1
|
Gaitonde SA, Avet C, de la Fuente Revenga M, Blondel-Tepaz E, Shahraki A, Pastor AM, Talagayev V, Robledo P, Kolb P, Selent J, González-Maeso J, Bouvier M. Pharmacological fingerprint of antipsychotic drugs at the serotonin 5-HT 2A receptor. Mol Psychiatry 2024; 29:2753-2764. [PMID: 38561467 PMCID: PMC11420065 DOI: 10.1038/s41380-024-02531-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
The intricate involvement of the serotonin 5-HT2A receptor (5-HT2AR) both in schizophrenia and in the activity of antipsychotic drugs is widely acknowledged. The currently marketed antipsychotic drugs, although effective in managing the symptoms of schizophrenia to a certain extent, are not without their repertoire of serious side effects. There is a need for better therapeutics to treat schizophrenia for which understanding the mechanism of action of the current antipsychotic drugs is imperative. With bioluminescence resonance energy transfer (BRET) assays, we trace the signaling signature of six antipsychotic drugs belonging to three generations at the 5-HT2AR for the entire spectrum of signaling pathways activated by serotonin (5-HT). The antipsychotic drugs display previously unidentified pathway preference at the level of the individual Gα subunits and β-arrestins. In particular, risperidone, clozapine, olanzapine and haloperidol showed G protein-selective inverse agonist activity. In addition, G protein-selective partial agonism was found for aripiprazole and cariprazine. Pathway-specific apparent dissociation constants determined from functional analyses revealed distinct coupling-modulating capacities of the tested antipsychotics at the different 5-HT-activated pathways. Computational analyses of the pharmacological and structural fingerprints support a mechanistically based clustering that recapitulate the clinical classification (typical/first generation, atypical/second generation, third generation) of the antipsychotic drugs. The study provides a new framework to functionally classify antipsychotics that should represent a useful tool for the identification of better and safer neuropsychiatric drugs and allows formulating hypotheses on the links between specific signaling cascades and in the clinical outcomes of the existing drugs.
Collapse
Affiliation(s)
- Supriya A Gaitonde
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Charlotte Avet
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Mario de la Fuente Revenga
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Elodie Blondel-Tepaz
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Aida Shahraki
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 8, 35032, Marburg, Germany
| | - Adrian Morales Pastor
- Research Programme on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Medical Research Institute, Barcelona, 08003, Spain
| | - Valerij Talagayev
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 8, 35032, Marburg, Germany
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, 08003, Spain
| | - Peter Kolb
- Department of Pharmaceutical Chemistry, Philipps-Universität Marburg, Marbacher Weg 8, 35032, Marburg, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), IMIM-Hospital del Mar Medical Research Institute, Barcelona, 08003, Spain
| | - Javier González-Maeso
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Michel Bouvier
- Institute for Research in Immunology and Cancer (IRIC), Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
2
|
Stępnicki P, Wronikowska-Denysiuk O, Zięba A, Targowska-Duda KM, Bartyzel A, Wróbel MZ, Wróbel TM, Szałaj K, Chodkowski A, Mirecka K, Budzyńska B, Fornal E, Turło J, Castro M, Kaczor AA. Novel multi-target ligands of dopamine and serotonin receptors for the treatment of schizophrenia based on indazole and piperazine scaffolds-synthesis, biological activity, and structural evaluation. J Enzyme Inhib Med Chem 2023; 38:2209828. [PMID: 37184096 DOI: 10.1080/14756366.2023.2209828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Schizophrenia is a chronic mental disorder that is not satisfactorily treated with available antipsychotics. The presented study focuses on the search for new antipsychotics by optimising the compound D2AAK3, a multi-target ligand of G-protein-coupled receptors (GPCRs), in particular D2, 5-HT1A, and 5-HT2A receptors. Such receptor profile may be beneficial for the treatment of schizophrenia. Compounds 1-16 were designed, synthesised, and subjected to further evaluation. Their affinities for the above-mentioned receptors were assessed in radioligand binding assays and efficacy towards them in functional assays. Compounds 1 and 10, selected based on their receptor profile, were subjected to in vivo tests to evaluate their antipsychotic activity, and effect on memory and anxiety processes. Molecular modelling was performed to investigate the interactions of the studied compounds with D2, 5-HT1A, and 5-HT2A receptors on the molecular level. Finally, X-ray study was conducted for compound 1, which revealed its stable conformation in the solid state.
