1
|
Elsebaei MM, Ezzat HG, Helal AM, El-Shershaby MH, Abdulrahman MS, Alsedawy M, Aljohani AKB, Almaghrabi M, Alsulaimany M, Almohaywi B, Alghamdi R, Miski SF, Musa A, Ahmed HEA. Rational design and synthesis of novel phenyltriazole derivatives targeting MRSA cell wall biosynthesis. RSC Adv 2024; 14:39977-39994. [PMID: 39713184 PMCID: PMC11659749 DOI: 10.1039/d4ra07367c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSA) is a major global health challenge. This study reports the design and synthesis of novel phenyltriazole derivatives as potential anti-MRSA agents. The new scaffold replaces the thiazole core with a 1,2,3-triazole ring, enhancing antimicrobial efficacy and physicochemical properties. A series of derivatives were synthesized and evaluated, with four compounds (20, 23, 29 and 30) showing significant activity against MRSA (MIC ≤ 4 μg mL-1). Compound 29 emerged as the most promising candidate, showing rapid bactericidal activity and superior performance over vancomycin in time-kill assays. It exhibited selective toxicity against bacterial cells, minimal cytotoxicity in human cell lines and low hemolytic activity. Mechanistic studies showed that compound 29 targets the bacterial cell wall by binding to penicillin-binding protein 2a (PBP2a), disrupting cell wall integrity. Additionally, it showed strong anti-biofilm activity and reduced MRSA biofilms by up to 40%. Preliminary pharmacokinetic profiles suggested a favorable profile, including a prolonged plasma half-life and good oral bioavailability. These results suggest that compound 29 is a promising lead for further development in the fight against MRSA.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Hany G Ezzat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed M Helal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed H El-Shershaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Moaz Alsedawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Samar F Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
2
|
Zahoor AF, Munawar S, Ahmad S, Iram F, Anjum MN, Khan SG, Javid J, Nazeer U, Bhat MA. Design, Synthesis and Biological Exploration of Novel N-(9-Ethyl-9 H-Carbazol-3-yl)Acetamide-Linked Benzofuran-1,2,4-Triazoles as Anti-SARS-CoV-2 Agents: Combined Wet/Dry Approach Targeting Main Protease (M pro), Spike Glycoprotein and RdRp. Int J Mol Sci 2024; 25:12708. [PMID: 39684420 PMCID: PMC11641759 DOI: 10.3390/ijms252312708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
A novel series of substituted benzofuran-tethered triazolylcarbazoles was synthesized in good to high yields (65-89%) via S-alkylation of benzofuran-based triazoles with 2-bromo-N-(9-ethyl-9H-carbazol-3-yl)acetamide. The inhibitory potency of the synthesized compounds against SARS-CoV-2 was evaluated by enacting molecular docking against its three pivotal proteins, namely, Mpro (main protease; PDB ID: 6LU7), the spike glycoprotein (PDB ID: 6WPT), and RdRp (RNA-dependent RNA polymerase; PDB ID: 6M71). The docking results indicated strong binding affinities between SARS-CoV-2 proteins and the synthesized compounds, which were thereby expected to obstruct the function of SARS proteins. Among the synthesized derivatives, the compounds 9e, 9h, 9i, and 9j exposited the best binding scores of -8.77, -8.76, -8.87, and -8.85 Kcal/mol against Mpro, respectively, -6.69, -6.54, -6.44, and -6.56 Kcal/mol against the spike glycoprotein, respectively, and -7.61, -8.10, -8.01, and -7.54 Kcal/mol against RdRp, respectively. Furthermore, the binding scores of 9b (-8.83 Kcal/mol) and 9c (-8.92 Kcal/mol) against 6LU7 are worth mentioning. Regarding the spike glycoprotein, 9b, 9d, and 9f expressed high binding energies of -6.43, -6.38, and -6.41 Kcal/mol, accordingly. Correspondingly, the binding affinity of 9g (-7.62 Kcal/mol) against RdRp is also noteworthy. Furthermore, the potent compounds were also subjected to ADMET analysis to evaluate their pharmacokinetic properties, suggesting that the compounds 9e, 9h, 9i, and 9j exhibited comparable values. These potent compounds may be selected as inhibitory agents and provide a pertinent context for further investigations.
Collapse
Affiliation(s)
- Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.)
| | - Saba Munawar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.)
| | - Sajjad Ahmad
- Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Fozia Iram
- Department of Chemistry, Lahore College for Women University, Lahore 54600, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.F.Z.)
| | - Jamila Javid
- Department of Chemistry, University of Sialkot, Sialkot 51310, Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Houston, TX 77204, USA
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Zhao R, Zhu J, Jiang X, Bai R. Click chemistry-aided drug discovery: A retrospective and prospective outlook. Eur J Med Chem 2024; 264:116037. [PMID: 38101038 DOI: 10.1016/j.ejmech.2023.116037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Click chemistry has emerged as a valuable tool for rapid compound synthesis, presenting notable advantages and convenience in the exploration of potential drug candidates. In particular, in situ click chemistry capitalizes on enzymes as reaction templates, leveraging their favorable conformation to selectively link individual building blocks and generate novel hits. This review comprehensively outlines and introduces the extensive use of click chemistry in compound library construction, and hit and lead discovery, supported by specific research examples. Additionally, it discusses the limitations and precautions associated with the application of click chemistry in drug discovery. Our intention for this review is to contribute to the development of a modular synthetic approach for the rapid identification of drug candidates.
