1
|
Singh P, Arifuddin M, Supuran CT, Nerella SG. Carbonic anhydrase inhibitors: Structural insights and therapeutic potential. Bioorg Chem 2025; 156:108224. [PMID: 39893992 DOI: 10.1016/j.bioorg.2025.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Carbonic anhydrase inhibitors (CAIs) have garnered significant attention in recent years due to their critical role in managing various diseases, including glaucoma, epilepsy, cancer, and other conditions linked to carbonic anhydrase (CA) isoforms. This review highlights the recent advancements in the design and development of CAIs, focusing on diverse chemical classes such as indoles, sulfocoumarins, 1,2,3-triazoles, urea derivatives, chalcones, quinolines, and pyridines. Each class presents unique structural features and mechanisms of action, contributing to the selective inhibition of specific CA isoforms. The ongoing exploration of these compounds has not only enhanced our understanding of CA inhibition but also opened new avenues for therapeutic applications, paving the way for the development of novel drugs that tackle pressing healthcare challenges.
Collapse
Affiliation(s)
- Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India
| | - Mohammed Arifuddin
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Department of Chemistry, Directorate of Distance Education, Maulana Azad National Urdu University, Hyderabad 500 032, India
| | - Claudiu T Supuran
- Università degli Studi di Firenze, Neurofarba Dept., Sezione di Scienze Farmaceutiche e Nutraceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Sridhar Goud Nerella
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, India; Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD 20892, USA(2).
| |
Collapse
|
2
|
Naeem N, Sadiq A, Othman GA, Yassin HM, Mughal EU. Exploring heterocyclic scaffolds in carbonic anhydrase inhibition: a decade of structural and therapeutic insights. RSC Adv 2024; 14:35769-35970. [PMID: 39534850 PMCID: PMC11555472 DOI: 10.1039/d4ra06290f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Heterocyclic compounds represent a prominent class of molecules with diverse pharmacological activities. Among their therapeutic applications, they have gained significant attention as carbonic anhydrase (CA) inhibitors, owing to their potential in the treatment of various diseases such as epilepsy, cancer and glaucoma. CA is a widely distributed zinc metalloenzyme that facilitates the reversible interconversion of carbon dioxide and bicarbonate. This reaction is essential for numerous physiological and pathological processes. In humans, CA exists in sixteen different isoforms, labeled hCA-I to hCA-XV, each distributed across various tissues and organs and involved in crucial physiological functions. Clinically utilized CA inhibitors, such as brinzolamide, dorzolamide and acetazolamide, exhibit poor selectivity, leading to undesirable side effects. A significant challenge in designing effective CA inhibitors is achieving balanced isoform selectivity, prompting the exploration of new chemotypes. This review compiles recent strategies employed by various researchers in developing CAIs across different structural classes, including pyrazoline, quinoline, imidazole, oxadiazole, pyrimidine, coumarin, chalcone, rhodanine, phthalazine, triazole, isatin, and indole. Additionally, the review summarizes structure-activity relationship (SAR) analyses, isoform selectivity evaluations, along with mechanistic and in silico investigations. Insights derived from SAR studies provide crucial directions for the rational design of next-generation heterocyclic CA inhibitors, with improved therapeutic efficacy and reduced side effects. To the best of our knowledge, for the first time, we have comprehensively summarized all known isoforms of CA in relation to various heterocyclic motifs. This review examines the use of different heterocycles as CA inhibitors, drawing on research published over the past 11 years. It offers a valuable resource for early-career researchers, encouraging further exploration of synthetic heterocycles in the development of CA inhibitors.