Collapse
Affiliation(s)
- Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | | | - Agata Bartyzel
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Lublin, Poland
| | - Martyna Z Wróbel
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Klaudia Szałaj
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Andrzej Chodkowski
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina Mirecka
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Budzyńska
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Lublin, Poland
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Marián Castro
- Department of Pharmacology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
3
|
Stępnicki P, Wośko S, Bartyzel A, Zięba A, Bartuzi D, Szałaj K, Wróbel TM, Fornal E, Carlsson J, Kędzierska E, Poleszak E, Castro M, Kaczor AA. Development and Characterization of Novel Selective, Non-Basic Dopamine D 2 Receptor Antagonists for the Treatment of Schizophrenia. Molecules 2023; 28:molecules28104211. [PMID: 37241951 DOI: 10.3390/molecules28104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The dopamine D2 receptor, which belongs to the family of G protein-coupled receptors (GPCR), is an important and well-validated drug target in the field of medicinal chemistry due to its wide distribution, particularly in the central nervous system, and involvement in the pathomechanism of many disorders thereof. Schizophrenia is one of the most frequent diseases associated with disorders in dopaminergic neurotransmission, and in which the D2 receptor is the main target for the drugs used. In this work, we aimed at discovering new selective D2 receptor antagonists with potential antipsychotic activity. Twenty-three compounds were synthesized, based on the scaffold represented by the D2AAK2 compound, which was discovered by our group. This compound is an interesting example of a D2 receptor ligand because of its non-classical binding to this target. Radioligand binding assays and SAR analysis indicated structural modifications of D2AAK2 that are possible to maintain its activity. These findings were further rationalized using molecular modeling. Three active derivatives were identified as D2 receptor antagonists in cAMP signaling assays, and the selected most active compound 17 was subjected to X-ray studies to investigate its stable conformation in the solid state. Finally, effects of 17 assessed in animal models confirmed its antipsychotic activity in vivo.
Collapse
Affiliation(s)
- Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Sylwia Wośko
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, PL-20093 Lublin, Poland
| | - Agata Bartyzel
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Maria Curie-Skłodowska Sq. 2, PL-20031 Lublin, Poland
| | - Agata Zięba
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Damian Bartuzi
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Klaudia Szałaj
- Department of Bioanalytics, Chair of Dietetics and Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Jaczewskiego 8b St., PL-20090 Lublin, Poland
| | - Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Emilia Fornal
- Department of Bioanalytics, Chair of Dietetics and Bioanalytics, Faculty of Biomedicine, Medical University of Lublin, Jaczewskiego 8b St., PL-20090 Lublin, Poland
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden
| | - Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Ewa Poleszak
- Laboratory of Preclinical Testing, Chair and Department of Applied and Social Pharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodźki 1, PL-20093 Lublin, Poland
| | - Marián Castro
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Avda de Barcelona, E-15782 Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Travesía da Choupana s/n, E-15706 Santiago de Compostela, Spain
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
4
|
Stępnicki P, Targowska-Duda KM, Martínez AL, Zięba A, Wronikowska-Denysiuk O, Wróbel MZ, Bartyzel A, Trzpil A, Wróbel TM, Chodkowski A, Mirecka K, Karcz T, Szczepańska K, Loza MI, Budzyńska B, Turło J, Handzlik J, Fornal E, Poleszak E, Castro M, Kaczor AA. Discovery of novel arylpiperazine-based DA/5-HT modulators as potential antipsychotic agents – Design, synthesis, structural studies and pharmacological profiling. Eur J Med Chem 2023; 252:115285. [PMID: 37027998 DOI: 10.1016/j.ejmech.2023.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Schizophrenia is a mental disorder with a complex pathomechanism involving many neurotransmitter systems. Among the currently used antipsychotics, classical drugs acting as dopamine D2 receptor antagonists, and drugs of a newer generation, the so-called atypical antipsychotics, can be distinguished. The latter are characterized by a multi-target profile of action, affecting, apart from the D2 receptor, also serotonin receptors, in particular 5-HT2A and 5-HT1A. Such profile of action is considered superior in terms of both efficacy in treating symptoms and safety. In the search for new potential antipsychotics of such atypical receptor profile, an attempt was made to optimize the arylpiperazine based virtual hit, D2AAK3, which in previous studies displayed an affinity for D2, 5-HT1A and 5-HT2A receptors, and showed antipsychotic activity in vivo. In this work, we present the design of D2AAK3 derivatives (1-17), their synthesis, and structural and pharmacological evaluation. The obtained compounds show affinities for the receptors of interest and their efficacy as antagonists/agonists towards them was confirmed in functional assays. For the selected compound 11, detailed structural studies were carried out using molecular modeling and X-ray methods. Additionally, ADMET parameters and in vivo antipsychotic activity, as well as influence on memory and anxiety processes were evaluated in mice, which indicated good therapeutic potential and safety profile of the studied compound.