Collapse
Affiliation(s)
- Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Junlong Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
4
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Li Z, Yang B, Ding Y, Zhou X, Fang Z, Liu S, Yang J, Yang S. Discovery of phosphonate derivatives containing different substituted 1,2,3-triazole motif as promising tobacco mosaic virus (TMV) helicase inhibitors for controlling plant viral diseases. PEST MANAGEMENT SCIENCE 2023; 79:3979-3992. [PMID: 37271938 DOI: 10.1002/ps.7592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/29/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The discovery and identification of targets is of far-reaching significance for developing novel pesticide candidates and increasing the probability of success. To explore and identify highly effective tobacco mosaic virus (TMV) helicase-targeted lead structures, a series of novel phosphonate derivatives containing a 1,2,3-triazole motif were rationally engineered and their antiviral activity was assessed. RESULTS Bioassay results showed that the optimized B17 exhibited more potent curative activity (EC50 = 271.5 μg mL-1 ) against TMV in vivo, which was superior to that of commercial Ribavirin (EC50 = 689.3 μg mL-1 ). B17 presented a stronger binding capacity through binding analysis with helicase, affording a corresponding value of 12.7 μM. Enzyme activity assay showed B17 exhibited excellent inhibitory activity on TMV helicase (39.2% at 300 μM). Furthermore, molecular docking simulations demonstrated that B17 displayed strong hydrogen-bond interactions (2.1, 2.1, 2.2, and 3.2 Å) with Ala-33, Gly-10, Gly-8, and Glu-217 of TMV helicase. Encouragingly, transmission electron microscopy analysis revealed that B17 could remarkably disrupt surface morphology and inhibit TMV proliferation. Additionally, these compounds also displayed potential anti-CMV (cucumber mosaic virus) and antipathogens (Xanthomonas oryzae pv. oryzae and Xanthomonas axonopodis pv. citri) by expanding their applications in agriculture. CONCLUSION Current research demonstrated that B17 could be considered as a potential antiviral agent alternative though targeting TMV helicase. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhenxing Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Binxin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Yue Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Zimian Fang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - ShuaiShuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Jie Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
6
|
Aitha S, Thumma V, Ambala S, Matta R, Panga S, Pochampally J. Bis 1, 2, 3‐ Triazoles Linked Deoxybenzoin Hybrids as Antimicrobial Agents: Synthesis, In Vitro and In Silico Screening. ChemistrySelect 2023. [DOI: 10.1002/slct.202300405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Shalini Aitha
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
- Government Degree College for Women Karimnagar 505001 Telangana India
| | - Vishnu Thumma
- Department of Sciences and Humanities Matrusri Engineering College Hyderabad 500059 Telangana India
| | | | - Raghavender Matta
- Department of Chemistry Osmania University Hyderabad 500007 Telangana India
| | - Shyam Panga
- Dr. N. J. Paulbudhe College of Pharmacy Ahmednagar 414003 Maharashtra India
| | | |
Collapse
|
7
|
Hamadi NB, Guesmi A, Algathami FK, Khezami L, Nouira W, El-Fattah WA. Synthesis and Molecular Docking of New 1,2,3-triazole Carbohydrates with COVID-19 Proteins. Curr Org Synth 2023; 20:238-245. [PMID: 35430994 DOI: 10.2174/1570179419666220414095602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022]
Abstract
AIMS We have established this paper to recommend a novel way for the preparation of carbohydrates encompassing a 1,2,3-triazole motif that was prepared using an efficient click chemistry synthesis. BACKGROUND The SARS-CoV-2 coronavirus epidemic continues to spread at a fast rate worldwide. The main protease (Mpro) is useful target for anti-COVID-19 agents. Triazoles are frequently found in many bioactive products, such as coronavirus inhibitors. OBJECTIVE Click reactions are facilitated via the activation of copper nanoparticles, different substrates have been tested using this adopted procedure given in all cases, in high yields and purity. Other interesting comparative docking analyses will be the focus of this article. Calculations of quantitative structure-activity relationships will be studied. METHODS Copper nanoparticles were produced by the reaction of cupric acetate monohydrate with oleylamine and oleic acid. To a solution, 5-(azidomethyl)-2,2,7,7-tetramethyltetrahydro-5Hbis([ 1,3]dioxolo)[4,5-b:4',5'-d]pyran 2 (200 mg, 0.72 mmol, 1 eq.) in toluene (15 mL) was added into a mixture of N-(prop-2-yn-1-yl)benzamide derivatives 1a-d (1.5 eq.) and copper nanoparticles (0.57 mg, 0.036 mmol, 0.05 eq.). RESULTS A novel series of 1,2,3-triazole carbohydrate skeletons were modeled and efficiently synthesized. Based on the observations, virtual screening using molecular docking was performed to identify novel compounds that can bind with the protein structures of COVID-19 (PDB ID: 6LU7 and 6W41). We believed that the 1,2,3-triazole carbohydrate derivatives could aid in COVID-19 drug discovery. CONCLUSION The formations of targeted triazoles were confirmed by different spectroscopic techniques (FT-IR, 1H NMR, 13C NMR, and CHN analyses). The docking scores of the newly synthesized triazole are attributed to the presence of hydrogen bonds together with many interactions between the ligands and the active amino acid residue of the receptor. The comparison of the interactions of the drugs, remdesivir and triazole, in the largest pocket of 6W41 and 6LU7 is also presented.
Collapse
Affiliation(s)
- Naoufel Ben Hamadi
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, Natural Products and Reactivity (LR11ES39), University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Ahlem Guesmi
- Laboratory of Heterocyclic Chemistry, Faculty of Science of Monastir, Natural Products and Reactivity (LR11ES39), University of Monastir, Avenue of Environment, 5019 Monastir, Tunisia
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Textile Engineering Laboratory, Higher Institute of Technological Studies of Ksar Hellal, UM (University of Monastir), Ksar Hellal, Tunisia
| | - Faisal K Algathami
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Lotfi Khezami
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Wided Nouira
- Preparatory Institute for Engineering Studies of Kairouan, Nabeul, Tunisia
| | - Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
8
|
Synthesis, characterization, antioxidant and anticancer activity of new hybrid structures based on diarylmethanol and 1,2,3-triazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Oubella A, Bimoussa A, Byadi S, Fawzi M, Laamari Y, Auhmani A, Morjani H, Robert A, Riahi A, Ait Itto MY. Design, synthesis, in vitro anticancer activity, and molecular docking studies of new (R)-carvone-pyrazole-1,2,3-triazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Yumaier A, Cui Z, Abudurixiti A, Yusuf A. Development and Structural Modifications of Rupestonic Acid Derivatives as Novel Anti‐Influenza Agents: A Mini Review of The Last 10 Years. ChemistrySelect 2022. [DOI: 10.1002/slct.202201906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Abulimiti Yumaier
- College of Chemistry and Environmental Science Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry Kashi University Xueyuan Road 29 Kashgar 844000 China
| | - Zhi‐Chao Cui
- College of Chemistry and Environmental Science Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry Kashi University Xueyuan Road 29 Kashgar 844000 China
| | - Adila Abudurixiti
- College of Chemistry and Environmental Science Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry Kashi University Xueyuan Road 29 Kashgar 844000 China
| | - Abdulla Yusuf
- College of Chemistry and Environmental Science Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry Kashi University Xueyuan Road 29 Kashgar 844000 China
| |
Collapse
|
11
|
Design, Synthesis, Molecular Docking and Antimicrobial Activities of Novel Triazole-ferulic acid ester Hybrid Carbohydrates. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Abbas G, Yu J, Li G. Novel and Alternative Therapeutic Strategies for Controlling Avian Viral Infectious Diseases: Focus on Infectious Bronchitis and Avian Influenza. Front Vet Sci 2022; 9:933274. [PMID: 35937298 PMCID: PMC9353128 DOI: 10.3389/fvets.2022.933274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
The growth of poultry farming has enabled higher spread of infectious diseases and their pathogens among different kinds of birds, such as avian infectious bronchitis virus (IBV) and avian influenza virus (AIV). IBV and AIV are a potential source of poultry mortality and economic losses. Furthermore, some pathogens have the ability to cause zoonotic diseases and impart human health problems. Antiviral treatments that are used often lead to virus resistance along with the problems of side effects, recurrence, and latency of viruses. Though target hosts are being vaccinated, the constant emergence and re-emergence of strains of these viruses cause disease outbreaks. The pharmaceutical industry is gradually focusing on plant extracts to develop novel herbal drugs to have proper antiviral capabilities. Natural therapeutic agents developed from herbs, essential oils (EO), and distillation processes deliver a rich source of amalgams to discover and produce new antiviral drugs. The mechanisms involved have elaborated how these natural therapeutics agents play a major role during virus entry and replication in the host and cause inhibition of viral pathogenesis. Nanotechnology is one of the advanced techniques that can be very useful in diagnosing and controlling infectious diseases in poultry. In general, this review covers the issue of the poultry industry situation, current infectious diseases, mainly IB and AI control measures and, in addition, the setup of novel therapeutics using plant extracts and the use of nanotechnology information that may help to control these diseases.
