that compounds primarily target the mitochondria against HeLa, and HT-29 cell lines. Moreover, these ruthenium complexes elevate the ROS level by inducing mitochondria targeting apoptotic cell death.
Collapse
Affiliation(s)
- Gurunath Sahu
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sushree Aradhana Patra
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India.,Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
3
|
Ma Y, Guo X, Wang Q, Liu T, Liu Q, Yang M, Jia A, Yang J, Liu G. Anti-inflammatory effects of β-ionone-curcumin hybrid derivatives against ulcerative colitis. Chem Biol Interact 2022; 367:110189. [PMID: 36156276 DOI: 10.1016/j.cbi.2022.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
A series of β-ionone-curcumin hybrid derivatives were designed and chosen to merge the biological characteristics of two parent molecules and to obtain a leading compound with higher biological activity. Through the initial screening, the structure activity relationship of their hybrid derivatives as inhibitors of nitric oxide (NO) production showed that meta-substituted derivatives exhibited the best inhibitory activity, among which 1h was the best one. In lipopolysaccharide-induced Raw264.7 macrophage cells, 1h showed anti-inflammatory activity by inhibiting the productions of NO and reactive oxygen species, the expressions of Interleukin-1β and tumor necrosis factor-α, and the translocation of nuclear factor (NF)-κB from the cytosol to the nucleus. Furthermore, molecular docking simulation displayed that 1h could interact with cluster of differentiation 14 to inhibit the toll-like receptor 4/NF-κB signaling. In dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) of mice, 100 mg/kg of 1h could significantly reduce the colon length shortening and protect against colon injury, liver injury and oxidative stress in DSS-induced UC of mice. Besides, 1h was safety in vivo. In conclusion, 1h was the potential anti-inflammatory agent, and further investigations were underway in our laboratory.
Collapse
Affiliation(s)
- Yazhong Ma
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Xiaoyuan Guo
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Qi Wang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Ting Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Qing Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Mengna Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Aixi Jia
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China
| | - Jie Yang
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China.
| | - Guoyun Liu
- School of Pharmaceutical Sciences, Liaocheng University, 1 Hunan Street, Liaocheng, Shandong, 252059, China.
| |
Collapse
|
4
|
Cinnamic acid/β-ionone hybrids: synthesis and in vitro anticancer activity evaluation. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02799-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Wenceslau PRS, de Paula RLG, Duarte VS, D'Oliveira GDC, Guimarães LMM, Pérez CN, Borges LL, Martins JLR, Fajemiroye JO, Franco CHJ, Perjesi P, Napolitano HB. Insights on a new sulfonamide chalcone with potential antineoplastic application. J Mol Model 2021; 27:211. [PMID: 34173883 DOI: 10.1007/s00894-021-04818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
Chalcones (E)-1,3-diphenyl-2-propene-1-ones, a class of biosynthetic precursor molecules of flavonoids, have a wide variety of biological applications. Besides the natural products, many synthetic derivatives and analogs became an object of continued interest in academia and industry. In this work, a synthesis and an extensive structural study were performed on a sulfonamide chalcone 1-Benzenesulfonyl-3-(4-bromobenzylidene)-2-(2-chlorophenyl)-2,3-dihydro-1H-quinolin-4-one with potential antineoplastic application. In addition, in silico experiments have shown that the sulfonamide chalcone fits well in the ligand-binding site of EGFR with seven μ-alkyl binding energy interactions on the ligand-binding site. Finally, the kinetic stability and the pharmacophoric analysis for EGFR indicated the necessary spatial characteristics for potential activity of sulfonamide chalcone as an antagonist.
Collapse
Affiliation(s)
- Patricia R S Wenceslau
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Renata L G de Paula
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Vitor S Duarte
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | | | - Laura M M Guimarães
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Caridad N Pérez
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Leonardo L Borges
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO, Brazil.,Escola de Ciências Médicas, Farmacêuticas e Biomédicas, Pontifícia Universidade Católica de Goiás, Goiânia, GO, Brazil
| | - José L R Martins
- Universidade Evangélica de Goiás, UniEvangélica, Anápolis, GO, Brazil
| | - James O Fajemiroye
- Universidade Evangélica de Goiás, UniEvangélica, Anápolis, GO, Brazil.,Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Chris H J Franco
- Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Pal Perjesi
- Universidade Evangélica de Goiás, UniEvangélica, Anápolis, GO, Brazil.,Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Hamilton B Napolitano
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, Anápolis, GO, Brazil. .,Universidade Evangélica de Goiás, UniEvangélica, Anápolis, GO, Brazil.