Collapse
|
5
|
Jha P, Chaturvedi S, Bhat R, Jain N, Mishra AK. Insights of ligand binding in modeled h5-HT 1A receptor: homology modeling, docking, MM-GBSA, screening and molecular dynamics. J Biomol Struct Dyn 2022; 40:11625-11637. [PMID: 34387135 DOI: 10.1080/07391102.2021.1961865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pharmacologically characterized receptor subtype of the serotonin family, the 5HT1A receptor is implicated in the pathophysiology and treatment of depression and anxiety-related disorders. Being the most extensively targeted receptor for developing novel antidepressants and anxiolytics, a near-ideal theoretical model can aid in high-throughput screening of promising drug candidates. However, the design of potential drug candidates suffers owing to a lack of complete structural information. In this work, homology models of 5-HT1A receptor are generated using two distinct alignments (CW and PSTA) and model building methods (KB and EB). The developed models are validated for virtual screening using a ligand dataset of agonists and antagonists. The best-suited model was efficient in discriminating agonist/antagonist binding. Correlation plots between pKi and docking (R2agonist≥ 0.6, R2antagonist≥ 0.7) and MM-GBSA dG bind values (R2agonist≥ 0.5, R2antagonist≥ 0.7) revealed optimum corroboration between in vitro and in silico outcomes, which further suggested the usefulness of the developed model for the design of high-affinity probes for the neurological disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Immunology, Genetics and Pathology, Medical Radiation Science, Rudbeck Laboratory, Uppsala, Sweden.,Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India.,Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Ruchika Bhat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.,SCFBio, Indian Institute of Technology Delhi, New Delhi, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
6
|
Kondej M, Wróbel TM, Targowska-Duda KM, Martínez AL, Koszła O, Stępnicki P, Zięba A, Paz A, Wronikowska-Denysiuk O, Loza MI, Castro M, Kaczor AA. Multi-target derivatives of D2AAK1 as potential antipsychotics - the effect of the substitution in the indole moiety. ChemMedChem 2022; 17:e202200238. [PMID: 35610178 DOI: 10.1002/cmdc.202200238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Indexed: 11/09/2022]
Abstract
Schizophrenia is a complex disease which is best treated with multi-target drugs, such as atypical antipsychotics. Previously, using structure-based virtual screening we found a virtual hit D2AAK1 with nanomolar affinity to dopamine and serotonin receptors important in schizophrenia pharmacotherapy. As a part of optimization campaign of D2AAK1 we obtained its 17 derivatives also displaying a multi-target profile. Selected compounds were tested against off-targets in schizophrenia, i.e. histamine H 1 receptor and muscarinic M 1 receptor and did not display considerable affinity to these receptors. Two most promising compounds were subjected to behavioral studies. These compounds decreased amphetamine-induced hyperactivity in mice which indicates their antipsychotic potential. The compounds did not interfere with the memory consolidation in mice as determined in the passive avoidance test. The favorable pharmacological profile of the compounds was rationalized using molecular modeling.
Collapse
Affiliation(s)
- Magda Kondej
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Tomasz M Wróbel
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | | | - Antón Leandro Martínez
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, SPAIN
| | - Oliwia Koszła
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Piotr Stępnicki
- Medical University of Lublin Main Library: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Agata Zięba
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, POLAND
| | - Alba Paz
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, POLAND
| | - Olga Wronikowska-Denysiuk
- Medical University of Lublin: Uniwersytet Medyczny w Lublinie, Independent Laboratory of Behavioral Studies, POLAND
| | - Maria I Loza
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, SPAIN
| | - Marián Castro
- University of Santiago de Compostela: Universidade de Santiago de Compostela, Department of Pharmacology, SPAIN
| | - Agnieszka Anna Kaczor
- Medical University of Lublin, Department of Synthesis and Chemical Technology of Pharmaceutical Substances, 4A Chodzki St, 20093, Lublin, POLAND
| |
Collapse
|
7
|
Kaczor AA, Wojtunik-Kulesza K, Wróbel TM, Matosiuk D, Pitucha M. 5-Methoxy-1-methyl-2-{[4-(2-hydroxyphenyl)piperazin-1-yl]methyl}-1Hindole (KAD22) with Antioxidant Activity. LETT ORG CHEM 2022. [DOI: 10.2174/1570178618666210119121438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
Compound KAD22 (5-methoxy-1-methyl-2-[4-(2-hydroxyphenyl)piperazin-1-yl]methyl-1H-indole) was designed as a potential dopamine D2 receptor agonist with antioxidant activity for possible treatment of Parkinson’s disease.
The compound was obtained from 5-methoxy-1-methyl-1H-indole-2-carbaldehyde and 2-(piperazin-1-yl)phenol. KAD22
showed no affinity to dopamine D2 receptor but it is a potent antioxidant. Experimental and computational structural studies
(conformational analysis, HOMO and LUMO orbitals, electrostatic potential map, non-covalent interaction plot, spectral
properties, ligand-receptor interactions) of KAD22 were performed to address its biological activity.