Collapse
|
13
|
Kumar S, Mangal S, Nosran A, Harjai K, Singh V. Synthesis of Bis(indolyl)methane/Dihydropyrimidinone Tethered Bis‐Amidic Triazole Hybrid Compounds via One‐Pot Sequential Six/Seven Component Ugi‐Click Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sitanshu Kumar
- Department of Applied Sciences Punjab Engineering College (Deemed to be University), Sector-12 Chandigarh 160012 India
| | - Surabhi Mangal
- Department of Microbiology Panjab University, Sector-25 Chandigarh 160014 India
| | - Anu Nosran
- Department of Microbiology Panjab University, Sector-25 Chandigarh 160014 India
| | - Kusum Harjai
- Department of Microbiology Panjab University, Sector-25 Chandigarh 160014 India
| | - Vasundhara Singh
- Department of Applied Sciences Punjab Engineering College (Deemed to be University), Sector-12 Chandigarh 160012 India
| |
Collapse
|
14
|
Verma N, Bera S, Gonnade R, Mondal D. Regioselective synthesis of 1,4,5‐Trisubstituted‐1,2,3‐Triazole Derivatives from α,β‐Unsaturated Carbonyls. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Naimish Verma
- Central University of Gujarat School of Chemical Sciences Sector-30 382030 Gandhinagar INDIA
| | - Smritilekha Bera
- Central University of Gujarat School of Chemical Sciences 30 sector 382030 Gandhinagar INDIA
| | - Rajesh Gonnade
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR Physical and Materials Chemistry Division 411008 Pune INDIA
| | - Dhananjoy Mondal
- Central University of Gujarat School of Chemical Sciences Sector-30 382030 Gandhinagar INDIA
| |
Collapse
|
15
|
Ashok D, Reddy MR, Thara G, Dharavath R, Ramakrishna K, Nagaraju N, Gundu S, Sarasija M. A new library of 1,2,3‐triazole based Benzofuran scaffolds: Synthesis and Biological Evaluation as Potential Antimicrobial Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- D. Ashok
- Green and Medicinal chemistry Laboratory, Department of Chemistry Osmania University Hyderabad Telangana India
| | - M. Ram Reddy
- Green and Medicinal chemistry Laboratory, Department of Chemistry Osmania University Hyderabad Telangana India
| | - Gugulothu Thara
- Department of Pharmacy, University College of Technology Osmania University Hyderabad Telangana India
| | - Ravinder Dharavath
- Green and Medicinal chemistry Laboratory, Department of Chemistry Osmania University Hyderabad Telangana India
| | - Katta Ramakrishna
- Green and Medicinal chemistry Laboratory, Department of Chemistry Osmania University Hyderabad Telangana India
| | - Nalaparaju Nagaraju
- Green and Medicinal chemistry Laboratory, Department of Chemistry Osmania University Hyderabad Telangana India
| | - Srinivas Gundu
- Green and Medicinal chemistry Laboratory, Department of Chemistry Osmania University Hyderabad Telangana India
| | - M. Sarasija
- Department of Chemistry Satavahana University Karimnagar Telangana India
| |
Collapse
|
16
|
Nematpour M, Karimi N, Mahboubi-Rabbani M. Copper-Catalyzed Ultrasonic-Promoted Coupling of Acetylene Analogs,
Dialkyl azo dicarboxylate, and Benzazoles to Assemble Tricyclic Fused-
Ring [1,2,3]triazolo[3,4-b][1,3]benzazole Analogs. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666211001120336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
An unprecedented copper-catalyzed reaction of acetylene analogs with dialkyl azo dicarboxylate
and benzazole analogs via a cross-coupling sequence was reported. A library of triazolobenzazole
fused ring systems including [1,2,3] triazolo [3,4-b] [1,3] benzothiazole, [1,2,3]
triazolo [3,4-b] [1,3] benzoxazole and [1,2,3] triazolo[3,4-b][1,3]benzimidazole structures were
obtained in moderate to excellent yields under very mild reaction conditions. Structural confirmation
of the final products became possible using different methods like spectroscopy and elemental
analysis. The control experiments indicated C-H activation of acetylene by copper salts,
followed by cycloaddition between a 2-(phenylethynyl)benzo[d]azol-3(2H)-yl anion and azo dicarboxylate
as the key mechanistic feature. The broad substrate scope with simple and easily affordable
starting materials, as well as mild reaction conditions are the noticeable attributes of this
methodology, which provides facile access to the desired products.
Collapse
Affiliation(s)
- Manijeh Nematpour
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Nafiseh Karimi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| | - Mohammad Mahboubi-Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences,
Tehran, Iran
| |
Collapse
|
17
|
Guo HY, Chen ZA, Shen QK, Quan ZS. Application of triazoles in the structural modification of natural products. J Enzyme Inhib Med Chem 2021; 36:1115-1144. [PMID: 34167422 PMCID: PMC8231395 DOI: 10.1080/14756366.2021.1890066] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Nature products have been extensively used in the discovery and development of new drugs, as the most important source of drugs. The triazole ring is one of main pharmacophore of the nitrogen-containing heterocycles. Thus, a new class of triazole-containing natural product conjugates has been synthesised. These compounds reportedly exert anticancer, anti-inflammatory, antimicrobial, antiparasitic, antiviral, antioxidant, anti-Alzheimer, and enzyme inhibitory effects. This review summarises the research progress of triazole-containing natural product derivatives involved in medicinal chemistry in the past six years. This review provides insights and perspectives that will help scientists in the fields of organic synthesis, medicinal chemistry, phytochemistry, and pharmacology.
Collapse
Affiliation(s)
- Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zheng-Ai Chen
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Department of Pharmacology, Medical School of Yanbian University, Yanji, Jilin, China
| |
Collapse
|
18
|
|
19
|
Seck I, Nguemo F. Triazole, imidazole, and thiazole-based compounds as potential agents against coronavirus. RESULTS IN CHEMISTRY 2021; 3:100132. [PMID: 33907666 PMCID: PMC8061185 DOI: 10.1016/j.rechem.2021.100132] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/19/2021] [Indexed: 02/08/2023] Open
Abstract
The expansion of the novel coronavirus known as SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), COVID-19 (coronavirus disease 2019), or 2019-nCoV (2019 novel coronavirus) is a global concern over its pandemic potential. The need for therapeutic alternatives to stop this new pandemic is urgent. Nowadays, no efficacious therapy is available, and vaccines and drugs are underdeveloped to cure or prevent SARS-CoV-2 infections in many countries. Some vaccines candidates have been approved; however, a number of people are still skeptical of this coronavirus vaccines. Probably because of issues related to the quantity of the vaccine and a possible long-term side effects which are still being studied. The previous pandemics of infections caused by coronavirus, such as SARS-CoV in 2003, the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012, HCoV-229E, and HCoV-OC43 were described in the 1960 s, -HCoV-NL63 isolated in 2004, and HCoV-HKU1identified in 2005 prompted researchers to characterize many compounds against these viruses. Most of them could be potentially active against the currently emerging novel coronavirus. Five membered nitrogen heterocycles with a triazole, imidazole, and thiazole moiety are often found in many bioactive molecules such as coronavirus inhibitors. This present work summarizes to review the biological and structural studies of these compound types as coronavirus inhibitors.