| |
Collapse
|
6
|
Morais PAB, Francisco CS, de Paula H, Ribeiro R, Eloy MA, Javarini CL, Neto ÁC, Júnior VL. Semisynthetic Triazoles as an Approach in the Discovery of Novel Lead Compounds. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210126100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, medicinal chemistry has been concerned with the approach of organic
chemistry for new drug synthesis. Considering the fruitful collections of new molecular entities,
the dedicated efforts for medicinal chemistry are rewarding. Planning and search for new
and applicable pharmacologic therapies involve the altruistic nature of the scientists. Since
the 19th century, notoriously applying isolated and characterized plant-derived compounds in
modern drug discovery and various stages of clinical development highlight its viability and
significance. Natural products influence a broad range of biological processes, covering transcription,
translation, and post-translational modification, being effective modulators of most
basic cellular processes. The research of new chemical entities through “click chemistry”
continuously opens up a map for the remarkable exploration of chemical space towards leading
natural products optimization by structure-activity relationship. Finally, in this review, we expect to gather a
broad knowledge involving triazolic natural product derivatives, synthetic routes, structures, and their biological activities.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Carla Santana Francisco
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Heberth de Paula
- Centro de Ciencias Exatas, Naturais e da Saude, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Rayssa Ribeiro
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Mariana Alves Eloy
- Programa de Pos- Graduacao em Agroquimica, Universidade Federal do Espirito Santo, 29500000, Alegre, ES, Brazil
| | - Clara Lirian Javarini
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Álvaro Cunha Neto
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Programa de Pos-Graduacao em Quimica, Universidade Federal do Espirito Santo, 29075910, Vitória, ES, Brazil
| |
Collapse
|
7
|
Silva MC, Duarte VS, Custodio JM, Queiroz JE, de Aquino GL, Oliver AG, Napolitano HB. Comparative Conformational Study of a New Terpenoid-like Chalcone. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Custodio JMF, Vaz WF, Bernardes A, Moura AF, Oliver AG, Molnár S, Perjési P, Noda-Perez C. Alternative mechanisms of action for the apoptotic activity of terpenoid-like chalcone derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02086b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structural basis of the cytotoxicity of terpenoid-like chalcone derivatives.
Collapse
Affiliation(s)
- Jean M. F. Custodio
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana, USA
| | - Wesley F. Vaz
- Departmento de Química, Instituto Federal de Ensino, Ciência e Tecnologia de Mato Grosso, Mato Grosso, Brazil
| | - Aline Bernardes
- Departmento de Química, Instituto Federal de Ensino, Ciência e Tecnologia de Mato Grosso, Mato Grosso, Brazil
| | - Andrea F. Moura
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, CE, Brazil
| | - Allen G. Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Indiana, USA
| | - Szilárd Molnár
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Pál Perjési
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Caridad Noda-Perez
- Institute of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
- Instituto de Química, Universidade Federal de Goiás, Goiás, Brazil
| |
Collapse
|
9
|
Aloum L, Alefishat E, Adem A, Petroianu G. Ionone Is More than a Violet's Fragrance: A Review. Molecules 2020; 25:molecules25245822. [PMID: 33321809 PMCID: PMC7764282 DOI: 10.3390/molecules25245822] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
The term ionone is derived from “iona” (Greek for violet) which refers to the violet scent and “ketone” due to its structure. Ionones can either be chemically synthesized or endogenously produced via asymmetric cleavage of β-carotene by β-carotene oxygenase 2 (BCO2). We recently proposed a possible metabolic pathway for the conversion of α-and β-pinene into α-and β-ionone. The differences between BCO1 and BCO2 suggest a unique physiological role of BCO2; implying that β-ionone (one of BCO2 products) is involved in a prospective biological function. This review focuses on the effects of ionones and the postulated mechanisms or signaling cascades involved mediating these effects. β-Ionone, whether of an endogenous or exogenous origin possesses a range of pharmacological effects including anticancer, chemopreventive, cancer promoting, melanogenesis, anti-inflammatory and antimicrobial actions. β-Ionone mediates these effects via activation of olfactory receptor (OR51E2) and regulation of the activity or expression of cell cycle regulatory proteins, pro-apoptotic and anti-apoptotic proteins, HMG-CoA reductase and pro-inflammatory mediators. α-Ionone and β-ionone derivatives exhibit anti-inflammatory, antimicrobial and anticancer effects, however the corresponding structure activity relationships are still inconclusive. Overall, data demonstrates that ionone is a promising scaffold for cancer, inflammation and infectious disease research and thus is more than simply a violet’s fragrance.