Collapse
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical
University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Faculty of
Pharmacy, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Tomasz M. Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical
University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Dariusz Matosiuk
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical
University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland
| | - Monika Pitucha
- Independent Radiopharmacy Unit,
Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki St., PL-20093
Lublin, Poland
| |
Collapse
|
8
|
Allosteric modulation of dopamine D 2L receptor in complex with G i1 and G i2 proteins: the effect of subtle structural and stereochemical ligand modifications. Pharmacol Rep 2022; 74:406-424. [PMID: 35064921 PMCID: PMC8964653 DOI: 10.1007/s43440-021-00352-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 12/28/2022]
Abstract
Background Allosteric modulation of G protein-coupled receptors (GPCRs) is nowadays one of the hot topics in drug discovery. In particular, allosteric modulators of D2 receptor have been proposed as potential modern therapeutics to treat schizophrenia and Parkinson’s disease. Methods To address some subtle structural and stereochemical aspects of allosteric modulation of D2 receptor, we performed extensive in silico studies of both enantiomers of two compounds (compound 1 and compound 2), and one of them (compound 2) was synthesized as a racemate in-house and studied in vitro. Results Our molecular dynamics simulations confirmed literature reports that the R enantiomer of compound 1 is a positive allosteric modulator of the D2L receptor, while its S enantiomer is a negative allosteric modulator. Moreover, based on the principal component analysis (PCA), we hypothesized that both enantiomers of compound 2 behave as silent allosteric modulators, in line with our in vitro studies. PCA calculations suggest that the most pronounced modulator-induced receptor rearrangements occur at the transmembrane helix 7 (TM7). In particular, TM7 bending at the conserved P7.50 and G7.42 was observed. The latter resides next to the Y7.43, which is a significant part of the orthosteric binding site. Moreover, the W7.40 conformation seems to be affected by the presence of the positive allosteric modulator. Conclusions Our work reveals that allosteric modulation of the D2L receptor can be affected by subtle ligand modifications. A change in configuration of a chiral carbon and/or minor structural modulator modifications are solely responsible for the functional outcome of the allosteric modulator. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s43440-021-00352-x.
Collapse
|
9
|
Identification of Molecular Markers of Clozapine Action in Ketamine-Induced Cognitive Impairment: A GPCR Signaling PathwayFinder Study. Int J Mol Sci 2021; 22:ijms222212203. [PMID: 34830086 PMCID: PMC8621432 DOI: 10.3390/ijms222212203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Cognitive disorders associated with schizophrenia are closely linked to prefrontal cortex (PFC) dysfunction. Administration of the non-competitive NMDA receptor antagonist ketamine (KET) induces cognitive impairment in animals, producing effects similar to those observed in schizophrenic patients. In a previous study, we showed that KET (20 mg/kg) induces cognitive deficits in mice and that administration of clozapine (CLZ) reverses this effect. To identify biochemical mechanisms related to CLZ actions in the context of KET-induced impairment, we performed a biochemical analysis using the same experimental paradigm—acute and sub-chronic administration of these drugs (0.3 and 1 mg/kg). Methods: Since the effect of CLZ mainly depends on G-protein-related receptors, we used the Signaling PathwayFinder Kit to identify 84 genes involved in GPCR-related signal transduction and then verified the genes that were statistically significantly different on a larger group of mice using RT-PCR and Western blot analyses after the administration of acute and sub-chronic drugs. Results: Of the 84 genes involved in GPCR-related signal transduction, the expression of six, βarrestin1, βarrestin2, galanin receptor 2 (GalR2), dopamine receptor 2 (DRD2), metabotropic glutamate receptor 1 (mGluR1), and metabotropic glutamate receptor 5 (mGluR5), was significantly altered. Since these genes affect the levels of other signaling proteins, e.g., extracellular signal-regulated kinase 1/2 (ERK1/2), G protein-coupled receptor kinase 2 (Grk2), and G protein-gated inwardly rectifying potassium 3 (Girk3), we determined their levels in PFC using Western blot. Most of the observed changes occurred after acute treatment with 0.3 mg/kg CLZ. We showed that acute treatment with CLZ at a lower dose significantly increased βarrestin1 and ERK1/2. KET treatment induced the upregulation of βarrestin1. Joint administration of these drugs had no effect on the βarrestin1 level. Conclusion: The screening kit we used to study the expression of GPCR-related signal transduction allowed us to select several important genes affected by CLZ. However, the obtained data do not explain the mechanism of action of CLZ that is responsible for reversing KET-induced cognitive impairment.
Collapse
|
10
|
Dipta P, Sarsenbayeva A, Shmuel M, Forno F, Eriksson JW, Pereira MJ, Abalo XM, Wabitsch M, Thaysen-Andersen M, Tirosh B. Macrophage-derived secretome is sufficient to confer olanzapine-mediated insulin resistance in human adipocytes. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2021; 7:100073. [PMID: 35757056 PMCID: PMC9216267 DOI: 10.1016/j.cpnec.2021.100073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
|
11
|
Therapeutic Drug Monitoring of Olanzapine and Cytochrome P450 Genotyping in Nonsmoking Subjects. Ther Drug Monit 2021; 42:325-329. [PMID: 31425442 DOI: 10.1097/ftd.0000000000000695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The relationship between a daily dose of olanzapine, its serum concentration, and the genotype of young nonsmoking men treated for schizophrenia or schizophreniform disorder was investigated in day-to-day clinical practice. Pharmacogenetics was also examined for the selected patients. METHODS A total of 49 participants were recruited as in-patients at the Mental Health Research Center (Moscow, Russia). Inclusion criteria were patients who had been diagnosed with schizophrenia or schizoaffective disorder (following DSM-IV guidelines) and were being treated with OLZ. A prospective, observational, open-study design was implemented. In line with the literature, patients were only included if they attained steady-state OLZ concentrations lasting for at least 8 days. A liquid chromatographic-tandem mass spectrometric method was developed for analyzing OLZ in human serum. The single cytochrome P450 polymorphisms were genotyped using an amplifier real-time polymerase chain reaction system following standard protocols. RESULTS Evidence indicating that CYP2D6 polymorphism has a significant (P = 0.046) effect on the pharmacokinetics of olanzapine was obtained, confirming the beneficial effects of therapeutic drug monitoring (TDM) for olanzapine. CONCLUSIONS TDM should therefore be used as a standard care during olanzapine therapy. TDM is also useful in assessing adherence and may have a role in limiting olanzapine dosage geared at minimizing the risk of long-term toxicity.