Collapse
Affiliation(s)
- Insa Seck
- Department of Chemistry, Faculty of Sciences and Technics, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Filomain Nguemo
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Khwaza V, Mlala S, Oyedeji OO, Aderibigbe BA. Pentacyclic Triterpenoids with Nitrogen-Containing Heterocyclic Moiety, Privileged Hybrids in Anticancer Drug Discovery. Molecules 2021; 26:molecules26092401. [PMID: 33918996 PMCID: PMC8122576 DOI: 10.3390/molecules26092401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Pentacyclic triterpenoids are well-known phytochemicals with various biological activities commonly found in plants as secondary metabolites. The wide range of biological activities exhibited by triterpenoids has made them the most valuable sources of pharmacological agents. A number of novel triterpenoid derivatives with many skeletal modifications have been developed. The most important modifications are the formation of analogues or derivatives with nitrogen-containing heterocyclic scaffolds. The derivatives with nitrogen-containing heterocyclic compounds are among the most promising candidate for the development of novel therapeutic drugs. About 75% of FDA-approved drugs are nitrogen-containing heterocyclic moieties. The unique properties of heterocyclic compounds have encouraged many researchers to develop new triterpenoid analogous with pharmacological activities. In this review, we discuss recent advances of nitrogen-containing heterocyclic triterpenoids as potential therapeutic agents. This comprehensive review will assist medicinal chemists to understand new strategies that can result in the development of compounds with potential therapeutic efficacy.
Collapse
|
21
|
Yarovaya OI, Salakhutdinov NF. Mono- and sesquiterpenes as a starting platform for the development of antiviral drugs. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Noole V, Krishna T, Godeshala S, Meraji S, Rege K, Reddy CK, Kedika B. Synthesis and Biological Evaluation of New 1,2,3-Triazole Derivatives of the Chrysin Flavonoid as Anticancer Agents. Anticancer Agents Med Chem 2021; 22:160-168. [PMID: 33719963 DOI: 10.2174/1871520621666210315090527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Chrysin and its derivatives proved to possess potential anti-tumour activity. MATERIALS AND METHODS A new series of chrysin analogs containing 1,2,3-triazoles with different substituent groups (5a-5l) was designed, synthesized, and evaluated as potential anticancer agents. The synthesized compounds were characterized using FT-IR, 1H NMR 13C NMR spectroscopy and mass spectrometry. RESULTS The anticancer activities of the synthesized compounds were studied in four cancer cell lines viz. PC3, PC3-PSMA, MCF-7 and UM-UC-3 using doxorubicin as standard. Among all the tested compounds, 5c was found as most active with IC50 value of 10.8 ± 0.04 μM in PC3 cells and 20.53 ± 0.21 μMin MCF-7 cells, respectively. Flow cytometry analyses indicated that synthesized compounds 5a, 5c, and 5h arrested MCF-7 cells at the G2/M phase in a dose-dependent manner. CONCLUSION Chyrsin derivatives could be novel anticancer agents.
Collapse
Affiliation(s)
- Venkatagiri Noole
- Department of Chemistry, Osmania University, Hyderabad - 500007, Telangana, India
| | - Thotla Krishna
- Department of Chemistry, Osmania University, Hyderabad - 500007, Telangana, India
| | - Sudhakar Godeshala
- Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | | | - Kaushal Rege
- Chemical Engineering, Arizona State University, Tempe, AZ 85287-6106, USA
| | - Chepyala K Reddy
- Department of Chemistry, Osmania University, Hyderabad - 500007, Telangana, India
| | - Bhavani Kedika
- Department of Chemistry, Osmania University, Hyderabad - 500007, Telangana, India
- Telangana Tribal Welfare Residential Degree College, Karimnagar-505001, Telangana, India
| |
Collapse
|
23
|
Das A, Kumar S, Persoons L, Daelemans D, Schols D, Alici H, Tahtaci H, Karki SS. Synthesis, in silico ADME, molecular docking and in vitro cytotoxicity evaluation of stilbene linked 1,2,3-triazoles. Heliyon 2021; 7:e05893. [PMID: 33553718 PMCID: PMC7851791 DOI: 10.1016/j.heliyon.2020.e05893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 01/16/2023] Open
Abstract
Series of (E)-1-benzyl-4-((4-styrylphenoxy)methyl)-1H-1,2,3-triazoles 7a-x were obtained by Wittig reaction between 4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)benzaldehydes 5a-d and benzyl triphenylphosphonium halides 6a-f in benzene. The structures of the synthesized compounds were confirmed by FTIR, NMR (1H and 13C NMR) spectroscopy, and mass spectrometry. All synthesized compounds were screened for their cytotoxic activity against human cancer cell lines including pancreatic carcinoma, colorectal carcinoma, lung carcinoma, and leukemias such as acute lymphoblastic, chronic myeloid, and non-Hodgkinson lymphoma cell lines. In vitro cytotoxicity data showed that compounds 7c, 7e, 7h, 7j, 7k, 7r, and 7w were moderately cytotoxic (11.6-19.3 μM) against the selected cancer cell lines. These cytotoxicity findings were supported using molecular docking studies of the compounds against 1TUB receptor. The drug-likeness properties of the compounds evaluated by in silico ADME analyses. Resveratrol linked 1,2,3-triazoles were more sensitive towards human carcinoma cell lines but least sensitive towards leukemia and lymphoma cell lines.