Collapse
Affiliation(s)
- Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat 50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot 51300 Pakistan
| | - Gehan Ahmed Othman
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | - Habab M Yassin
- Biology Department, College of Science, King Khalid University Abha 61421 Saudi Arabia
| | | |
Collapse
|
3
|
Temizer AB, Uludoğan G, Özçelik R, Koulani T, Ozkirimli E, Ulgen KO, Karali N, Özgür A. Exploring data-driven chemical SMILES tokenization approaches to identify key protein-ligand binding moieties. Mol Inform 2024; 43:e202300249. [PMID: 38196065 DOI: 10.1002/minf.202300249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024]
Abstract
Machine learning models have found numerous successful applications in computational drug discovery. A large body of these models represents molecules as sequences since molecular sequences are easily available, simple, and informative. The sequence-based models often segment molecular sequences into pieces called chemical words, analogous to the words that make up sentences in human languages, and then apply advanced natural language processing techniques for tasks such as de novo drug design, property prediction, and binding affinity prediction. However, the chemical characteristics and significance of these building blocks, chemical words, remain unexplored. To address this gap, we employ data-driven SMILES tokenization techniques such as Byte Pair Encoding, WordPiece, and Unigram to identify chemical words and compare the resulting vocabularies. To understand the chemical significance of these words, we build a language-inspired pipeline that treats high affinity ligands of protein targets as documents and selects key chemical words making up those ligands based on tf-idf weighting. The experiments on multiple protein-ligand affinity datasets show that despite differences in words, lengths, and validity among the vocabularies generated by different subword tokenization algorithms, the identified key chemical words exhibit similarity. Further, we conduct case studies on a number of target to analyze the impact of key chemical words on binding. We find that these key chemical words are specific to protein targets and correspond to known pharmacophores and functional groups. Our approach elucidates chemical properties of the words identified by machine learning models and can be used in drug discovery studies to determine significant chemical moieties.
Collapse
Affiliation(s)
- Asu Busra Temizer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İstanbul University, İstanbul, Turkey
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, İstanbul University, İstanbul, Turkey
| | - Gökçe Uludoğan
- Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey
| | - Rıza Özçelik
- Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey
| | - Taha Koulani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İstanbul University, İstanbul, Turkey
- Department of Pharmaceutical Chemistry, Institute of Health Sciences, İstanbul University, İstanbul, Turkey
| | - Elif Ozkirimli
- Science and Research Informatics, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kutlu O Ulgen
- Department of Chemical Engineering, Boğaziçi University, İstanbul, Turkey
| | - Nilgun Karali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, İstanbul University, İstanbul, Turkey
| | - Arzucan Özgür
- Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
4
|
Hesar Shourkabi M, Ghobeh M, Jafary H. Benzenesulfonamide as a novel, pharmaceutical small molecule inhibitor on Aβ gene expression and oxidative stress in Alzheimer's Wistar rats. Biochem Biophys Res Commun 2023; 674:154-161. [PMID: 37421923 DOI: 10.1016/j.bbrc.2023.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent acute neurodegenerative disease described by memory loss and other cognitive functions. Benzenesulfonamide, a novel, potent, and small organic molecule, was synthesized to investigate its effects on the levels of oxidative biomarkers (GPx, ROS, and MDA) and expression of beta-amyloid peptides (Aβ40 and Aβ42) in the pathology of AD. The results were compared with the rivastigmine drug. Applying benzenesulfonamide to Alzheimer's-induced Wistar rats showed a significant increase in the level of oxidative biomarkers (GPx, ROS, and MDA) in both the brain and blood serum as well as amyloid-β40 and 42 gene expressions. Therefore, benzenesulfonamide could be considered a novel therapeutic agent against AD.