Collapse
|
12
|
Kaczor AA, Targowska-Duda KM, Silva AG, Kondej M, Biała G, Castro M. N-(2-Hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1 H- benzimidazol-1-yl)propyl]piperidine-4-Carboxamide (D2AAK4), a Multi-Target Ligand of Aminergic GPCRs, as a Potential Antipsychotic. Biomolecules 2020; 10:E349. [PMID: 32102432 PMCID: PMC7072648 DOI: 10.3390/biom10020349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022] Open
Abstract
N-(2-hydroxyphenyl)-1-[3-(2-oxo-2,3-dihydro-1H-benzimidazol -1-yl)propyl]piperidine-4-carboxamide (D2AAK4) is a multitarget ligand of aminergic G protein-coupled receptors (GPCRs) identified in structure-based virtual screening. Here we present detailed in vitro, in silico and in vivo investigations of this virtual hit. D2AAK4 has an atypical antipsychotic profile and low affinity to off-targets. It interacts with aminergic GPCRs, forming an electrostatic interaction between its protonatable nitrogen atom and the conserved Asp 3.32 of the receptors. At the dose of 100 mg/kg D2AAK4 decreases amphetamine-induced hyperactivity predictive of antipsychotic activity, improves memory consolidation in passive avoidance test and has anxiogenic properties in elevated plus maze test (EPM). Further optimization of the virtual hit D2AAK4 will be aimed to balance its multitarget profile and to obtain analogs with anxiolytic activity.
Collapse
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Katarzyna M. Targowska-Duda
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Andrea G. Silva
- Department of Pharmacology, Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (A.G.S.); (M.C.)
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Grażyna Biała
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland;
| | - Marián Castro
- Department of Pharmacology, Universidade de Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Avda de Barcelona, E-15782 Santiago de Compostela, Spain; (A.G.S.); (M.C.)
| |
Collapse
|
13
|
Silva AG, Vila L, Marques P, Moreno L, Loza M, Sanz MJ, Cortes D, Castro M, Cabedo N. 1-(2'-Bromobenzyl)-6,7-dihydroxy- N-methyl-tetrahydroisoquinoline and 1,2-Demethyl-nuciferine as Agonists in Human D 2 Dopamine Receptors. JOURNAL OF NATURAL PRODUCTS 2020; 83:127-133. [PMID: 31933369 DOI: 10.1021/acs.jnatprod.9b00921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Certain D2-like dopamine receptor (DR) agonists are useful therapeutically as antiparkinsonian drugs, whereas D2-like DR antagonists or partial agonists are proven effective as antipsychotics. Two isoquinoline derivatives, 1-(2'-bromobenzyl)-6,7-dihydroxy-N-methyl-tetrahydroisoquinoline (Br-BTHIQ, 1) and 1,2-demethyl-nuciferine (aporphine, 2), were herein synthesized, and their dopaminergic affinity in cloned human D2R, D3R, and D4R subtypes and their behavior as agonists/antagonists were evaluated. They showed affinity values (Ki) for hD2, hD3, and hD4 DR within the nanomolar range. The trends in affinity were hD4R ≫ hD3R > hD2R for Br-BTHIQ (1) and hD2R > hD4R > hD3R for 1,2-demethyl-nuciferine (2). The functional assays of cyclic adenosine monophosphate signaling at human D2R showed a partial agonist effect for Br-BTHIQ (1) and full agonist behavior for aporphine (2), with half maximal effective concentration values of 2.95 and 10.2 μM, respectively. Therefore, both isoquinolines 1 and 2 have emerged as lead molecules for the synthesis of new therapeutic drugs that ultimately may be useful to prevent schizophrenia and Parkinson's disease, respectively.
