1
|
Li HX, Luo XF, Deng P, Zhang SY, Zhou H, Ding YY, Wang YR, Liu YQ, Zhang ZJ. Structural Simplification of Cryptolepine to Obtain Novel Antifungal Quinoline Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2301-2312. [PMID: 36706432 DOI: 10.1021/acs.jafc.2c07575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A series of quinoline derivatives were designed and synthesized by the structural simplification of cryptolepine and evaluated for their fungicidal activity against six phytopathogenic fungi. Most of these compounds exhibited remarkable activities against Botrytis cinereain vitro. Among them, compounds A18 and L01 showed superior antifungal activity. Significantly, compared to cryptolepine, compound A18 exhibited broad-spectrum inhibitory activities against B. cinerea, Sclerotinia sclerotiorum, Rhizoctonia solani, Phytophthora capsica, Magnaporthe oryzae, and Fusarium graminearum with the respective EC50 values of 0.249, 1.569, 3.915, 0.505, 0.246, and 4.999 μg/mL. Compound L01 displayed the best antifungal activity against B. cinerea with an EC50 value of 0.156 μg/mL. Preliminary mechanistic studies showed that compound A18 could inhibit spore germination, affect the permeability of the cell membrane, increase the content of reactive oxygen species, and affect the morphology of hyphae and cells. Moreover, compound A18 showed excellent in vivo protective effect against B. cinerea, which was more potent than pyrimethanil and equitant to cryptolepine. These results evidenced that compound A18 displayed superior fungicidal activities and could be a potential fungicidal candidate against plant fungal diseases.
Collapse
Affiliation(s)
- Hai-Xin Li
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou313000, China
| | - Han Zhou
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Yan Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou730000, People's Republic of China
| |
Collapse
|
2
|
Soor HS, Diaz DB, Tsui KY, Calvopiña K, Bielinski M, Tantillo DJ, Schofield CJ, Yudin AK. Synthesis and Application of Constrained Amidoboronic Acids Using Amphoteric Boron-Containing Building Blocks. J Org Chem 2021; 87:94-102. [PMID: 34898194 DOI: 10.1021/acs.joc.1c02015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amidoboronic acid-containing peptidomimetics are an important class of scaffolds in chemistry and drug discovery. Despite increasing interest in boron-based enzyme inhibitors, constrained amidoboronic acids have received little attention due to the limited options available for their synthesis. We describe a new methodology to prepare both α- and β-amidoboronic acids that impose restrictions on backbone angles. Lewis acid-promoted Boyer-Schmidt-Aube lactam ring expansions using an azidoalkylboronate enabled generation of constrained α-amidoboronic acid derivatives, whereas assembly of the homologous β-amidoboronic acids was achieved through a novel boronic acid-mediated lactamization process stemming from an α-boryl aldehyde. The results of quantum chemical calculations suggest carboxylate-boron coordination to be rate-limiting for small ring sizes, whereas the tetrahedral intermediate formation is rate limiting in the case of larger rings. As part of this study, an application of β-amidoboronic acid derivatives as novel VIM-2 metallo-β-lactamase inhibitors has been demonstrated.
Collapse
Affiliation(s)
- Harjeet S Soor
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Diego B Diaz
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| | - Ka Yi Tsui
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Karina Calvopiña
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Marcin Bielinski
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, California 95616, United States
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
3
|
Chen YJ, Liu H, Zhang SY, Li H, Ma KY, Liu YQ, Yin XD, Zhou R, Yan YF, Wang RX, He YH, Chu QR, Tang C. Design, Synthesis, and Antifungal Evaluation of Cryptolepine Derivatives against Phytopathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:1259-1271. [PMID: 33496176 DOI: 10.1021/acs.jafc.0c06480] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inspired by the widely antiphytopathogenic application of diversified derivatives from natural sources, cryptolepine and its derivatives were subsequently designed, synthesized, and evaluated for their antifungal activities against four agriculturally important fungi Rhizoctonia solani, Botrytis cinerea, Fusarium graminearum, and Sclerotinia sclerotiorum. The results obtained from in vitro assay indicated that compounds a1-a24 showed great fungicidal property against B. cinerea (EC50 < 4 μg/mL); especially, a3 presented significantly prominent inhibitory activity with an EC50 of 0.027 μg/mL. In the pursuit of further expanding the antifungal spectrum of cryptolepine, ring-opened compound f1 produced better activity with an EC50 of 3.632 μg/mL against R. solani and an EC50 of 5.599 μg/mL against F. graminearum. Furthermore, a3 was selected to be a candidate to investigate its preliminary antifungal mechanism to B. cinerea, revealing that not only spore germination was effectively inhibited and the normal physiological structure of mycelium was severely undermined but also detrimental reactive oxygen was obviously accumulated and the normal function of the nucleus was fairly disordered. Besides, in vivo curative experiment against B. cinerea found that the therapeutic action of a3 was comparable to that of the positive control azoxystrobin. These results suggested that compound a3 could be regarded as a novel and promising agent against B. cinerea for its valuable potency.
Collapse
Affiliation(s)
- Yong-Jia Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hua Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Hu Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Kun-Yuan Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Rui Zhou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yin-Fang Yan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ren-Xuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Hui He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Qing-Ru Chu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Chen Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
4
|
Shnyder SD, Wright CW. Recent Advances in the Chemistry and Pharmacology of Cryptolepine. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:177-203. [PMID: 33797643 DOI: 10.1007/978-3-030-64853-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cryptolepine, the principal constituent of the West African climbing shrub Cryptolepis sanguinolenta, continues to be of interest as a lead to new therapeutic agents, especially for the treatment of protozoal infections and cancer. This contribution reviews the research published in the last decade, highlighting new synthesis routes to cryptolepine and to analogs of this alkaloid, as well as their pharmacology. Studies relating to the use of C. sanguinolenta as an herbal medicine for the treatment of malaria are discussed, as well as the development of analogs of cryptolepine as leads to new agents for the treatment of malaria, trypanosomiasis, and cancer with an emphasis on the pharmacological mechanisms involved. Other potential therapeutic applications include antimicrobial, antidiabetic, and anti-inflammatory activities; the pharmacokinetics and toxicity of cryptolepine are also reviewed.