Collapse
Affiliation(s)
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hanieh Jafary
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Szafrański K, Sławiński J, Tomorowicz Ł, Kawiak A. Synthesis, Anticancer Evaluation and Structure-Activity Analysis of Novel ( E)- 5-(2-Arylvinyl)-1,3,4-oxadiazol-2-yl)benzenesulfonamides. Int J Mol Sci 2020; 21:E2235. [PMID: 32210190 PMCID: PMC7139731 DOI: 10.3390/ijms21062235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 01/22/2023] Open
Abstract
To learn more about the structure-activity relationships of (E)-3-(5-styryl-1,3,4-oxadiazol-2-yl)benzenesulfonamide derivatives, which in our previous research displayed promising in vitro anticancer activity, we have synthesized a group of novel (E)-5-[(5-(2-arylvinyl)-1,3,4-oxadiazol-2-yl)]-4-chloro-2-R1-benzenesulfonamides 7-36 as well as (E)-4-[5-styryl1,3,4-oxadiazol-2-yl]benzenesulfonamides 47-50 and (E)-2-(2,4-dichlorophenyl)-5-(2-arylvinyl)-1,3,4-oxadiazols 51-55. All target derivatives were evaluated for their anticancer activity on HeLa, HCT-116, and MCF-7 human tumor cell lines. The obtained results were analyzed in order to explain the influence of a structure of the 2-aryl-vinyl substituent and benzenesulfonamide scaffold on the anti-tumor activity. Compound 31, bearing 5-nitrothiophene moiety, exhibited the most potent anticancer activity against the HCT-116, MCF-7, and HeLa cell lines, with IC50 values of 0.5, 4, and 4.5 µM, respectively. Analysis of structure-activity relationship showed significant differences in activity depending on the substituent in position 3 of the benzenesulfonamide ring and indicated as the optimal meta position of the sulfonamide moiety relative to the oxadizole ring. In the next stage, chemometric analysis was performed basing on a set of computed molecular descriptors. Hierarchical cluster analysis was used to examine the internal structure of the obtained data and the quantitative structure-activity relationship (QSAR) analysis with multiple linear regression (MLR) method allowed for finding statistically significant models for predicting activity towards all three cancer cell lines.
Collapse
Affiliation(s)
- Krzysztof Szafrański
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Jarosław Sławiński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Łukasz Tomorowicz
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (J.S.); (Ł.T.)
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland;
| |
Collapse
|
6
|
Vats L, Kumar R, Bua S, Nocentini A, Gratteri P, Supuran CT, Sharma PK. Continued exploration and tail approach synthesis of benzenesulfonamides containing triazole and dual triazole moieties as carbonic anhydrase I, II, IV and IX inhibitors. Eur J Med Chem 2019; 183:111698. [PMID: 31539777 DOI: 10.1016/j.ejmech.2019.111698] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/01/2022]
Abstract
A library of twenty two novel 1,2,3-triazole benzenesulfonamides incorporating thiosemicarbazide, 5(4H)-thione-1,2,4-triazole and variously substituted phenacyl appended 1,2,4-triazole as tail were designed, synthesized and assessed for their efficacy as inhibitors against carbonic anhydrase human (h) isoforms hCA I, II, IV and IX. The physiologically important and off-target cytosolic isoform hCA I was weakly inhibited by most of the newly synthesized sulfonamides while the glaucoma associated isoform hCA II was moderately inhibited with KIs spanning in low nanomolar range (KI = 8.0 nM-0.903 μM). The membrane bound isoform hCA IV, which is known to be involved in glaucoma and retinitis pigmentosa among others, was strongly inhibited by all newly synthesized sulfonamides out of which nine compounds inhibited isoform hCA IV even more effectively as compared to standard drug acetazolamide (AAZ). The membrane bound isoform hCA IX, associated with growth of tumor cells, was moderately inhibited with KIs ranging between 51 nM-3.198 μM. The effect of appending variously substituted tails on heterocyclic moieties over inhibition potential of synthesized sulfonamides is also disclosed which can be of further interest in pharmacological studies for exploring synthesis of isoform selective inhibitors.
Collapse
Affiliation(s)
- Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Government College Bherian, Pehowa, Kurukshetra, Haryana, 136128, India
| | - Rajiv Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India; Ch. Mani Ram Godara Government College for Women, Bhodia Khera, Fatehabad, Haryana, 125050, India
| | - Silvia Bua
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Alessio Nocentini
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy
| | - Claudiu T Supuran
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, University of Firenze, Via U. Schiff 6, 50019, Sesto Fiorentino, Firenze, Italy.
