1
|
He Y, Lin Y, He F, Shao L, Ma W, He F. Role for calcium-activated potassium channels (BK) in migration control of human hepatocellular carcinoma cells. J Cell Mol Med 2021; 25:9685-9696. [PMID: 34514691 PMCID: PMC8505838 DOI: 10.1111/jcmm.16918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer‐related death worldwide. Its high metastasis rate is significantly correlated with poor patient prognosis. Elucidating the molecular mechanism underlying HCC metastasis is essential for HCC treatment. Owing to their high conductance, large‐conductance calcium‐activated potassium channels (BK channels) play a critical role in the control of membrane potential and have repeatedly been proposed as potential targets for cancer therapy. Emerging evidence suggests that BK channels are involved in the progression of cancer malignancies. The present study investigated the role of BK channels in mediating the hypoxia‐stimulated migration of HCC cells both in vitro and in vivo in the absence and presence of various BK channels modulators. We found that BK channels were functionally expressed on the membranes of the SMMC‐7721 and Huh7 HCC cell lines. Furthermore, blockage or activation of BK channels on the surface of HCC cells correspondingly inhibited or promoted HCC cell proliferation, migration and invasion in hypoxia conditions, with altered expression and distribution of cell‐cell adhesion molecule E‐cadherin and typical marker of mesenchymal cells, Vimentin, but not N‐cadherin. Hypoxia conditions did not alter BK channels expression but increased its open probability. Moreover, BK channels blocker IbTX significantly inhibited HCC cell remote colonization in HCC cell xenografted mice. In conclusion, the results of this study suggest that blocking BK channels offers an attractive strategy for treating HCC.
Collapse
Affiliation(s)
- Yuan He
- Department of General Surgery, Changzhi Medical College Affiliated Heping Hospital, Changzhi, China
| | - Yingying Lin
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fei He
- Department of Stomatology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, China
| | - Lijuan Shao
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Wei Ma
- Translational Medicine Collaborative Innovation Center of Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Fei He
- Translational Medicine Collaborative Innovation Center of Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Wang X, Cong P, Liu Y, Tao S, Chen Q, Wang J, Xu J, Xue C. Neuritogenic effect of sea cucumber glucocerebrosides on NGF-induced PC12 cells via activation of the TrkA/CREB/BDNF signalling pathway. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
3
|
Shipston MJ, Tian L. Posttranscriptional and Posttranslational Regulation of BK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:91-126. [PMID: 27238262 DOI: 10.1016/bs.irn.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large conductance calcium- and voltage-activated potassium (BK) channels are ubiquitously expressed and play an important role in the regulation of an eclectic array of physiological processes. Their diverse functional role requires channels with a wide variety of properties even though the pore-forming α-subunit is encoded by a single gene, KCNMA1. To achieve this, BK channels exploit some of the most fundamental posttranscriptional and posttranslational mechanisms that allow proteomic diversity to be generated from a single gene. These include mechanisms that diversify mRNA variants and abundance such as alternative pre-mRNA splicing, editing, and control by miRNA. The BK channel is also subject to a diverse array of posttranslational modifications including protein phosphorylation, lipidation, glycosylation, and ubiquitination to control the number, properties, and regulation of BK channels in specific cell types. Importantly, "cross talk" between these posttranscriptional and posttranslational modifications typically converge on disordered domains of the BK channel α-subunit. This allows both wide physiological diversity to be generated and a diversity of mechanisms to allow conditional regulation of BK channels and is emerging as an important determinant of BK channel function in health and disease.
Collapse
Affiliation(s)
- M J Shipston
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | - L Tian
- Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Structure of Sphingolipids From Sea Cucumber Cucumaria frondosa and Structure-Specific Cytotoxicity Against Human HepG2 Cells. Lipids 2016; 51:321-34. [PMID: 26861868 DOI: 10.1007/s11745-016-4128-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
To investigate the relationship between structure and activity, three glucocerebroside series (CFC-1, CFC-2 and CFC-3), ceramides (CF-Cer) and long-chain bases (CF-LCB) of sea cucumber Cucumaria frondosa (C. frondosa) were isolated and evaluated in HepG2 cells. The molecular species of CFC-1, CFC-2 and CFC-3 and CF-Cer were identified using reversed-phase liquid chromatography with heated electrospray ionization coupled to high-resolution mass spectrometry (RPLC-HESI-HRMS), and determined on the basis of chemical and spectroscopic evidence: For the three glucocerebroside series, fatty acids (FA) were mainly saturated (18:0 and 22:0), monounsaturated (22:1, 23:1 and 24:1) and 2-hydroxyl FA (2-HFA) (23:1 h and 24:1 h), the structure of long-chain bases (LCB) were dihydroxy (d17:1, d18:1 and d18:2) and trihydroxy (t16:0 and t17:0), and the glycosylation was glucose; For CF-Cer, FA were primarily saturated (17:0) and monounsaturated (16:1 and 19:1), the structure of LCB were dihydroxy (d17:1 and d18:1), and trihydroxy (t16:0). The results of cell experiment indicated that all of three glucocerebroside series, CF-Cer and CF-LCB exhibited an inhibitory effects on cell proliferation. Moreover, CFC-3 was most effective in three glucocerebrosides to HepG-2 cell viability. The inhibition effect of CF-LCB was the strongest, and the inhibition effect of CF-Cer was much stronger than glucocerebrosides.