Collapse
Affiliation(s)
- Andrea G Silva
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department of Pharmacology , Universidad de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Laura Vila
- Institute of Health Research (INCLIVA) , University Clinic Hospital of Valencia , 46010 Valencia , Spain
| | - Patrice Marques
- Institute of Health Research (INCLIVA) , University Clinic Hospital of Valencia , 46010 Valencia , Spain
- Department of Pharmacology, Faculty of Pharmacy , University of Valencia , 46100 Valencia , Spain
- Department of Pharmacology, Faculty of Medicine , University of Valencia , 46010 Valencia , Spain
| | - Laura Moreno
- Department of Pharmacology, Faculty of Pharmacy , University of Valencia , 46100 Valencia , Spain
- Department of Pharmacology, Faculty of Medicine , University of Valencia , 46010 Valencia , Spain
| | - Mabel Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department of Pharmacology , Universidad de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - María-Jesús Sanz
- Institute of Health Research (INCLIVA) , University Clinic Hospital of Valencia , 46010 Valencia , Spain
- Department of Pharmacology, Faculty of Pharmacy , University of Valencia , 46100 Valencia , Spain
- Department of Pharmacology, Faculty of Medicine , University of Valencia , 46010 Valencia , Spain
| | - Diego Cortes
- Department of Pharmacology, Faculty of Pharmacy , University of Valencia , 46100 Valencia , Spain
- Department of Pharmacology, Faculty of Medicine , University of Valencia , 46010 Valencia , Spain
| | - Marián Castro
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department of Pharmacology , Universidad de Santiago de Compostela , 15782 Santiago de Compostela , Spain
| | - Nuria Cabedo
- Institute of Health Research (INCLIVA) , University Clinic Hospital of Valencia , 46010 Valencia , Spain
- Department of Pharmacology, Faculty of Pharmacy , University of Valencia , 46100 Valencia , Spain
- Department of Pharmacology, Faculty of Medicine , University of Valencia , 46010 Valencia , Spain
| |
Collapse
|
14
|
Kondej M, Wróbel TM, Silva AG, Stępnicki P, Koszła O, Kędzierska E, Bartyzel A, Biała G, Matosiuk D, Loza MI, Castro M, Kaczor AA. Synthesis, pharmacological and structural studies of 5-substituted-3-(1-arylmethyl-1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles as multi-target ligands of aminergic GPCRs. Eur J Med Chem 2019; 180:673-689. [DOI: 10.1016/j.ejmech.2019.07.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/03/2019] [Accepted: 07/17/2019] [Indexed: 01/01/2023]
|
15
|
Synthesis, Structural and Thermal Studies of 3-(1-Benzyl-1,2,3,6-tetrahydropyridin-4-yl)-5-ethoxy-1 H-indole (D2AAK1_3) as Dopamine D₂ Receptor Ligand. Molecules 2018; 23:molecules23092249. [PMID: 30181442 PMCID: PMC6225423 DOI: 10.3390/molecules23092249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 08/31/2018] [Indexed: 11/17/2022] Open
Abstract
Compound D2AAK1_3 was designed as a modification of the lead structure D2AAK1 (an in vivo active multi-target compound with nanomolar affinity to a number of aminergic GPCRs) and synthesized in the reaction of 5-ethoxyindole and 1-benzyl-4-piperidone. This compound has an affinity to the human dopamine D₂ receptor with Ki of 151 nM. The aim of these studies was the structural and thermal characterization of the compound D2AAK1_3. In particular; X-ray studies; molecular docking and molecular dynamics as well as thermal analysis were performed. The studied compound crystallizes in orthorhombic system; in chiral space group P2₁2₁2₁. The compound has a non-planar conformation. The studied compound was docked to the novel X-ray structure of the human dopamine D₂ receptor in the inactive state (PDB ID: 6CM4) and established the main contact between its protonatable nitrogen atom and Asp (3.32) of the receptor. The obtained binding pose was stable in molecular dynamics simulations. Thermal stability of the compound was investigated using the TG-DSC technique in the air atmosphere, while TG-FTIR analyses in air and nitrogen atmospheres were also performed. The studied compound is characterized by good thermal stability. The main volatile products of combustion are the following gases: CO₂; H₂O toluene and CO while in the case of pyrolysis process in the FTIR spectra; the characteristic bands of NH₃; piperidine and indole are additionally observed.
Collapse
|
16
|
O'Hagan S, Kell DB. Analysis of drug-endogenous human metabolite similarities in terms of their maximum common substructures. J Cheminform 2017; 9:18. [PMID: 28316656 PMCID: PMC5344883 DOI: 10.1186/s13321-017-0198-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
In previous work, we have assessed the structural similarities between marketed drugs (‘drugs’) and endogenous natural human metabolites (‘metabolites’ or ‘endogenites’), using ‘fingerprint’ methods in common use, and the Tanimoto and Tversky similarity metrics, finding that the fingerprint encoding used had a dramatic effect on the apparent similarities observed. By contrast, the maximal common substructure (MCS), when the means of determining it is fixed, is a means of determining similarities that is largely independent of the fingerprints, and also has a clear chemical meaning. We here explored the utility of the MCS and metrics derived therefrom. In many cases, a shared scaffold helps cluster drugs and endogenites, and gives insight into enzymes (in particular transporters) that they both share. Tanimoto and Tversky similarities based on the MCS tend to be smaller than those based on the MACCS fingerprint-type encoding, though the converse is also true for a significant fraction of the comparisons. While no single molecular descriptor can account for these differences, a machine learning-based analysis of the nature of the differences (MACCS_Tanimoto vs MCS_Tversky) shows that they are indeed deterministic, although the features that are used in the model to account for this vary greatly with each individual drug. The extent of its utility and interpretability vary with the drug of interest, implying that while MCS is neither ‘better’ nor ‘worse’ for every drug–endogenite comparison, it is sufficiently different to be of value. The overall conclusion is thus that the use of the MCS provides an additional and valuable strategy for understanding the structural basis for similarities between synthetic, marketed drugs and natural intermediary metabolites.