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| |
Collapse
|
7
|
Shetnev A, Shlenev R, Efimova J, Ivanovskii S, Tarasov A, Petzer A, Petzer JP. 1,3,4-Oxadiazol-2-ylbenzenesulfonamides as privileged structures for the inhibition of monoamine oxidase B. Bioorg Med Chem Lett 2019; 29:126677. [PMID: 31537422 DOI: 10.1016/j.bmcl.2019.126677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 12/31/2022]
Abstract
The present study investigates the monoamine oxidase (MAO) inhibition properties of a series of ten 5-aryl-1,3,4-oxadiazol-2-ylbenzenesulfonamides. The target compounds were synthesized by dehydration of the corresponding N,N'-diacylhydrazines with phosphorus oxychloride to yield the 1,3,4-oxadiazole cycle with concomitant transformation of the sulfonamide to the sulfonyl chloride group. Treatment with aqueous ammonia in acetonitrile regenerated the target sulfonamides. The results of the enzymology document that these compounds are potent and specific MAO-B inhibitors with the most potent compound exhibiting an IC50 value of 0.0027 µM. An analysis of the structure-activity relationships shows that the 4-benzenesulfonamides are significantly more potent MAO-B inhibitors than the corresponding 3-benzenesulfonamides, and that the corresponding N,N'-diacylhydrazine synthetic precursors are weak MAO inhibitors. Although MAO inhibition by oxadiazole compounds are known, this is the first report of nanomolar MAO inhibition potencies recorded for sulfonamide derivatives. MAO-B specific inhibitors such as those discovered here may be of interest in the treatment of neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Anton Shetnev
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russian Federation
| | - Roman Shlenev
- Yaroslavl State Technical University, Yaroslavl 150023, Russian Federation
| | - Julia Efimova
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russian Federation
| | - Sergey Ivanovskii
- Pharmaceutical Technology Transfer Center, Ushinsky Yaroslavl State Pedagogical University, 108 Respublikanskaya St., Yaroslavl 150000, Russian Federation
| | - Alexey Tarasov
- Yaroslavl State Technical University, Yaroslavl 150023, Russian Federation
| | - Anél Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom 2520, South Africa.
| |
Collapse
|
8
|
Wu YC, Ren XY, Rao GW. Research Progress of Diphenyl Urea Derivatives as Anticancer Agents and Synthetic Methodologies. MINI-REV ORG CHEM 2019. [DOI: 10.2174/1570193x15666181029130418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The malignant neoplasm, which is recognized as cancer, is a serious threat to human
health and frequently-occurring disease. Diphenylurea, an important link structure in the design of
active substance for treating cancer due to its near-perfect binding with certain acceptors, has demonstrated
many activities against several human cancer cell lines. Various novel compounds with diphenyl
urea as anticancer agents were constructed with the successful development of sorafenib.
Diphenylurea is utilized to treat cancer by inhibiting cell signaling transduction, such as RAS-RAFMEK-
ERK signaling pathway and PI3K-Akt-mTOR pathway. In addition, this structure inhibits tumor
cell growth by inhibiting receptor tyrosine kinases multiply, such as Vascular Endothelial
Growth Factor Receptors (VEGFRs), Platelet-Derived Growth Factor Receptors (PDGFRs), Epidermal
Growth Factor Receptors (EGFRs). It regulates the pH value in cells by inhibiting CAIX/XII and
to achieve cancer therapeutic effect. Besides, the diphenyl urea structure is applied to the synthesis of
reagents like Aurora kinases inhibitors and HDAC inhibitors that affect cell division and differentiation
to treat cancer. To reach the goal of treating tumor, this structure is also used as a DNA-directed
alkylating agent by affecting the expression of genes. An application of the most representative diphenyl
urea derivatives as antitumor agents is summarized in this review, focusing on their mechanisms
bound to the targets. Meanwhile, the progress of researches on methods of synthesizing diphenyl
urea derivatives is provided.