Collapse
Affiliation(s)
- Arnika Das
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Bengaluru, 560010, Karnataka, India
- Dr Prabhakar B Kore Basic Science Research Centre, Off-Campus, KLE College of Pharmacy, A Constituent Unit of KLE Academy of Higher Education and Research-Belagavi, Bengaluru, 560010, Karnataka, India
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Bengaluru, 560010, Karnataka, India
| | - Leentje Persoons
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Dominique Schols
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, B-3000, Leuven, Belgium
| | - Hakan Alici
- Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey
| | - Hakan Tahtaci
- Department of Chemistry, Faculty of Science, Karabuk University, 78050, Karabuk, Turkey
| | - Subhas S. Karki
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, Bengaluru, 560010, Karnataka, India
- Dr Prabhakar B Kore Basic Science Research Centre, Off-Campus, KLE College of Pharmacy, A Constituent Unit of KLE Academy of Higher Education and Research-Belagavi, Bengaluru, 560010, Karnataka, India
| |
Collapse
|
24
|
Beeraka NM, Sadhu SP, Madhunapantula SV, Rao Pragada R, Svistunov AA, Nikolenko VN, Mikhaleva LM, Aliev G. Strategies for Targeting SARS CoV-2: Small Molecule Inhibitors-The Current Status. Front Immunol 2020; 11:552925. [PMID: 33072093 PMCID: PMC7531039 DOI: 10.3389/fimmu.2020.552925] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2) induced Coronavirus Disease - 19 (COVID-19) cases have been increasing at an alarming rate (7.4 million positive cases as on June 11 2020), causing high mortality (4,17,956 deaths as on June 11 2020) and economic loss (a 3.2% shrink in global economy in 2020) across 212 countries globally. The clinical manifestations of this disease are pneumonia, lung injury, inflammation, and severe acute respiratory syndrome (SARS). Currently, there is no vaccine or effective pharmacological agents available for the prevention/treatment of SARS-CoV2 infections. Moreover, development of a suitable vaccine is a challenging task due to antibody-dependent enhancement (ADE) and Th-2 immunopathology, which aggravates infection with SARS-CoV-2. Furthermore, the emerging SARS-CoV-2 strain exhibits several distinct genomic and structural patterns compared to other coronavirus strains, making the development of a suitable vaccine even more difficult. Therefore, the identification of novel small molecule inhibitors (NSMIs) that can interfere with viral entry or viral propagation is of special interest and is vital in managing already infected cases. SARS-CoV-2 infection is mediated by the binding of viral Spike proteins (S-protein) to human cells through a 2-step process, which involves Angiotensin Converting Enzyme-2 (ACE2) and Transmembrane Serine Protease (TMPRSS)-2. Therefore, the development of novel inhibitors of ACE2/TMPRSS2 is likely to be beneficial in combating SARS-CoV-2 infections. However, the usage of ACE-2 inhibitors to block the SARS-CoV-2 viral entry requires additional studies as there are conflicting findings and severe health complications reported for these inhibitors in patients. Hence, the current interest is shifted toward the development of NSMIs, which includes natural antiviral phytochemicals and Nrf-2 activators to manage a SARS-CoV-2 infection. It is imperative to investigate the efficacy of existing antiviral phytochemicals and Nrf-2 activators to mitigate the SARS-CoV-2-mediated oxidative stress. Therefore, in this review, we have reviewed structural features of SARS-CoV-2 with special emphasis on key molecular targets and their known modulators that can be considered for the development of NSMIs.
Collapse
Affiliation(s)
- Narasimha M. Beeraka
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | - Surya P. Sadhu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, India
| | - SubbaRao V. Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore, India
| | | | - Andrey A. Svistunov
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Vladimir N. Nikolenko
- I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
- Department of Normal and Topographic Anatomy, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | - Gjumrakch Aliev
- Research Institute of Human Morphology, Moscow, Russia
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Moscow, Russia
- GALLY International Research Institute, San Antonio, TX, United States
| |
Collapse
|
25
|
Zhang Z, Morris‐Natschke SL, Cheng Y, Lee K, Li R. Development of anti‐influenza agents from natural products. Med Res Rev 2020; 40:2290-2338. [DOI: 10.1002/med.21707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Zhi‐Jun Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| | - Susan L. Morris‐Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Yung‐Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kuo‐Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Chinese Medicine Research and Development Center China Medical University and Hospital Taichung Taiwan
| | - Rong‐Tao Li
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming China
| |
Collapse
|
26
|
Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:145-159. [PMID: 31955138 DOI: 10.2478/acph-2020-0024] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/08/2019] [Indexed: 01/19/2023]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) had emerged and spread because of the worldwide travel and inefficient healthcare provided for the infected patients in several countries. Herein we investigated the anti-MERS-CoV activity of newly synthesized sixteen halogenated triazole compounds through the inhibition of helicase activity using the FRET assay. All new compounds underwent justification for their target structures via microanalytical and spectral data. SAR studies were performed. Biological results revealed that the most potent compounds were 4-(cyclopent-1-en-3-ylamino)-5-(2-(4-iodophenyl)hydrazinyl)-4H-1,2,4-triazole-3-thiol (16) and 4-(cyclopent-1-en-3-ylamino)-5-[2-(4-chlorophenyl)hydrazinyl]-4H-1,2,4-triazole-3-thiol (12). In silico molecular docking of the most potent compounds was performed to the active binding site of MERS-CoV helicase nsp13. Molecular docking results are in agreement with experimental findings.
Collapse
|
27
|
Novel amphiphilic dextran esters with antimicrobial activity. Int J Biol Macromol 2020; 150:746-755. [PMID: 32035962 DOI: 10.1016/j.ijbiomac.2020.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 11/21/2022]
Abstract
New amphiphilic dextran esters were obtained by polysaccharide functionalization with different substituted 1,2,3-triazoles-4-carboxylic acid via in situ activation with N, N'-carbonyldiimidazole. Nitrogen-containing heterocyclic derivatives were achieved by copper(I)-catalyzed cycloaddition reaction between organic azides and ethyl propiolate. Structural characteristics of the compounds were studied by elemental analysis, Fourier transform infrared and nuclear magnetic resonance spectroscopy (1H and 13C-NMR). Thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction were used for esters characterization. Properties of polymeric self-associates, formed in aqueous solution, were studied by dynamic light scattering and transmission electron microscopy. The critical aggregation concentration values for dextran esters, determined by fluorescence spectroscopy, were in the range of 4.1-9.5 mg/dL. Antimicrobial activity, investigated for some of the polymers by disc-diffusion method, pointed out that polysaccharide esters were active.
Collapse
|
28
|
Ashok D, Reddy MR, Dharavath R, Ramakrishna K, Nagaraju N, Sarasija M. Microwave-assisted synthesis of some new 1,2,3-triazole derivatives and their antimicrobial activity. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-1748-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
29
|
El-Sayed HA, Assy MG, S. Mohamed A. An efficient synthesis and antimicrobial activity of N-bridged triazolo[3,4-b]thiadiazine and triazolo[3,4-b]thiadiazole derivatives under microwave irradiation. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1726397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Hassan A. El-Sayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Mohamed G. Assy
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Asaad S. Mohamed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
30
|
El Malah T, Nour HF, Satti AAE, Hemdan BA, El-Sayed WA. Design, Synthesis, and Antimicrobial Activities of 1,2,3-Triazole Glycoside Clickamers. Molecules 2020; 25:E790. [PMID: 32059480 PMCID: PMC7071105 DOI: 10.3390/molecules25040790] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/03/2022] Open
Abstract
Bacterial resistance remains a significant threat and a leading cause of death worldwide, despite massive attempts to control infections. In an effort to develop biologically active antibacterial and antifungal agents, six novel aryl-substituted-1,2,3-triazoles linked to carbohydrate units were synthesized through the Cu(I)-catalyzed azide-alkyne cycloaddition CuAAC of substituted-arylazides with a selection of alkyne-functionalized sugars. The chemical structures of the new derivatives were verified using different spectroscopic techniques. The novel clicked 1,2,3-triazoles were evaluated for in vitro antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, and the obtained results were compared with the activity of the reference antibiotic "Ampicillin". Likewise, in vitro antifungal activity of the new 1,2,3-triazoles was investigated against Candida albicans and Aspergillus niger using "Nystatin" as a reference drug. The results of the biological evaluation pointed out that Staphylococcus aureus was more susceptible to all of the tested compounds than other examined microbes. In addition, some tested compounds exhibited promising antifungal activity.