Collapse
Affiliation(s)
- Lujain Aloum
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Eman Alefishat
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
| | - Georg Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi 127788, UAE; (L.A.); (E.A.); (A.A.)
- Correspondence: ; Tel.: +971-50-413-4525
| |
Collapse
|
10
|
Yang J, Mu WW, Cao YX, Liu GY. Synthesis and biological evaluation of β-ionone oriented proapoptosis agents by enhancing the ROS generation. Bioorg Chem 2020; 104:104273. [DOI: 10.1016/j.bioorg.2020.104273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/23/2022]
|
11
|
Lima RS, Perez CN, da Silva CC, Santana MJ, Queiroz Júnior LH, Barreto S, de Moraes MO, Martins FT. Structure and cytotoxic activity of terpenoid-like chalcones. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
12
|
Sabina XJ, Karthikeyan J, Velmurugan G, Tamizh MM, Shetty AN. Design and in vitro biological evaluation of substituted chalcones synthesized from nitrogen mustards as potent microtubule targeted anticancer agents. NEW J CHEM 2017. [DOI: 10.1039/c7nj00265c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Six chalcones were synthesized and their structures determined by single crystal X-ray diffraction studies. They exhibited enhanced anticancer activity and tubulin inhibition.
Collapse
Affiliation(s)
- X. Janet Sabina
- Department of Chemistry
- Sathyabama University
- Chennai – 600119
- India
| | - J. Karthikeyan
- Department of Chemistry
- Sathyabama University
- Chennai – 600119
- India
| | | | - M. Muthu Tamizh
- Department of Chemistry
- Siddha Central Research Institute
- Central Council for Research in Siddha
- Chennai – 600106
- India
| | - A. Nityananda Shetty
- Department of Chemistry
- National Institute of Technology Karnataka
- Mangalore – 575025
- India
| |
Collapse
|
13
|
Evangelista FCG, Bandeira MO, Silva GD, Silva MG, Andrade SN, Marques DR, Silva LM, Castro WV, Santos FV, Viana GHR, Villar JAFP, Sabino AP, Varotti FP. Synthesis and in vitro evaluation of novel triazole/azide chalcones. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1705-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Parveen S, Al-Alshaikh MA, Panicker CY, El-Emam AA, Salian VV, Narayana B, Sarojini B, van Alsenoy C. Spectroscopic investigations and molecular docking study of (2E)-1-(4-Chlorophenyl)-3-[4-(propan-2-yl)phenyl]prop-2-en-1-one using quantum chemical calculations. J Mol Struct 2016; 1120:317-326. [DOI: 10.1016/j.molstruc.2016.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Ansari M, Emami S. β-Ionone and its analogs as promising anticancer agents. Eur J Med Chem 2016; 123:141-154. [PMID: 27474930 DOI: 10.1016/j.ejmech.2016.07.037] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/27/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
β-Ionone is an end-ring analog of β-carotenoids which widely distributed in fruit and vegetables. Recent studies have demonstrated anti-proliferative, anti-metastatic and apoptosis induction properties of β-ionone in vitro and in vivo. Also, the studies have focused on investigating the β-ionone action on different types of malignant cells and the possible mechanisms of action. Moreover, the quest of new synthetic β-ionone-based compounds possessing anti-proliferative, anti-metastatic and apoptosis induction activities may enable the discovery of compounds which can be used in combination regimes thus overcoming tumor resistance to conventional anticancer agents. These new agents will also be useful for targeting distinct signaling pathways, to activate selectively mechanisms for apoptosis in cancer cells but devoid of undesirable side effects. In this paper, we reviewed the potentialities of β-ionone and related compounds in cancer prevention and chemotherapy.
Collapse
Affiliation(s)
- Mahsa Ansari
- Student Research Committee, Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
16
|
Design, synthesis and anticancer activity of matrine–1H-1,2,3-triazole–chalcone conjugates. Bioorg Med Chem Lett 2015; 25:2540-4. [DOI: 10.1016/j.bmcl.2015.04.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 04/05/2015] [Accepted: 04/17/2015] [Indexed: 11/20/2022]
|
17
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 324] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|