Collapse
Affiliation(s)
- Yi-Cong Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin-Yue Ren
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
10
|
Žuvela P, Liu JJ, Yi M, Pomastowski PP, Sagandykova G, Belka M, David J, Bączek T, Szafrański K, Żołnowska B, Sławiński J, Supuran CT, Wong MW, Buszewski B. Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes. J Enzyme Inhib Med Chem 2018; 33:1430-1443. [PMID: 30220229 PMCID: PMC6151961 DOI: 10.1080/14756366.2018.1511551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-based and structure-based computer-assisted drug design. The new method provides great flexibility in drug design and drug candidates with considerably lower risk in an efficient manner. As a model system, 45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each ligand, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity (logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept, optimal drug structure was obtained by inverting the model with respect to reference drug properties. 3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking. Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained through docking complemented with biophysical experiments.
Collapse
Affiliation(s)
- Petar Žuvela
- a Department of Chemistry , National University of Singapore , Singapore.,b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - J Jay Liu
- c Department of Chemical Engineering , Pukyong National University , Busan , Korea
| | - Myunggi Yi
- d Department of Biomedical Engineering , Pukyong National University , Busan , Korea
| | - Paweł P Pomastowski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Gulyaim Sagandykova
- e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| | - Mariusz Belka
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jonathan David
- a Department of Chemistry , National University of Singapore , Singapore
| | - Tomasz Bączek
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Krzysztof Szafrański
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Beata Żołnowska
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jarosław Sławiński
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Claudiu T Supuran
- h Dipartimento di Chimica, Universita degli Studi di Firenze , Polo Scientifico, Laboratorio di Chimica Bioinorganica , Sesto Fiorentino (Florence) , Italy.,i NEUROFARBA Department, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Ming Wah Wong
- a Department of Chemistry , National University of Singapore , Singapore
| | - Bogusław Buszewski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland.,e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
11
|
Čapkauskaitė E, Zubrienė A, Paketurytė V, Timm DD, Tumkevičius S, Matulis D. Thiazole-substituted benzenesulfonamides as inhibitors of 12 human carbonic anhydrases. Bioorg Chem 2018; 77:534-541. [PMID: 29459130 DOI: 10.1016/j.bioorg.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
Abstract
Four series of para or meta - substituted thiazolylbenzenesulfonamides bearing Cl substituents were designed, synthesized, and evaluated as inhibitors of all 12 catalytically active recombinant human carbonic anhydrase (CA) isoforms. Observed affinities were determined by the fluorescent thermal shift assay and the intrinsic affinities were calculated based on the fractions of binding-ready deprotonated sulfonamide and CA bearing protonated hydroxide bound to the catalytic Zn(II) in the active site. Several compounds exhibited selectivity towards CA IX, an anticancer target. Intrinsic affinities reached 30 pM, while the observed affinities - 70 nM. The structure-intrinsic affinity relationship map of the compounds showed the energetic contributions of the thiazole ring and its substituents.
Collapse
Affiliation(s)
- Edita Čapkauskaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - David D Timm
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania
| | - Sigitas Tumkevičius
- Department of Organic Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, Vilnius LT-10257, Lithuania.