Collapse
Affiliation(s)
- Steve O'Hagan
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| | - Douglas B Kell
- School of Chemistry, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester, M1 7DN UK.,Centre for the Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), The University of Manchester, 131 Princess St, Manchester, M1 7DN UK
| |
Collapse
|
17
|
Warszycki D, Rueda M, Mordalski S, Kristiansen K, Satała G, Rataj K, Chilmonczyk Z, Sylte I, Abagyan R, Bojarski AJ. From Homology Models to a Set of Predictive Binding Pockets-a 5-HT 1A Receptor Case Study. J Chem Inf Model 2017; 57:311-321. [PMID: 28055203 PMCID: PMC5361891 DOI: 10.1021/acs.jcim.6b00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite its remarkable importance in the arena of drug design, serotonin 1A receptor (5-HT1A) has been elusive to the X-ray crystallography community. This lack of direct structural information not only hampers our knowledge regarding the binding modes of many popular ligands (including the endogenous neurotransmitter-serotonin), but also limits the search for more potent compounds. In this paper we shed new light on the 3D pharmacological properties of the 5-HT1A receptor by using a ligand-guided approach (ALiBERO) grounded in the Internal Coordinate Mechanics (ICM) docking platform. Starting from a homology template and set of known actives, the method introduces receptor flexibility via Normal Mode Analysis and Monte Carlo sampling, to generate a subset of pockets that display enriched discrimination of actives from inactives in retrospective docking. Here, we thoroughly investigated the repercussions of using different protein templates and the effect of compound selection on screening performance. Finally, the best resulting protein models were applied prospectively in a large virtual screening campaign, in which two new active compounds were identified that were chemically distinct from those described in the literature.
Collapse
Affiliation(s)
- Dawid Warszycki
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Manuel Rueda
- University of California, San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Drive, MC 0747 La Jolla, CA 92093-0747, U.S
| | - Stefan Mordalski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Kurt Kristiansen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | - Grzegorz Satała
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Krzysztof Rataj
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Zdzisław Chilmonczyk
- Department of Cell Biology, National Medicines Institute, 30/34 Chełmska Street, 00-725 Warszawa, Poland
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | - Ruben Abagyan
- University of California, San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Drive, MC 0747 La Jolla, CA 92093-0747, U.S
| | - Andrzej J. Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| |
Collapse
|
18
|
Tagami K, Kashiwase Y, Yokoyama A, Nishimura H, Miyano K, Suzuki M, Shiraishi S, Matoba M, Ohe Y, Uezono Y. The atypical antipsychotic, olanzapine, potentiates ghrelin-induced receptor signaling: An in vitro study with cells expressing cloned human growth hormone secretagogue receptor. Neuropeptides 2016; 58:93-101. [PMID: 26775231 DOI: 10.1016/j.npep.2015.12.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/30/2015] [Accepted: 12/19/2015] [Indexed: 12/20/2022]
Abstract
The growth hormone secretagogue receptor (GHS-R) belongs to Gαq-coupled G protein-coupled receptor (GPCR) that mediates growth hormone release, food intake, appetite, glucose metabolism and body composition. Ghrelin has been identified as an endogenous ligand for GHS-R, and it is the only orexigenic peptide found in the peripheral organs. Olanzapine, an atypical antipsychotic agent that binds to and inhibits the activation of GPCR for several neurotransmitters, has metabolic side effects such as excessive appetite and weight gain. Recently, studies have revealed that the orexigenic mechanism of olanzapine is mediated via GHS-R signaling, although the precise mechanisms have not been clarified. In this study, we investigated the effect of olanzapine on ghrelin-mediated GHS-R signaling by using an electrical impedance-based receptor biosensor assay system (CellKey™). Olanzapine at concentrations of 10(-7) and 10(-6)mol/L enhanced ghrelin-induced (10(-10)-10(-8)mol/L) GHS-R activation. A Ca(2+) imaging assay revealed that olanzapine (10(-7) and 10(-6)mol/L) enhanced ghrelin (10(-7) M)-induced GHS-R activity. In contrast, haloperidol (an antipsychotic agent) failed to enhance this ghrelin-mediated GHS-R activation, as demonstrated by both the CellKey™ and Ca(2+) imaging assays. Together, these results suggest that olanzapine, but not haloperidol, promotes appetite by enhancing ghrelin-mediated GHS-R signaling.