Collapse
Affiliation(s)
- Tamer El Malah
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
| | - Hany F. Nour
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
| | - Amira A. E. Satti
- Chemistry Department, Faculty of Science and Arts in Qurayat, Jouf University, P.O. Box 77425 Qurayat, Saudi Arabia;
- Chemistry Department, College of Science, Sudan University of Science and Technology, P.O. Box 11116 Khartoum, Sudan
| | - Bahaa A. Hemdan
- Water Pollution Research Department, Environmental Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, P.O. Box 781039 Assam, India
| | - Wael A. El-Sayed
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, 33 El Buhouth Street, P.O. Box 12622 Cairo, Egypt;
- Department of Chemistry, College of Science, Qassim University, P.O. Box 51452 Buraidah, Saudi Arabia
| |
Collapse
|
31
|
Artyushin OI, Moiseeva AA, Zarubaev VV, Slita AV, Galochkina AV, Muryleva AA, Borisevich SS, Yarovaya OI, Salakhutdinov NF, Brel VK. Synthesis of Camphecene and Cytisine Conjugates Using Click Chemistry Methodology and Study of Their Antiviral Activity. Chem Biodivers 2019; 16:e1900340. [PMID: 31647170 DOI: 10.1002/cbdv.201900340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
A series of camphecene and quinolizidine alkaloid (-)-cytisine conjugates has been obtained for the first time using 'click' chemistry methodology. The cytotoxicity and virus-inhibiting activity of compounds were determined against MDCK cells and influenza virus A/Puerto Rico/8/34 (H1N1), correspondingly, in in vitro tests. Based on the results obtained, values of 50 % cytotoxic dose (CC50 ), 50 % inhibition dose (IC50 ) and selectivity index (SI) were determined for each compound. It has been shown that the antiviral activity is affected by the length and nature of linkers between cytisine and camphor units. Conjugate 13 ((1R,5S)-3-(6-{4-[(2-{(E)-[(1R,4R)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene]amino}ethoxy)methyl]-1H-1,2,3-triazol-1-yl}hexyl)-1,2,3,4,5,6-hexahydro-8H-1,5-methanopyrido[1,2-a][1,5]diazocin-8-one), which contains cytisine fragment separated from triazole ring by -C6 H12 - aliphatic linker, showed the highest activity at relatively low toxicity (CC50 =168 μmol, IC50 =8 μmol, SI=20). Its selectivity index appeared higher than that of reference compound, rimantadine. According to theoretical calculations, the antiviral activity of the lead compound 13 can be explained by its influence on the functioning of neuraminidase.
Collapse
Affiliation(s)
- Oleg I Artyushin
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| | - Aleksandra A Moiseeva
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| | - Vladimir V Zarubaev
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Aleksander V Slita
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Anastasiya V Galochkina
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | - Anna A Muryleva
- Paster Research Institute of Epidemiology and Microbiology, 14 Mira Str., St. Petersburg, 197101, Russia
| | | | - Olga I Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9 Lavrent'ev ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch Russian Academy of Sciences, 9 Lavrent'ev ave., Novosibirsk, 630090, Russia.,Novosibirsk State University, 2 Pirogova Str., Novosibirsk, 630090, Russia
| | - Valery K Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, 28 Vavilova Str., Moscow, 119991, Russia
| |
Collapse
|
32
|
Novel amides modified rupestonic acid derivatives as anti-influenza virus reagents. Bioorg Med Chem Lett 2019; 29:126605. [PMID: 31439378 DOI: 10.1016/j.bmcl.2019.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 11/20/2022]
Abstract
In spired by the important role of amide groups of anti-influenza drugs oseltamivir, zanamivir and peramivir in bioactivity, a series of novel amides modified rupestonic acid derivatives were designed and synthesized. The absolute configuration of critical intermediate bearing chloride with newly formed stereocenter was confirmed by X-ray crystallographic analysis. And all new compounds were evaluated for their in vitro inhibitory activities against influenza A (H1N1 and H3N2) and influenza B viruses. The bioassay results showed that 5h with 4-fluorbenzylsulfonyl modified to 2 position of methyl rupestonate displayed the highest activity against influenza A (H1N1 and H3N2) viruses, even stronger than reference drugs oseltamivir and ribavirin (RVB), and might be recommended as a lead compound to further develop the new anti-influenza reagent.
Collapse
|
33
|
Jain A, Piplani P. Exploring the Chemistry and Therapeutic Potential of Triazoles: A Comprehensive Literature Review. Mini Rev Med Chem 2019; 19:1298-1368. [DOI: 10.2174/1389557519666190312162601] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022]
Abstract
:
Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological
properties, which could play a major role in the common mechanisms associated with various disorders
like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural
modification of this scaffold could be helpful in the generation of new therapeutically useful
agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole,
there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic
prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole
derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological
activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives
has also been incorporated. The objective of the review is to provide insights to designing and
synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| | - Poonam Piplani
- Department of Pharmaceutical Chemistry, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh- 160014, India
| |
Collapse
|
34
|
El-Sayed HA, Abdel Hamid AM, Mohammed SM, Moustafa AH. Design, synthesis, and antimicrobial activity of fluorophore 1,2,3-triazoles linked nicotinonitrile derivatives. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1616760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hassan A. El-Sayed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Atef M. Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Samar M. Mohammed
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Ahmed H. Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
35
|
Thotla K, Giri Noole V, Kedika B, Reddy K. An Efficient Synthesis and Antimicrobial Activity of 5-{2-[(1-Aryl-1H-1,2,3-triazol-4-yl)methoxy]-5-bromophenyl}isoxazoles. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219040248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Naveen N, Tittal RK, Yadav P, Lal K, D. GV, Kumar A. Synthesis, molecular docking and DFT studies on biologically active 1,4-disubstituted-1,2,3-triazole-semicarbazone hybrid molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj00473d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biologically active semicarbazone-triazole hybrid molecules designed and synthesized from semicarbazone linked with a terminal alkyne and aromatic azidesviaCu(i)-catalyzed cycloaddition reaction. The synthesized compounds exhibited potent antibacterial activities against the tested bacterial strains. Computational results are in good agreement with thein vitroantimicrobial results.
Collapse
Affiliation(s)
- Naveen Naveen
- Department of Chemistry
- National Institute of Technology
- Kurukshetra
- India
| | - Ram Kumar Tittal
- Department of Chemistry
- National Institute of Technology
- Kurukshetra
- India
| | - Pinki Yadav
- Department of Chemistry
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Kashmiri Lal
- Department of Chemistry
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Ghule Vikas D.
- Department of Chemistry
- National Institute of Technology
- Kurukshetra
- India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences
- Guru Jambheshwar University of Science & Technology
- Hisar
- India
| |
Collapse
|
37
|
Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6208067. [PMID: 30515256 PMCID: PMC6234444 DOI: 10.1155/2018/6208067] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.