| |
Collapse
|
12
|
Ulus R, Esirden İ, Aday B, Turgut GÇ, Şen A, Kaya M. Synthesis of novel acridine-sulfonamide hybrid compounds as acetylcholinesterase inhibitor for the treatment of alzheimer’s disease. Med Chem Res 2018; 27:634-641. [DOI: 10.1007/s00044-017-2088-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
13
|
Novel 2-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)-1-(1,3,5-triazin-2-ylamino)guanidine derivatives: Inhibition of human carbonic anhydrase cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII, anticancer activity, and molecular modeling studies. Eur J Med Chem 2018; 143:1931-1941. [DOI: 10.1016/j.ejmech.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 11/18/2022]
|
14
|
Pogorzelska A, Sławiński J, Żołnowska B, Szafrański K, Kawiak A, Chojnacki J, Ulenberg S, Zielińska J, Bączek T. Novel 2-(2-alkylthiobenzenesulfonyl)-3-(phenylprop-2-ynylideneamino)guanidine derivatives as potent anticancer agents – Synthesis, molecular structure, QSAR studies and metabolic stability. Eur J Med Chem 2017; 138:357-370. [DOI: 10.1016/j.ejmech.2017.06.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 11/25/2022]
|
15
|
Sławiński J, Szafrański K, Pogorzelska A, Żołnowska B, Kawiak A, Macur K, Belka M, Bączek T. Novel 2-benzylthio-5-(1,3,4-oxadiazol-2-yl)benzenesulfonamides with anticancer activity: Synthesis, QSAR study, and metabolic stability. Eur J Med Chem 2017; 132:236-248. [PMID: 28364658 DOI: 10.1016/j.ejmech.2017.03.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/30/2017] [Accepted: 03/21/2017] [Indexed: 02/03/2023]
Abstract
A series of novel 2-benzylthio-4-chloro-5-(5-substituted 1,3,4-oxadiazol-2-yl)benzenesulfonamides (4-27) have been synthesized as potential anticancer agents. MTT assay was carried out to determine the cytotoxic activity against three human cancer cell lines: colon cancer HCT-116, breast cancer MCF-7 and cervical cancer HeLa as well as to determine the influence on human keratinocyte cell line HaCaT. Relatively high (IC50: 7-17 μM) cytostatic activity and selectivity against HeLa cell line was found for compounds 6, 7, 9-11 and 16. While compounds 23-27 bearing styryl moieties attached to a 1,3,4-oxadiazole ring at position 5, exhibited significant activity against two and/or three cancer cell lines with IC50: 11-29 μM. Further quantitative structure-activity relationships based on molecular descriptors calculated by DRAGON software, were investigated by Orthogonal Projections to Latent Structures (OPLS) technique and Variable Influence on Projection (VIP) analysis. Considering molecular descriptors with the highest influence on projection (highest VIP values) lipophilicity of tested compounds was pointed as main factor affecting activity towards HCT-116 cell line, while structural parameters associated with presence of styryl substituent in position 5 of 1,3,4-oxadiazole ring were identified as essential for activity towards MCF-7 breast cancer. In vitro tests for metabolic stability in the presences of pooled human liver microsomes and NADPH showed that some of the most active compounds 26 and 27 presented favorable metabolic stability with t1/2 in the range of 28.1-36.0 min.
Collapse
Affiliation(s)
- Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Aneta Pogorzelska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Beata Żołnowska
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Anna Kawiak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland; Laboratory of Human Physiology, Medical University of Gdańsk, ul. Tuwima 15, 80-210 Gdańsk, Poland
| | - Katarzyna Macur
- Laboratory of Mass Spectrometry, Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, ul. Abrahama 58, 80-307 Gdańsk, Poland
| | - Mariusz Belka
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
16
|
Eldehna WM, Fares M, Ceruso M, Ghabbour HA, Abou-Seri SM, Abdel-Aziz HA, Abou El Ella DA, Supuran CT. Amido/ureidosubstituted benzenesulfonamides-isatin conjugates as low nanomolar/subnanomolar inhibitors of the tumor-associated carbonic anhydrase isoform XII. Eur J Med Chem 2016; 110:259-66. [PMID: 26840366 DOI: 10.1016/j.ejmech.2016.01.030] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 12/07/2015] [Accepted: 01/17/2016] [Indexed: 11/29/2022]
Abstract
By using a molecular hybridization approach, two series of amido/ureidosubstituted benzenesulfonamides incorporating substituted-isatin moieties were synthesized. The prepared derivatives were in vitro evaluated for their inhibitory activity against human carbonic anhydrase (hCA, EC 4.2.1.1) I, II (cytosolic) and IX, XII (transmembrane, tumor-associated) isoforms. All these isoforms were inhibited in variable degrees by the sulfonamides reported here. hCA I was inhibited with KIs in the range of 7.9-894 nM, hCA II in the range of 7.5-1645 nM (with one compound having a KI > 10 μM); hCA IX in the range of 5.0-240 nM, whereas hCA XII in the range of 0.47-2.83 nM. As all these isoforms are involved in various pathologies, in which their inhibition can be exploited therapeutically, the derivatives reported here may represent interesting extensions to the field of CA inhibitors of the sulfonamide type.