Collapse
Affiliation(s)
- Keita Tagami
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Department of Palliative Medicine, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan; Division of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, 2-1-1 Hongou, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yohei Kashiwase
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan.
| | - Akinobu Yokoyama
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan.
| | - Hitomi Nishimura
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Molecular Pathology and Metabolic Disease, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan.
| | - Kanako Miyano
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Masami Suzuki
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Seiji Shiraishi
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Motohiro Matoba
- Department of Palliative Medicine, Japanese Red Cross Medical Center, 4-1-22, Hiroo, Shiguya-ku, Tokyo 150-8935, Japan.
| | - Yuichiro Ohe
- Division of Advanced Clinical Research of Cancer, Juntendo University Graduate School of Medicine, 2-1-1 Hongou, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Yasuhito Uezono
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Division of Supportive Care Research, National Cancer Center Exploratory Oncology Research and Clinical Trial Center Research, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center, 5-1-1 Tsukiji, Tokyo 104-0045, Japan.
| |
Collapse
|
19
|
Kaczor AA, Silva AG, Loza MI, Kolb P, Castro M, Poso A. Structure-Based Virtual Screening for Dopamine D2Receptor Ligands as Potential Antipsychotics. ChemMedChem 2016; 11:718-29. [DOI: 10.1002/cmdc.201500599] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/06/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Agnieszka A. Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Lab; Faculty of Pharmacy with Division for Medical Analytics; Medical University of Lublin; 4A Chodźki St. 20059 Lublin Poland
- School of Pharmacy; University of Eastern Finland; Yliopistonranta 1, P.O. Box 1627 70211 Kuopio Finland
| | - Andrea G. Silva
- Department of Pharmacology; Universidade de Santiago de Compostela; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS); Avda de Barcelona 15782 Santiago de Compostela Spain
| | - María I. Loza
- Department of Pharmacology; Universidade de Santiago de Compostela; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS); Avda de Barcelona 15782 Santiago de Compostela Spain
| | - Peter Kolb
- Department of Pharmaceutical Chemistry; Philipps University Marburg; Marbacher Weg 6 35032 Marburg Germany
| | - Marián Castro
- Department of Pharmacology; Universidade de Santiago de Compostela; Center for Research in Molecular Medicine and Chronic Diseases (CIMUS); Avda de Barcelona 15782 Santiago de Compostela Spain
| | - Antti Poso
- School of Pharmacy; University of Eastern Finland; Yliopistonranta 1, P.O. Box 1627 70211 Kuopio Finland
- University Hospital Tübingen; Department of Internal Medicine I; Division of Translational Gastrointestinal Oncology; Otfried-Müller-Strasse 10 72076 Tübingen Germany
| |
Collapse
|
20
|
Thomas T, Fang Y, Yuriev E, Chalmers DK. Ligand Binding Pathways of Clozapine and Haloperidol in the Dopamine D2 and D3 Receptors. J Chem Inf Model 2016; 56:308-21. [PMID: 26690887 DOI: 10.1021/acs.jcim.5b00457] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The binding of a small molecule ligand to its protein target is most often characterized by binding affinity and is typically viewed as an on/off switch. The more complex reality is that binding involves the ligand passing through a series of intermediate states between the solution phase and the fully bound pose. We have performed a set of 29 unbiased molecular dynamics simulations to model the binding pathways of the dopamine receptor antagonists clozapine and haloperidol binding to the D2 and D3 dopamine receptors. Through these simulations we have captured the binding pathways of clozapine and haloperidol from the extracellular vestibule to the orthosteric binding site and thereby, we also predict the bound pose of each ligand. These are the first long time scale simulations of haloperidol or clozapine binding to dopamine receptors. From these simulations, we have identified several important stages in the binding pathway, including the involvement of Tyr7.35 in a "handover" mechanism that transfers the ligand between the extracellular vestibule and Asp3.32. We have also performed interaction and cluster analyses to determine differences in binding pathways between the D2 and D3 receptors and identified metastable states that may be of use in drug design.
Collapse
Affiliation(s)
- Trayder Thomas
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Yu Fang
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - Elizabeth Yuriev
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| | - David K Chalmers
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Pde, Parkville, Victoria 3052, Australia
| |
Collapse
|
21
|
Abdel-Fattah MAO, Abadi AH, Lehmann J, Schweikert PM, Enzensperger C. D1-like receptors distinguishing thieno-azecine regioisomers. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00258c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of novel azecine derivatives with modulated dopaminergic receptor selectivity and affinity profiles.
Collapse
Affiliation(s)
- Mohamed A. O. Abdel-Fattah
- Institute of Pharmacy
- Department of Pharmaceutical and Medicinal Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy and Biotechnology
- German University in Cairo
- Cairo 11835
- Egypt
| | - Jochen Lehmann
- Institute of Pharmacy
- Department of Pharmaceutical and Medicinal Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Peter M. Schweikert
- Institute of Pharmacy
- Department of Pharmaceutical and Medicinal Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| | - Christoph Enzensperger
- Institute of Organic Chemistry and Macromolecular Chemistry
- Friedrich-Schiller-Universität Jena
- D-07743 Jena
- Germany
| |
Collapse
|