Collapse
Affiliation(s)
- Steven D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Colin W Wright
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK.
| |
Collapse
|
5
|
Kumar P. A review on quinoline derivatives as anti-methicillin resistant Staphylococcus aureus (MRSA) agents. BMC Chem 2020; 14:17. [PMID: 32190843 PMCID: PMC7071757 DOI: 10.1186/s13065-020-00669-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 02/28/2020] [Indexed: 01/31/2023] Open
Abstract
Methicillin Resistant Staphylococcus aureus (MRSA) consists of strains of S. aureus which are resistant to methicillin. The resistance is due to the acquisition of mecA gene which encodes PBP2a unlike of any PBPs normally produced by S. aureus. PBP2a shows unusually low β-Lactam affinity and remains active to allow cell wall synthesis at normally lethal β-Lactam concentrations. MRSA can cause different types of infections like Healthcare associated MRSA, Community associated MRSA and Livestock associated MRSA infections. It causes skin lesions, osteomyelitis, endocarditis and furunculosis. To treat MRSA infections, only a few options are available like vancomycin, clindamycin, co-trimoxazole, fluoroquinolones or minocycline and there is a dire need of discovering new antibacterial agents that can effectively treat MRSA infections. In the current review, an attempt has been made to compile the data of quinoline derivatives possessing anti-MRSA potential reported to date.![]()
Collapse
Affiliation(s)
- Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151001 India
| |
Collapse
|
6
|
Wang X, Wang X, Huang D, Liu C, Wang X, Hu Y. Synthesis of 3-Iodoquinolines by Copper-Catalyzed Tandem Annulation from Diaryliodoniums, Nitriles, and 1-Iodoalkynes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Chantrapromma S, Kaewmanee N, Boonnak N, Quah CK, Fun HK. (E)-2-[4-(Di-ethyl-amino)-styr-yl]-1-methyl-quinolin-1-ium 4-chloro-benzene-sulfonate monohydrate. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o395-6. [PMID: 24826116 PMCID: PMC3998564 DOI: 10.1107/s1600536814004577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 11/10/2022]
Abstract
The asymmetric unit of the title hydrated salt, C22H25N2 (+)·C6H4ClO3S(-)·H2O, comprises two 2-[4-(di-ethyl-amino)-styr-yl]-1-methyl-quinolin-1-ium cations, two 4-chloro-benzene-sul-fon-ate anions and two solvent water mol-ecules. One ethyl group of both cations displays disorder over two positions in a 0.659 (2):0.341 (2) ratio in one mol-ecule and in a 0.501 (2):0.499 (2) ratio in the other. The sulfonate group of one anion is also disordered over two positions in a 0.893 (7):0.107 (7) ratio. The dihedral angle between the mean plane of the quinolinium ring system and that of benzene ring is 10.57 (18)° in one cation and 14.4 (2)° in the other. In the crystal, cations, anions and water mol-ecules are linked into chains along the [010] direction by O-H⋯Osulfonate hydrogen bonds, together with weak C-H⋯Osulfonate and C-H⋯Cl inter-actions. The cations are stacked by π-π inter-actions, with centroid-centroid distances in the range 3.675 (2)-4.162 (3) Å.
Collapse
Affiliation(s)
- Suchada Chantrapromma
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Narissara Kaewmanee
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Nawong Boonnak
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Ching Kheng Quah
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Hoong-Kun Fun
- X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| |
Collapse
|
8
|
Bolden S, Boateng CA, Zhu XY, Etukala JR, Eyunni SK, Jacob MR, Khan SI, Ablordeppey SY. CoMFA studies and in vitro evaluation of some 3-substituted benzylthio quinolinium salts as anticryptococcal agents. Bioorg Med Chem 2013; 21:7194-201. [PMID: 24080102 DOI: 10.1016/j.bmc.2013.08.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/14/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The 3-dimensional quantitative structure-activity relationship (3D-QSAR) molecular modeling technique or comparative molecular field analysis (CoMFA) has been used to design analogs of the natural product cryptolepine (1). Twenty-three compounds with their in vitro biological activities (IC50 values) against Crytococcus neoformans were used to generate the training set database of compounds for the CoMFA studies. The cross-validated q(2), noncross-validated r(2), and partial least squares (PLS) analysis results were used to predict the biological activity of 11 newly designed test set compounds. The best CoMFA model produced a q(2) of 0.815 and an r(2) of 0.976 indicating high statistical significance as a predictive model. The steric and electrostatic contributions from the contour map were interpreted from the color-coded contour plots generated from the PLS model and the active structural components for potency against C. neoformans were determined and validated in the test set compounds. The 3-substituted benzylthio quinolinium salts (4) that make up the test set were synthesized and evaluated based on the predicted activity from the CoMFA model and the results produced a good correlation between the predicted and experimental activity (R=0.82). Thus, CoMFA has served as an effective tool to aid the design of new analogs and in this case, it has aided the identification of compounds equipotent with amphotericin B, the gold standard in antifungal drug design.
Collapse
Affiliation(s)
- Sidney Bolden
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | | | | | | | | | | | | | | |
Collapse
|