Collapse
Affiliation(s)
- Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt.
| | - Mohamed Fares
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, P.O. Box 11829, Egypt
| | - Mariangela Ceruso
- Department of Chemistry, Laboratory of Bioinorganic Chemistry, University of Florence, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy
| | - Hazem A Ghabbour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Hatem A Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Dalal A Abou El Ella
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Abbassia, P.O. Box 11566, Egypt
| | - Claudiu T Supuran
- Department of Chemistry, Laboratory of Bioinorganic Chemistry, University of Florence, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino Firenze, Italy; Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Polo Scientifico, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
17
|
Huyut Z, Beydemir Ş, Gülçin İ. Inhibitory effects of some phenolic compounds on the activities of carbonic anhydrase: from in vivo to ex vivo. J Enzyme Inhib Med Chem 2015; 31:1234-40. [PMID: 26670706 DOI: 10.3109/14756366.2015.1117459] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbonic anhydrase (CA) inhibitors have been used for more than 60 years for therapeutic purposes in many diseases table such as in medications against antiglaucoma and as diuretics. Phenolic compounds are a new class of CA inhibitor. In our study, we tested the effects of arachidonoyl dopamine, 2,4,6-trihydroxybenzaldehyde and 3,4-dihydroxy-5-methoxybenzoic acid on esterase and the CO2-hydratase activities of CA I and II isozymes purified from in vivo to ex vivo. The Ki values of arachidonoyl dopamine, 2,4,6-trihydroxybenzaldehyde and 3,4-dihydroxy-5-methoxybenzoic acid were 203.80, 1170.00 and 910.00 μM, respectively for hCA I and 75.25, 354.00 and 1510.00 μM, respectively for hCA II. Additionally, IC50 values from in vivo studies were found to be in the range of 173.25-1360.0 μM for CA I and II, respectively, using CO2-hydratase activity methods. These results demonstrated that phenolic compounds used in in vivo studies could be used in different biomedical applications to inhibit approximately 30% of the CO2-hydratase activity of the total CA enzyme of rat erythrocytes.
Collapse
Affiliation(s)
- Zübeyir Huyut
- a Department of Biochemistry , Faculty of Medical, Yüzüncü Yıl University , Van , Turkey
| | - Şükrü Beydemir
- b Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey , and
| | - İlhami Gülçin
- b Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey , and.,c Department of Zoology , College of Science, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
18
|
Aday B, Sola P, Çolak F, Kaya M. Synthesis of novel sulfonamide analogs containing sulfamerazine/sulfaguanidine and their biological activities. J Enzyme Inhib Med Chem 2015; 31:1005-10. [DOI: 10.3109/14756366.2015.1079183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
| | | | | | - Muharrem Kaya
- Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Kütahya, Turkey
| |
Collapse
|
19
|
De Luca V, Del Prete S, Vullo D, Carginale V, Di Fonzo P, Osman SM, AlOthman Z, Supuran CT, Capasso C. Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc. J Enzyme Inhib Med Chem 2015. [DOI: 10.3109/14756366.2015.1069289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Sonia Del Prete
- Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy,
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | - Daniela Vullo
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
| | | | | | - Sameh M Osman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid AlOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Claudiu T Supuran
- Laboratorio di Chimica Bioinorganica, Dipartimento Di Chimica, Polo Scientifico, Università degli Studi di Firenze, Sesto Fiorentino, Florence, Italy,
- Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, Polo Scientifico, Sesto Fiorentino, Florence, Italy, and
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
20
|
Carradori S, Mollica A, Ceruso M, D’Ascenzio M, De Monte C, Chimenti P, Sabia R, Akdemir A, Supuran CT. New amide derivatives of Probenecid as selective inhibitors of carbonic anhydrase IX and XII: Biological evaluation and molecular modelling studies. Bioorg Med Chem 2015; 23:2975-81. [DOI: 10.1016/j.bmc.2015.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
|