Collapse
|
38
|
Zhang T, Li J, Ma X, Yang Y, Sun W, Jin W, Wang L, He Y, Yang F, Yi Z, Hua Y, Liu M, Chen Y, Cai Z. Inhibition of HDACs-EphA2 Signaling Axis with WW437 Demonstrates Promising Preclinical Antitumor Activity in Breast Cancer. EBioMedicine 2018; 31:276-286. [PMID: 29759486 PMCID: PMC6013969 DOI: 10.1016/j.ebiom.2018.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are small molecules targeting epigenetic enzymes approved for hematologic neoplasms, which have also demonstrated clinical activities in solid tumors. In our present study, we screened our internal compound library and discovered a novel HDACi, WW437, with potent anti-breast cancer ability in vitro and in vivo. WW437 significantly inhibited phosphorylated EphA2 and EphA2 expression. Further study demonstrated WW437 blocked HDACs-EphA2 signaling axis in breast cancer. In parallel, we found that EphA2 expression positively correlates with breast cancer progression; and combined use of WW437 and an EphA2 inhibitor (ALW-II-41-27) exerted more remarkable effect on breast cancer growth than either drug alone. Our findings suggested inhibition of HDACs-EphA2 signaling axis with WW437 alone or in combination with other agents may be a promising therapeutic strategy for advanced breast cancer. WW437 is a novel HDACi, which displays potent anticancer activity in breast cancer. HDACs-EphA2 signaling axis represents a novel target in breast cancer. WW437 is a promising therapeutic agent for advanced breast cancer, alone or in combination with EphA2 inhibitor.
Histone deacetylase inhibitors (HDACi) are small molecules targeting epigenetic enzymes approved for cutaneous T-cell lymphoma (CTCL), peripheral T-cell lymphoma (PTCL) and multiple myeloma (MM) treatment, which have also demonstrated clinical activities in solid tumors, including lung cancer and breast cancer. Herein we report a novel HDACi WW437, which displays potent anticancer activity in both cultured cancer cells and xenograft models. Importantly, our work reveals WW437 significantly blocked the HDACs-EphA2 signaling axis in breast cancer. WW437 exhibited significant inhibitory effects on tumor growth and metastases with little toxicity, and tumors from treated mice showed decreased EphA2 expression, suggesting that EphA2 may be a useful biomarker of response to WW437. We also found that EphA2 expression positively correlates with tumor progression in aggressive breast cancer.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Shanghai Bone Tumor Institution, Shanghai 201620, China.
| | - Jingjie Li
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yang Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Sun
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wangrui Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lei Wang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yuan He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Feifei Yang
- School of biological science and technology, University of Jinan, Jinan, Shandong Province 250022, China
| | - Zhengfang Yi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Shanghai Bone Tumor Institution, Shanghai 201620, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China; Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Shanghai Bone Tumor Institution, Shanghai 201620, China.
| |
Collapse
|
39
|
Venkatagiri N, Krishna T, Thirupathi P, Bhavani K, Reddy CK. Synthesis, Characterization, and Antimicrobial Activity of a Series of 2-(5-Phenyl-1,3,4-oxadiazol-2-yl)-N-[(1-aryl-1H-1,2,3-triazol-4-yl)methyl]anilines Using Click Chemistry. RUSS J GEN CHEM+ 2018. [DOI: 10.1134/s1070363218070228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Wu MJ, Wu DM, Chen JB, Zhao JF, Gong L, Gong YX, Li Y, Yang XD, Zhang H. Synthesis and anti-proliferative activity of allogibberic acid derivatives containing 1,2,3-triazole pharmacophore. Bioorg Med Chem Lett 2018; 28:2543-2549. [DOI: 10.1016/j.bmcl.2018.05.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
|
41
|
Bębenek E, Kadela-Tomanek M, Chrobak E, Latocha M, Boryczka S. Novel triazoles of 3-acetylbetulin and betulone as anticancer agents. Med Chem Res 2018; 27:2051-2061. [PMID: 30220830 PMCID: PMC6133159 DOI: 10.1007/s00044-018-2213-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/27/2018] [Indexed: 11/28/2022]
Abstract
The CuAAC reaction of azides and acetylenic triterpenes was used for synthesis of new triazoles of 3-acetylbetulin and betulone. The triazole derivatives were evaluated for their anticancer activity in vitro against amelanotic melanoma C-32, ductal carcinoma T47D and glioblastoma SNB-19 cell lines. 28-[1-(3’-Deoxythymidine-5’-yl)-1H-1,2,3-triazol-4-yl]carbonylbetulone 6e exhibited a significant IC50 value (0.17 µM) against the human glioblastoma SNB-19 cell line, an almost 5-fold higher potency while compared with reference cisplatin.
Collapse
Affiliation(s)
- Ewa Bębenek
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Monika Kadela-Tomanek
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Elwira Chrobak
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| | - Małgorzata Latocha
- Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec, Poland
| | - Stanisław Boryczka
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland
| |
Collapse
|
42
|
Obul M, Wang X, Zhao J, Li G, Aisa HA, Huang G. Structural modification on rupestonic acid leads to highly potent inhibitors against influenza virus. Mol Divers 2018; 23:1-9. [DOI: 10.1007/s11030-018-9840-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/12/2018] [Indexed: 11/29/2022]
|
43
|
Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur J Med Chem 2018; 155:772-781. [DOI: 10.1016/j.ejmech.2018.06.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/28/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022]
|
44
|
Han P, Zhou Z, Si CM, Sha XY, Gu ZY, Wei BG, Lin GQ. Asymmetric Synthesis of Rupestonic Acid and Pechueloic Acid. Org Lett 2017; 19:6732-6735. [PMID: 29211481 DOI: 10.1021/acs.orglett.7b03459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this report, the originally proposed rupestonic acid (5) and pechueloic acid (3) were efficiently synthesized. The chiral lactone 13, recycled from the degradation of saponin glycosides, was utilized to prepare the key chiral fragment 11. During the exploration of this convergent assembly strategy, the ring-closing metathesis (RCM), SmI2-prompted intermolecular addition, and [2,3]-Wittig rearrangement proved to be effective transformations for the synthesis of subunits.