Collapse
|
5
|
Cui YM, Liu XL, Zhang WM, Lin HX, Ohwada T, Ido K, Sawada K. The synthesis and BK channel-opening activity of N-acylaminoalkyloxime derivatives of dehydroabietic acid. Bioorg Med Chem Lett 2015; 26:283-287. [PMID: 26707391 DOI: 10.1016/j.bmcl.2015.12.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 11/16/2022]
Abstract
A series of N-acylaminoalkyloxime derivatives of dehydroabietic acid were synthesized and evaluated for BK channel-opening activities in an assay system of CHO-K1 cells expressing hBKα channels. The structure-activity relationship study revealed that a non-covalent interaction between the S atom of the 2-thiophene and the carbonyl O atom may contribute to conformation restriction for interaction with the ion channel. This research could guide the design and synthesis of novel abietane-based BK channel opener.
Collapse
Affiliation(s)
- Yong-Mei Cui
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Xin-Lan Liu
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Wen-Ming Zhang
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hai-Xia Lin
- Department of Chemistry, Innovative Drug Research Center, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Katsutoshi Ido
- Tsukuba Research Laboratories, Eisai Co. Ltd, Ibaraki 300-2635, Japan
| | - Kohei Sawada
- Tsukuba Research Laboratories, Eisai Co. Ltd, Ibaraki 300-2635, Japan
| |
Collapse
|
6
|
Morera FJ, Saravia J, Pontigo JP, Vargas-Chacoff L, Contreras GF, Pupo A, Lorenzo Y, Castillo K, Tilegenova C, Cuello LG, Gonzalez C. Voltage-dependent BK and Hv1 channels expressed in non-excitable tissues: New therapeutics opportunities as targets in human diseases. Pharmacol Res 2015; 101:56-64. [PMID: 26305431 DOI: 10.1016/j.phrs.2015.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/28/2022]
Abstract
Voltage-gated ion channels are the molecular determinants of cellular excitability. This group of ion channels is one of the most important pharmacological targets in excitable tissues such as nervous system, cardiac and skeletal muscle. Moreover, voltage-gated ion channels are expressed in non-excitable cells, where they mediate key cellular functions through intracellular biochemical mechanisms rather than rapid electrical signaling. This review aims at illustrating the pharmacological impact of these ion channels, highlighting in particular the structural details and physiological functions of two of them - the high conductance voltage- and Ca(2+)-gated K(+) (BK) channels and voltage-gated proton (Hv1) channels- in non-excitable cells. BK channels have been implicated in a variety of physiological processes ranging from regulation of smooth muscle tone to modulation of hormone and neurotransmitter release. Interestingly, BK channels are also involved in modulating K(+) transport in the mammalian kidney and colon epithelium with a potential role in the hyperkalemic phenotype observed in patients with familial hyperkalemic hypertension type 2, and in the pathophysiology of hypertension. In addition, BK channels are responsible for resting and stimulated Ca(2+)-activated K(+) secretion in the distal colon. Hv1 channels have been detected in many cell types, including macrophages, blood cells, lung epithelia, skeletal muscle and microglia. These channels have a central role in the phagocytic system. In macrophages, Hv1 channels participate in the generation of reactive oxygen species in the respiratory burst during the process of phagocytosis.
Collapse
Affiliation(s)
- Francisco J Morera
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| | - Julia Saravia
- Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Pablo Pontigo
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Vargas-Chacoff
- Institute of Marine Sciences and Limnology, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Gustavo F Contreras
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Amaury Pupo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Yenisleidy Lorenzo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Karen Castillo
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile
| | - Cholpon Tilegenova
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubcock, TX, USA
| | - Luis G Cuello
- Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubcock, TX, USA.
| | - Carlos Gonzalez
- Interdisciplinary Center for Neuroscience of Valparaiso, Faculty of Sciences, Universidad de Valparaiso, Valparaiso, Chile.
| |
Collapse
|
7
|
Palmitoylation of STREX domain confers cerebroside sensitivity to the BKCa channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2451-9. [DOI: 10.1016/j.bbamem.2014.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022]
|