Collapse
Affiliation(s)
- Pan Han
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Zhu Zhou
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Chang-Mei Si
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Xian-Yi Sha
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Zheng-Yi Gu
- Xinjiang Institute of Materia Medica , Lane 140, South Xinhua Road, Urumqi, Xinjiang 830004, China
| | - Bang-Guo Wei
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| | - Guo-Qiang Lin
- Institutes of Biomedical Sciences and School of Pharmacy, Fudan University , 220 Handan Road, Shanghai 200433, China
| |
Collapse
|
45
|
Chinese herbal medicine compound Yi-Zhi-Hao pellet inhibits replication of influenza virus infection through activation of heme oxygenase-1. Acta Pharm Sin B 2017; 7:630-637. [PMID: 29159022 PMCID: PMC5687314 DOI: 10.1016/j.apsb.2017.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/11/2017] [Accepted: 05/02/2017] [Indexed: 11/23/2022] Open
Abstract
As a leading cause of respiratory disease, influenza A virus (IAV) presents a pandemic threat in annual seasonal outbreaks. Given the limitation of existing anti-influenza therapies, there remains to be a requirement for new drugs. Compound Yi-Zhi-Hao pellet (CYZH) is a famous traditional Chinese medicine (TCM) used in the clinic, whose formula has been recorded in Complication of National Standard for Traditional Chinese Medicine to treat common cold. In this study, we found that CYZH exhibited a broad-spectrum anti-influenza activity and inhibited the expression of viral RNA and proteins in vitro. Mechanistically, CYZH had no inhibitory activities against viral protein hemagglutinin and IAV RNA-dependent RNA polymerase. Instead, it induced activation of erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB), which subsequently upregulated heme oxygenase-1 (HO-1) expression. Also, CYZH protected cells from oxidative damage induced by reactive oxygen series. In conclusions, CYZH inhibits IAV replication in vitro, at least partly by activating expression of the Nrf2/HO-1 pathway.
Collapse
|
46
|
Bębenek E, Jastrzębska M, Kadela-Tomanek M, Chrobak E, Orzechowska B, Zwolińska K, Latocha M, Mertas A, Czuba Z, Boryczka S. Novel Triazole Hybrids of Betulin: Synthesis and Biological Activity Profile. Molecules 2017; 22:molecules22111876. [PMID: 29104263 PMCID: PMC6150379 DOI: 10.3390/molecules22111876] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/02/2023] Open
Abstract
Betulin derivatives containing a 1,2,3-triazole ring possess a wide spectrum of biological activities, including antiviral, anticancer, and antibacterial activity. A series of novel triazoles were prepared by the 1,3-dipolar cycloaddition reaction between the alkyne derivatives of betulin and organic azides. The chemical structures of the obtained compounds were defined by ¹H and 13C NMR, IR, and high-resolution mass spectrometry (HR-MS) analysis. The target triazoles were screened for their antiviral activity against DNA and RNA viruses. The cytotoxic activity of the obtained compounds 5a-k and 6a-h was determined using five human cancer cell lines (T47D, MCF-7, SNB-19, Colo-829, and C-32) by a WST-1 assay. The bistriazole 6b displayed a promising IC50 value (0.05 μM) against the human ductal carcinoma T47D (500-fold higher potency than cisplatin). The microdilution method was applied for an evaluation of the antimicrobial activity of all of the compounds. The triazole 5e containing a 3'-deoxythymidine-5'-yl moiety exhibited antibacterial activity against two gram-negative bacteria vz. Klebsiellapneumoniae and Escherichia coli (minimal inhibitory concentration (MIC) range of 0.95-1.95 μM).
Collapse
Affiliation(s)
- Ewa Bębenek
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Maria Jastrzębska
- Department of Solid State Physics, Institute of Physics, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice, Poland.
- Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland.
| | - Monika Kadela-Tomanek
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Elwira Chrobak
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| | - Beata Orzechowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Virology, 12 Rudolfa Weigla Str., 53-114 Wrocław, Poland.
| | - Katarzyna Zwolińska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Laboratory of Virology, 12 Rudolfa Weigla Str., 53-114 Wrocław, Poland.
| | - Małgorzata Latocha
- Department of Cell Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-200 Sosnowiec.
| | - Anna Mertas
- Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland.
| | - Zenon Czuba
- Department of Microbiology and Immunology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland.
| | - Stanisław Boryczka
- Department of Organic Chemistry, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland.
| |
Collapse
|
47
|
Poornima B, Siva B, Venkanna A, Shankaraiah G, Jain N, Yadav DK, Misra S, Babu KS. Novel Gomisin B analogues as potential cytotoxic agents: Design, synthesis, biological evaluation and docking studies. Eur J Med Chem 2017; 139:441-453. [PMID: 28818768 DOI: 10.1016/j.ejmech.2017.07.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
As part of pharmacological-phytochemical integrated studies on medicinal flora, Gomisin B (1) was isolated as major phytochemical lead from schisandra grandiflora, a plant traditionally used in different Asian systems of medicine. A series of 1,2,3-triazoles derivatives were synthesized at the C-7' position of the gomisin B core through diastereoselective Michael addition followed by regioselective Huisgen 1,3-dipolar cycloaddition reactions. All these triazolyl derivatives (5a-5q) were well characterized using modern spectroscopic techniques and evaluated for their anti-cancer activity against a panel of five human cancerous cell-lines. Among them, compound 5b exhibited the best cytotoxicity against SIHA cell (IC50 0.24 μM) which was more than the standard drug doxorubicin, while the other derivatives were exhibited moderate to low activities in tested cell lines. The cell cycle analysis indicated that compound 5b stalled HeLa cells at G2/M phase. 5b promoted tubulin polymerization and this was supported by the docking studies, wherein 5b showed significant binding affinity at the colchicine binding pocket of tubulin. Overall, we identified a novel small molecule that demonstrated anticancer activity by promoting in vitro tubulin assembly.
Collapse
Affiliation(s)
- B Poornima
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Bandi Siva
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - A Venkanna
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - G Shankaraiah
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Nishant Jain
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Dharmendra Kumar Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - K Suresh Babu
- Division of Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
| |
Collapse
|
48
|
Zhao J, Niu C, Li G, Aisa HA. Synthesis of Rupestonic Acid Derivatives with Antiviral Activity. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1970-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Structure-activity relationship studies of 1-(1'-hydroxyalkyl)rupestonic acid methyl esters against influenza viruses. Bioorg Med Chem Lett 2017; 27:1484-1487. [PMID: 28196702 DOI: 10.1016/j.bmcl.2016.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
A series of 1-(1'-hydroxyalkyl)rupestonic acid methyl esters were synthesized via the condensation of methyl rupestonate with various aldehydes in the presence of LDA. This mixed aldol reaction was highly stereoselective and all the new compounds were elucidated by detailed NMR and MS analyses. The absolute configurations of the newly formed stereocenters were further confirmed by X-ray crystallographic analysis of 3d, the results of which were found to be opposite to the prediction based on Zimmerman-Traxler's and Houk's models. All the compounds synthesized were then evaluated for their in vitro inhibitory activities against influenza A (H1N1 and H3N2) and B viruses. The data showed that 3p displayed the highest activity against influenza A H1N1 (IC50=0.69μg/mL) and H3N2 (IC50=0.69μg/mL) viruses, which were even better than Ribavirin and Oseltmivir. On the other hand, both 3c and 3o were found to show comparable activities with the reference drugs in inhibiting both influenza A and B viruses. Further studies will focus on reducing the cytotoxicity of the hits reported in this work.
Collapse
|
50
|
Kaushik CP, Pahwa A, Thakur R, Kaur P. Regioselective synthesis and antimicrobial evaluation of some thioether–amide linked 1,4-disubstituted 1,2,3-triazoles. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2016.1265983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- C. P. Kaushik
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Ashima Pahwa
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Rajesh Thakur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| | - Pawan Kaur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana, India
| |
Collapse
|